--- trunk/libf/dyn3d/calfis.f90 2013/02/18 16:33:12 69 +++ trunk/dyn3d/calfis.f 2014/03/11 16:03:19 89 @@ -4,14 +4,15 @@ contains - SUBROUTINE calfis(rdayvrai, time, ucov, vcov, teta, q, masse, ps, pk, phis, & - phi, dudyn, dv, dq, w, dufi, dvfi, dtetafi, dqfi, dpfi, lafin) + SUBROUTINE calfis(rdayvrai, time, ucov, vcov, teta, q, ps, pk, phis, phi, & + dudyn, w, dufi, dvfi, dtetafi, dqfi, dpfi, lafin) ! From dyn3d/calfis.F, version 1.3 2005/05/25 13:10:09 ! Authors: P. Le Van, F. Hourdin - ! 1. Réarrangement des tableaux et transformation variables + ! 1. Réarrangement des tableaux et transformation des variables ! dynamiques en variables physiques + ! 2. Calcul des termes physiques ! 3. Retransformation des tendances physiques en tendances dynamiques @@ -22,36 +23,18 @@ ! - La variable thermodynamique de la physique est une variable ! intensive : T. - ! Pour la dynamique on prend T * (preff / p(l)) **kappa + ! Pour la dynamique on prend T * (preff / p(l))**kappa ! - Les deux seules variables dépendant de la géométrie ! nécessaires pour la physique sont la latitude pour le ! rayonnement et l'aire de la maille quand on veut intégrer une ! grandeur horizontalement. - ! Input : - ! ucov covariant zonal velocity - ! vcov covariant meridional velocity - ! teta potential temperature - ! ps surface pressure - ! masse masse d'air dans chaque maille - ! pts surface temperature (K) - ! callrad clef d'appel au rayonnement - - ! Output : - ! dufi tendency for the natural zonal velocity (ms-1) - ! dvfi tendency for the natural meridional velocity - ! dtetafi tendency for the potential temperature - ! pdtsfi tendency for the surface temperature - - ! pdtrad radiative tendencies \ input and output - ! pfluxrad radiative fluxes / input and output - use comconst, only: kappa, cpp, dtphys, g - use disvert_m, only: preff use comgeom, only: apoln, cu_2d, cv_2d, unsaire_2d, apols, rlonu, rlonv use dimens_m, only: iim, jjm, llm, nqmx use dimphy, only: klon + use disvert_m, only: preff use grid_change, only: dyn_phy, gr_fi_dyn use iniadvtrac_m, only: niadv use nr_util, only: pi @@ -60,38 +43,46 @@ ! Arguments : - LOGICAL, intent(in):: lafin - REAL, intent(in):: time ! heure de la journée en fraction de jour + ! Output : + ! dvfi tendency for the natural meridional velocity + ! dtetafi tendency for the potential temperature + ! pdtsfi tendency for the surface temperature - REAL vcov(iim + 1, jjm, llm) - REAL ucov(iim + 1, jjm + 1, llm) + ! pdtrad radiative tendencies \ input and output + ! pfluxrad radiative fluxes / input and output + + REAL, intent(in):: rdayvrai + REAL, intent(in):: time ! heure de la journée en fraction de jour + REAL, intent(in):: ucov(iim + 1, jjm + 1, llm) + ! ucov covariant zonal velocity + REAL, intent(in):: vcov(iim + 1, jjm, llm) + ! vcov covariant meridional velocity REAL, intent(in):: teta(iim + 1, jjm + 1, llm) - REAL masse(iim + 1, jjm + 1, llm) + ! teta potential temperature REAL, intent(in):: q(iim + 1, jjm + 1, llm, nqmx) ! (mass fractions of advected fields) + REAL, intent(in):: ps(iim + 1, jjm + 1) + ! ps surface pressure + REAL, intent(in):: pk(iim + 1, jjm + 1, llm) REAL, intent(in):: phis(iim + 1, jjm + 1) REAL, intent(in):: phi(iim + 1, jjm + 1, llm) - - REAL dv(iim + 1, jjm, llm) REAL dudyn(iim + 1, jjm + 1, llm) - REAL dq(iim + 1, jjm + 1, llm, nqmx) - REAL, intent(in):: w(iim + 1, jjm + 1, llm) - REAL ps(iim + 1, jjm + 1) - REAL, intent(in):: pk(iim + 1, jjm + 1, llm) + REAL, intent(out):: dufi(iim + 1, jjm + 1, llm) + ! tendency for the covariant zonal velocity (m2 s-2) REAL dvfi(iim + 1, jjm, llm) - REAL dufi(iim + 1, jjm + 1, llm) REAL, intent(out):: dtetafi(iim + 1, jjm + 1, llm) REAL dqfi(iim + 1, jjm + 1, llm, nqmx) REAL dpfi(iim + 1, jjm + 1) + LOGICAL, intent(in):: lafin ! Local variables : - INTEGER i, j, l, ig0, ig, iq, iiq + INTEGER i, j, l, ig0, iq, iiq REAL zpsrf(klon) REAL paprs(klon, llm+1), play(klon, llm) REAL pphi(klon, llm), pphis(klon) @@ -102,20 +93,13 @@ real qx(klon, llm, nqmx) ! mass fractions of advected fields REAL omega(klon, llm) - REAL d_u(klon, llm), d_v(klon, llm) + REAL d_u(klon, llm), d_v(klon, llm) ! tendances physiques du vent (m s-2) REAL d_t(klon, llm), d_qx(klon, llm, nqmx) REAL d_ps(klon) REAL z1(iim) REAL pksurcp(iim + 1, jjm + 1) - ! I. Musat: diagnostic PVteta, Amip2 - INTEGER, PARAMETER:: ntetaSTD=3 - REAL:: rtetaSTD(ntetaSTD) = (/350., 380., 405./) - REAL PVteta(klon, ntetaSTD) - - REAL, intent(in):: rdayvrai - !----------------------------------------------------------------------- !!print *, "Call sequence information: calfis" @@ -192,11 +176,10 @@ DO l=1, llm DO j=2, jjm ig0 = 1+(j-2)*iim - u(ig0+1, l)= 0.5 * & - (ucov(iim, j, l)/cu_2d(iim, j) + ucov(1, j, l)/cu_2d(1, j)) + u(ig0+1, l)= 0.5 & + * (ucov(iim, j, l) / cu_2d(iim, j) + ucov(1, j, l) / cu_2d(1, j)) DO i=2, iim - u(ig0+i, l)= 0.5 * & - (ucov(i-1, j, l)/cu_2d(i-1, j) & + u(ig0+i, l)= 0.5 * (ucov(i-1, j, l)/cu_2d(i-1, j) & + ucov(i, j, l)/cu_2d(i, j)) end DO end DO @@ -240,13 +223,9 @@ forall(l= 1: llm) v(:, l) = pack(zvfi(:, :, l), dyn_phy) - !IM calcul PV a teta=350, 380, 405K - CALL PVtheta(klon, llm, ucov, vcov, teta, t, play, paprs, & - ntetaSTD, rtetaSTD, PVteta) - ! Appel de la physique : CALL physiq(lafin, rdayvrai, time, dtphys, paprs, play, pphi, pphis, u, & - v, t, qx, omega, d_u, d_v, d_t, d_qx, d_ps, dudyn, PVteta) + v, t, qx, omega, d_u, d_v, d_t, d_qx, d_ps, dudyn) ! transformation des tendances physiques en tendances dynamiques: @@ -302,7 +281,6 @@ ! 65. champ u: DO l=1, llm - DO i=1, iim + 1 dufi(i, 1, l) = 0. dufi(i, jjm + 1, l) = 0. @@ -311,43 +289,35 @@ DO j=2, jjm ig0=1+(j-2)*iim DO i=1, iim-1 - dufi(i, j, l)= & - 0.5*(d_u(ig0+i, l)+d_u(ig0+i+1, l))*cu_2d(i, j) + dufi(i, j, l)= 0.5*(d_u(ig0+i, l)+d_u(ig0+i+1, l))*cu_2d(i, j) ENDDO - dufi(iim, j, l)= & - 0.5*(d_u(ig0+1, l)+d_u(ig0+iim, l))*cu_2d(iim, j) + dufi(iim, j, l)= 0.5*(d_u(ig0+1, l)+d_u(ig0+iim, l))*cu_2d(iim, j) dufi(iim + 1, j, l)=dufi(1, j, l) ENDDO - ENDDO ! 67. champ v: DO l=1, llm - DO j=2, jjm-1 ig0=1+(j-2)*iim DO i=1, iim - dvfi(i, j, l)= & - 0.5*(d_v(ig0+i, l)+d_v(ig0+i+iim, l))*cv_2d(i, j) + dvfi(i, j, l)= 0.5*(d_v(ig0+i, l)+d_v(ig0+i+iim, l))*cv_2d(i, j) ENDDO dvfi(iim + 1, j, l) = dvfi(1, j, l) ENDDO ENDDO - ! 68. champ v pres des poles: + ! 68. champ v près des pôles: ! v = U * cos(long) + V * SIN(long) DO l=1, llm DO i=1, iim - dvfi(i, 1, l)= & - d_u(1, l)*COS(rlonv(i))+d_v(1, l)*SIN(rlonv(i)) - dvfi(i, jjm, l)=d_u(klon, l)*COS(rlonv(i)) & - +d_v(klon, l)*SIN(rlonv(i)) - dvfi(i, 1, l)= & - 0.5*(dvfi(i, 1, l)+d_v(i+1, l))*cv_2d(i, 1) - dvfi(i, jjm, l)= & - 0.5*(dvfi(i, jjm, l)+d_v(klon-iim-1+i, l))*cv_2d(i, jjm) + dvfi(i, 1, l)= d_u(1, l)*COS(rlonv(i))+d_v(1, l)*SIN(rlonv(i)) + dvfi(i, jjm, l)=d_u(klon, l)*COS(rlonv(i)) +d_v(klon, l)*SIN(rlonv(i)) + dvfi(i, 1, l)= 0.5*(dvfi(i, 1, l)+d_v(i+1, l))*cv_2d(i, 1) + dvfi(i, jjm, l)= 0.5 & + * (dvfi(i, jjm, l) + d_v(klon - iim - 1 + i, l)) * cv_2d(i, jjm) ENDDO dvfi(iim + 1, 1, l) = dvfi(1, 1, l)