--- trunk/libf/dyn3d/calfis.f90 2008/10/15 16:19:57 20 +++ trunk/Sources/dyn3d/calfis.f 2015/07/07 17:49:23 154 @@ -1,464 +1,260 @@ module calfis_m - ! Clean: no C preprocessor directive, no include line - IMPLICIT NONE contains - SUBROUTINE calfis(nq, lafin, rdayvrai, heure, pucov, pvcov, pteta, pq, & - pmasse, pps, ppk, pphis, pphi, pducov, pdvcov, pdteta, pdq, pw, & - pdufi, pdvfi, pdhfi, pdqfi, pdpsfi) - - ! From dyn3d/calfis.F,v 1.3 2005/05/25 13:10:09 - - ! Auteurs : P. Le Van, F. Hourdin - - ! 1. rearrangement des tableaux et transformation - ! variables dynamiques > variables physiques - ! 2. calcul des termes physiques - ! 3. retransformation des tendances physiques en tendances dynamiques - - ! remarques: - ! ---------- - - ! - les vents sont donnes dans la physique par leurs composantes - ! naturelles. - ! - la variable thermodynamique de la physique est une variable - ! intensive : T - ! pour la dynamique on prend T * (preff / p(l)) **kappa - ! - les deux seules variables dependant de la geometrie necessaires - ! pour la physique sont la latitude pour le rayonnement et - ! l'aire de la maille quand on veut integrer une grandeur - ! horizontalement. - - ! Input : - ! ------- - ! pucov covariant zonal velocity - ! pvcov covariant meridional velocity - ! pteta potential temperature - ! pps surface pressure - ! pmasse masse d'air dans chaque maille - ! pts surface temperature (K) - ! callrad clef d'appel au rayonnement - - ! Output : - ! -------- - ! pdufi tendency for the natural zonal velocity (ms-1) - ! pdvfi tendency for the natural meridional velocity - ! pdhfi tendency for the potential temperature - ! pdtsfi tendency for the surface temperature + SUBROUTINE calfis(ucov, vcov, teta, q, pk, phis, phi, w, dufi, dvfi, & + dtetafi, dqfi, dayvrai, time, lafin) - ! pdtrad radiative tendencies \ both input - ! pfluxrad radiative fluxes / and output + ! From dyn3d/calfis.F, version 1.3, 2005/05/25 13:10:09 + ! Authors: P. Le Van, F. Hourdin - use dimens_m, only: iim, jjm, llm, nqmx - use dimphy, only: klon - use comconst, only: kappa, cpp, dtphys, g, pi - use comvert, only: preff - use comgeom, only: apoln, cu_2d, cv_2d, unsaire_2d, apols, rlonu, rlonv - use iniadvtrac_m, only: niadv - use grid_change, only: dyn_phy, gr_fi_dyn - use physiq_m, only: physiq - use pressure_var, only: p3d, pls + ! 1. R\'earrangement des tableaux et transformation des variables + ! dynamiques en variables physiques - ! 0. Declarations : + ! 2. Calcul des tendances physiques + ! 3. Retransformation des tendances physiques en tendances dynamiques - INTEGER, intent(in):: nq + ! Remarques: - ! Arguments : + ! - Les vents sont donn\'es dans la physique par leurs composantes + ! naturelles. - LOGICAL, intent(in):: lafin - REAL, intent(in):: heure ! heure de la journée en fraction de jour - - REAL pvcov(iim + 1,jjm,llm) - REAL pucov(iim + 1,jjm + 1,llm) - REAL pteta(iim + 1,jjm + 1,llm) - REAL pmasse(iim + 1,jjm + 1,llm) - - REAL, intent(in):: pq(iim + 1,jjm + 1,llm,nqmx) - ! (mass fractions of advected fields) + ! - La variable thermodynamique de la physique est une variable + ! intensive : T. + ! Pour la dynamique on prend T * (preff / p)**kappa - REAL pphis(iim + 1,jjm + 1) - REAL pphi(iim + 1,jjm + 1,llm) + ! - Les deux seules variables d\'ependant de la g\'eom\'etrie + ! n\'ecessaires pour la physique sont la latitude (pour le + ! rayonnement) et l'aire de la maille (quand on veut int\'egrer une + ! grandeur horizontalement). - REAL pdvcov(iim + 1,jjm,llm) - REAL pducov(iim + 1,jjm + 1,llm) - REAL pdteta(iim + 1,jjm + 1,llm) - REAL pdq(iim + 1,jjm + 1,llm,nqmx) - - REAL pw(iim + 1,jjm + 1,llm) + use comconst, only: kappa, cpp, g + use comgeom, only: apoln, cu_2d, cv_2d, unsaire_2d, apols + use dimens_m, only: iim, jjm, llm, nqmx + use dimphy, only: klon + use disvert_m, only: preff + use dynetat0_m, only: rlonu, rlonv + use grid_change, only: dyn_phy, gr_fi_dyn + use nr_util, only: pi + use physiq_m, only: physiq + use pressure_var, only: p3d, pls - REAL pps(iim + 1,jjm + 1) - REAL, intent(in):: ppk(iim + 1,jjm + 1,llm) + REAL, intent(in):: ucov(:, :, :) ! (iim + 1, jjm + 1, llm) + ! covariant zonal velocity - REAL pdvfi(iim + 1,jjm,llm) - REAL pdufi(iim + 1,jjm + 1,llm) - REAL pdhfi(iim + 1,jjm + 1,llm) - REAL pdqfi(iim + 1,jjm + 1,llm,nqmx) - REAL pdpsfi(iim + 1,jjm + 1) + REAL, intent(in):: vcov(:, :, :) ! (iim + 1, jjm, llm) + !covariant meridional velocity - INTEGER, PARAMETER:: longcles = 20 + REAL, intent(in):: teta(:, :, :) ! (iim + 1, jjm + 1, llm) + ! potential temperature - ! Local variables : + REAL, intent(in):: q(:, :, :, :) ! (iim + 1, jjm + 1, llm, nqmx) + ! mass fractions of advected fields - INTEGER i,j,l,ig0,ig,iq,iiq - REAL zpsrf(klon) - REAL zplev(klon,llm+1),zplay(klon,llm) - REAL zphi(klon,llm),zphis(klon) + REAL, intent(in):: pk(:, :, :) ! (iim + 1, jjm + 1, llm) + ! Exner = cp * (p / preff)**kappa - REAL zufi(klon,llm), zvfi(klon,llm) - REAL ztfi(klon,llm) ! temperature - real zqfi(klon,llm,nqmx) ! mass fractions of advected fields + REAL, intent(in):: phis(:, :) ! (iim + 1, jjm + 1) + REAL, intent(in):: phi(:, :, :) ! (iim + 1, jjm + 1, llm) + REAL, intent(in):: w(:, :, :) ! (iim + 1, jjm + 1, llm) in kg / s - REAL pcvgu(klon,llm), pcvgv(klon,llm) - REAL pcvgt(klon,llm), pcvgq(klon,llm,2) + REAL, intent(out):: dufi(:, :, :) ! (iim + 1, jjm + 1, llm) + ! tendency for the covariant zonal velocity (m2 s-2) - REAL pvervel(klon,llm) + REAL, intent(out):: dvfi(:, :, :) ! (iim + 1, jjm, llm) + ! tendency for the natural meridional velocity - REAL zdufi(klon,llm),zdvfi(klon,llm) - REAL zdtfi(klon,llm),zdqfi(klon,llm,nqmx) - REAL zdpsrf(klon) + REAL, intent(out):: dtetafi(:, :, :) ! (iim + 1, jjm + 1, llm) + ! tendency for the potential temperature - REAL zsin(iim),zcos(iim),z1(iim) - REAL zsinbis(iim),zcosbis(iim),z1bis(iim) - REAL pksurcp(iim + 1,jjm + 1) + REAL, intent(out):: dqfi(:, :, :, :) ! (iim + 1, jjm + 1, llm, nqmx) - ! I. Musat: diagnostic PVteta, Amip2 - INTEGER, PARAMETER:: ntetaSTD=3 - REAL:: rtetaSTD(ntetaSTD) = (/350., 380., 405./) - REAL PVteta(klon,ntetaSTD) + integer, intent(in):: dayvrai + ! current day number, based at value 1 on January 1st of annee_ref - REAL SSUM + REAL, intent(in):: time ! time of day, as a fraction of day length + LOGICAL, intent(in):: lafin - LOGICAL:: firstcal = .true. - REAL, intent(in):: rdayvrai + ! Local: + INTEGER i, j, l, ig0, iq + REAL paprs(klon, llm + 1) ! aux interfaces des couches + REAL play(klon, llm) ! aux milieux des couches + REAL pphi(klon, llm), pphis(klon) + REAL u(klon, llm), v(klon, llm) + real zvfi(iim + 1, jjm + 1, llm) + REAL t(klon, llm) ! temperature, in K + real qx(klon, llm, nqmx) ! mass fractions of advected fields + REAL omega(klon, llm) + REAL d_u(klon, llm), d_v(klon, llm) ! tendances physiques du vent (m s-2) + REAL d_t(klon, llm), d_qx(klon, llm, nqmx) + REAL z1(iim) + REAL pksurcp(iim + 1, jjm + 1) !----------------------------------------------------------------------- !!print *, "Call sequence information: calfis" - ! 1. Initialisations : - ! latitude, longitude et aires des mailles pour la physique: - - ! 40. transformation des variables dynamiques en variables physiques: - ! 41. pressions au sol (en Pascals) - - zpsrf(1) = pps(1,1) - - ig0 = 2 - DO j = 2,jjm - CALL SCOPY(iim,pps(1,j),1,zpsrf(ig0), 1) - ig0 = ig0+iim - ENDDO - - zpsrf(klon) = pps(1,jjm + 1) - - ! 42. pression intercouches : + ! 40. Transformation des variables dynamiques en variables physiques : - ! .... zplev definis aux (llm +1) interfaces des couches .... - ! .... zplay definis aux (llm) milieux des couches .... + ! 42. Pression intercouches : + forall (l = 1: llm + 1) paprs(:, l) = pack(p3d(:, :, l), dyn_phy) - ! ... Exner = cp * (p(l) / preff) ** kappa .... - - forall (l = 1: llm+1) zplev(:, l) = pack(p3d(:, :, l), dyn_phy) - - ! 43. temperature naturelle (en K) et pressions milieux couches . - DO l=1,llm - pksurcp = ppk(:, :, l) / cpp + ! 43. Température et pression milieu couche + DO l = 1, llm + pksurcp = pk(:, :, l) / cpp pls(:, :, l) = preff * pksurcp**(1./ kappa) - zplay(:, l) = pack(pls(:, :, l), dyn_phy) - ztfi(:, l) = pack(pteta(:, :, l) * pksurcp, dyn_phy) - pcvgt(:, l) = pack(pdteta(:, :, l) * pksurcp / pmasse(:, :, l), dyn_phy) - ENDDO - - ! 43.bis traceurs - - DO iq=1,nq - iiq=niadv(iq) - DO l=1,llm - zqfi(1,l,iq) = pq(1,1,l,iiq) - ig0 = 2 - DO j=2,jjm - DO i = 1, iim - zqfi(ig0,l,iq) = pq(i,j,l,iiq) - ig0 = ig0 + 1 - ENDDO - ENDDO - zqfi(ig0,l,iq) = pq(1,jjm + 1,l,iiq) - ENDDO - ENDDO - - ! convergence dynamique pour les traceurs "EAU" - - DO iq=1,2 - DO l=1,llm - pcvgq(1,l,iq)= pdq(1,1,l,iq) / pmasse(1,1,l) - ig0 = 2 - DO j=2,jjm - DO i = 1, iim - pcvgq(ig0,l,iq) = pdq(i,j,l,iq) / pmasse(i,j,l) - ig0 = ig0 + 1 - ENDDO - ENDDO - pcvgq(ig0,l,iq)= pdq(1,jjm + 1,l,iq) / pmasse(1,jjm + 1,l) - ENDDO + play(:, l) = pack(pls(:, :, l), dyn_phy) + t(:, l) = pack(teta(:, :, l) * pksurcp, dyn_phy) ENDDO - ! Geopotentiel calcule par rapport a la surface locale: - - forall (l = 1:llm) zphi(:, l) = pack(pphi(:, :, l), dyn_phy) - zphis = pack(pphis, dyn_phy) - DO l=1,llm - DO ig=1,klon - zphi(ig,l)=zphi(ig,l)-zphis(ig) - ENDDO - ENDDO - - ! .... Calcul de la vitesse verticale (en Pa*m*s ou Kg/s) .... - - DO l=1,llm - pvervel(1,l)=pw(1,1,l) * g /apoln - ig0=2 - DO j=2,jjm - DO i = 1, iim - pvervel(ig0,l) = pw(i,j,l) * g * unsaire_2d(i,j) - ig0 = ig0 + 1 - ENDDO - ENDDO - pvervel(ig0,l)=pw(1,jjm + 1,l) * g /apols - ENDDO - - ! 45. champ u: - - DO l=1,llm - - DO j=2,jjm - ig0 = 1+(j-2)*iim - zufi(ig0+1,l)= 0.5 * & - (pucov(iim,j,l)/cu_2d(iim,j) + pucov(1,j,l)/cu_2d(1,j)) - pcvgu(ig0+1,l)= 0.5 * & - (pducov(iim,j,l)/cu_2d(iim,j) + pducov(1,j,l)/cu_2d(1,j)) - DO i=2,iim - zufi(ig0+i,l)= 0.5 * & - (pucov(i-1,j,l)/cu_2d(i-1,j) & - + pucov(i,j,l)/cu_2d(i,j)) - pcvgu(ig0+i,l)= 0.5 * & - (pducov(i-1,j,l)/cu_2d(i-1,j) & - + pducov(i,j,l)/cu_2d(i,j)) + ! 43.bis Traceurs : + forall (iq = 1: nqmx, l = 1: llm) & + qx(:, l, iq) = pack(q(:, :, l, iq), dyn_phy) + + ! Geopotentiel calcule par rapport a la surface locale : + forall (l = 1 :llm) pphi(:, l) = pack(phi(:, :, l), dyn_phy) + pphis = pack(phis, dyn_phy) + forall (l = 1: llm) pphi(:, l) = pphi(:, l) - pphis + + ! Calcul de la vitesse verticale : + forall (l = 1: llm) + omega(1, l) = w(1, 1, l) * g / apoln + omega(2: klon - 1, l) & + = pack(w(:iim, 2: jjm, l) * g * unsaire_2d(:iim, 2: jjm), .true.) + omega(klon, l) = w(1, jjm + 1, l) * g / apols + END forall + + ! 45. champ u: + + DO l = 1, llm + DO j = 2, jjm + ig0 = 1 + (j - 2) * iim + u(ig0 + 1, l) = 0.5 & + * (ucov(iim, j, l) / cu_2d(iim, j) + ucov(1, j, l) / cu_2d(1, j)) + DO i = 2, iim + u(ig0 + i, l) = 0.5 * (ucov(i - 1, j, l) / cu_2d(i - 1, j) & + + ucov(i, j, l) / cu_2d(i, j)) end DO end DO - end DO - ! 46.champ v: + ! 46.champ v: - DO l=1,llm - DO j=2,jjm - ig0=1+(j-2)*iim - DO i=1,iim - zvfi(ig0+i,l)= 0.5 * & - (pvcov(i,j-1,l)/cv_2d(i,j-1) & - + pvcov(i,j,l)/cv_2d(i,j)) - pcvgv(ig0+i,l)= 0.5 * & - (pdvcov(i,j-1,l)/cv_2d(i,j-1) & - + pdvcov(i,j,l)/cv_2d(i,j)) - ENDDO - ENDDO - ENDDO + forall (j = 2: jjm, l = 1: llm) zvfi(:iim, j, l) = 0.5 & + * (vcov(:iim, j - 1, l) / cv_2d(:iim, j - 1) & + + vcov(:iim, j, l) / cv_2d(:iim, j)) + zvfi(iim + 1, 2:jjm, :) = zvfi(1, 2:jjm, :) - ! 47. champs de vents aux pole nord - ! U = 1 / pi * integrale [ v * cos(long) * d long ] - ! V = 1 / pi * integrale [ v * sin(long) * d long ] - - DO l=1,llm - - z1(1) =(rlonu(1)-rlonu(iim)+2.*pi)*pvcov(1,1,l)/cv_2d(1,1) - z1bis(1)=(rlonu(1)-rlonu(iim)+2.*pi)*pdvcov(1,1,l)/cv_2d(1,1) - DO i=2,iim - z1(i) =(rlonu(i)-rlonu(i-1))*pvcov(i,1,l)/cv_2d(i,1) - z1bis(i)=(rlonu(i)-rlonu(i-1))*pdvcov(i,1,l)/cv_2d(i,1) - ENDDO + ! 47. champs de vents au p\^ole nord + ! U = 1 / pi * integrale [ v * cos(long) * d long ] + ! V = 1 / pi * integrale [ v * sin(long) * d long ] - DO i=1,iim - zcos(i) = COS(rlonv(i))*z1(i) - zcosbis(i)= COS(rlonv(i))*z1bis(i) - zsin(i) = SIN(rlonv(i))*z1(i) - zsinbis(i)= SIN(rlonv(i))*z1bis(i) + DO l = 1, llm + z1(1) = (rlonu(1) - rlonu(iim) + 2. * pi) * vcov(1, 1, l) / cv_2d(1, 1) + DO i = 2, iim + z1(i) = (rlonu(i) - rlonu(i - 1)) * vcov(i, 1, l) / cv_2d(i, 1) ENDDO - zufi(1,l) = SSUM(iim,zcos,1)/pi - pcvgu(1,l) = SSUM(iim,zcosbis,1)/pi - zvfi(1,l) = SSUM(iim,zsin,1)/pi - pcvgv(1,l) = SSUM(iim,zsinbis,1)/pi - + u(1, l) = SUM(COS(rlonv(:iim)) * z1) / pi + zvfi(:, 1, l) = SUM(SIN(rlonv(:iim)) * z1) / pi ENDDO - ! 48. champs de vents aux pole sud: - ! U = 1 / pi * integrale [ v * cos(long) * d long ] - ! V = 1 / pi * integrale [ v * sin(long) * d long ] - - DO l=1,llm - - z1(1) =(rlonu(1)-rlonu(iim)+2.*pi)*pvcov(1,jjm,l) & - /cv_2d(1,jjm) - z1bis(1)=(rlonu(1)-rlonu(iim)+2.*pi)*pdvcov(1,jjm,l) & - /cv_2d(1,jjm) - DO i=2,iim - z1(i) =(rlonu(i)-rlonu(i-1))*pvcov(i,jjm,l)/cv_2d(i,jjm) - z1bis(i)=(rlonu(i)-rlonu(i-1))*pdvcov(i,jjm,l)/cv_2d(i,jjm) - ENDDO + ! 48. champs de vents au p\^ole sud: + ! U = 1 / pi * integrale [ v * cos(long) * d long ] + ! V = 1 / pi * integrale [ v * sin(long) * d long ] - DO i=1,iim - zcos(i) = COS(rlonv(i))*z1(i) - zcosbis(i) = COS(rlonv(i))*z1bis(i) - zsin(i) = SIN(rlonv(i))*z1(i) - zsinbis(i) = SIN(rlonv(i))*z1bis(i) + DO l = 1, llm + z1(1) = (rlonu(1) - rlonu(iim) + 2. * pi) * vcov(1, jjm, l) & + /cv_2d(1, jjm) + DO i = 2, iim + z1(i) = (rlonu(i) - rlonu(i - 1)) * vcov(i, jjm, l) / cv_2d(i, jjm) ENDDO - zufi(klon,l) = SSUM(iim,zcos,1)/pi - pcvgu(klon,l) = SSUM(iim,zcosbis,1)/pi - zvfi(klon,l) = SSUM(iim,zsin,1)/pi - pcvgv(klon,l) = SSUM(iim,zsinbis,1)/pi - + u(klon, l) = SUM(COS(rlonv(:iim)) * z1) / pi + zvfi(:, jjm + 1, l) = SUM(SIN(rlonv(:iim)) * z1) / pi ENDDO - !IM calcul PV a teta=350, 380, 405K - CALL PVtheta(klon,llm,pucov,pvcov,pteta, & - ztfi,zplay,zplev, & - ntetaSTD,rtetaSTD,PVteta) - - ! Appel de la physique: - - CALL physiq(nq, firstcal, lafin, rdayvrai, heure, dtphys, & - zplev, zplay, zphi, zphis, zufi, zvfi, & - ztfi, zqfi, pvervel, zdufi, zdvfi, zdtfi, zdqfi, zdpsrf, pducov, & - PVteta) ! IM diagnostique PVteta, Amip2 - - ! transformation des tendances physiques en tendances dynamiques: + forall(l = 1: llm) v(:, l) = pack(zvfi(:, :, l), dyn_phy) - ! tendance sur la pression : + ! Appel de la physique : + CALL physiq(lafin, dayvrai, time, paprs, play, pphi, pphis, u, v, t, qx, & + omega, d_u, d_v, d_t, d_qx) - pdpsfi = gr_fi_dyn(zdpsrf) + ! transformation des tendances physiques en tendances dynamiques: - ! 62. enthalpie potentielle + ! 62. enthalpie potentielle + do l = 1, llm + dtetafi(:, :, l) = cpp * gr_fi_dyn(d_t(:, l)) / pk(:, :, l) + end do - DO l=1,llm - - DO i=1,iim + 1 - pdhfi(i,1,l) = cpp * zdtfi(1,l) / ppk(i, 1 ,l) - pdhfi(i,jjm + 1,l) = cpp * zdtfi(klon,l)/ ppk(i,jjm + 1,l) - ENDDO - - DO j=2,jjm - ig0=1+(j-2)*iim - DO i=1,iim - pdhfi(i,j,l) = cpp * zdtfi(ig0+i,l) / ppk(i,j,l) + ! 63. traceurs + DO iq = 1, nqmx + DO l = 1, llm + DO i = 1, iim + 1 + dqfi(i, 1, l, iq) = d_qx(1, l, iq) + dqfi(i, jjm + 1, l, iq) = d_qx(klon, l, iq) ENDDO - pdhfi(iim + 1,j,l) = pdhfi(1,j,l) - ENDDO - - ENDDO - - ! 62. humidite specifique - - DO iq=1,nqmx - DO l=1,llm - DO i=1,iim + 1 - pdqfi(i,1,l,iq) = zdqfi(1,l,iq) - pdqfi(i,jjm + 1,l,iq) = zdqfi(klon,l,iq) - ENDDO - DO j=2,jjm - ig0=1+(j-2)*iim - DO i=1,iim - pdqfi(i,j,l,iq) = zdqfi(ig0+i,l,iq) - ENDDO - pdqfi(iim + 1,j,l,iq) = pdqfi(1,j,l,iq) - ENDDO - ENDDO - ENDDO - - ! 63. traceurs - - ! initialisation des tendances - pdqfi=0. - - DO iq=1,nq - iiq=niadv(iq) - DO l=1,llm - DO i=1,iim + 1 - pdqfi(i,1,l,iiq) = zdqfi(1,l,iq) - pdqfi(i,jjm + 1,l,iiq) = zdqfi(klon,l,iq) - ENDDO - DO j=2,jjm - ig0=1+(j-2)*iim - DO i=1,iim - pdqfi(i,j,l,iiq) = zdqfi(ig0+i,l,iq) + DO j = 2, jjm + ig0 = 1 + (j - 2) * iim + DO i = 1, iim + dqfi(i, j, l, iq) = d_qx(ig0 + i, l, iq) ENDDO - pdqfi(iim + 1,j,l,iiq) = pdqfi(1,j,l,iq) + dqfi(iim + 1, j, l, iq) = dqfi(1, j, l, iq) ENDDO ENDDO ENDDO - ! 65. champ u: - - DO l=1,llm - - DO i=1,iim + 1 - pdufi(i,1,l) = 0. - pdufi(i,jjm + 1,l) = 0. + ! 65. champ u: + DO l = 1, llm + DO i = 1, iim + 1 + dufi(i, 1, l) = 0. + dufi(i, jjm + 1, l) = 0. ENDDO - DO j=2,jjm - ig0=1+(j-2)*iim - DO i=1,iim-1 - pdufi(i,j,l)= & - 0.5*(zdufi(ig0+i,l)+zdufi(ig0+i+1,l))*cu_2d(i,j) + DO j = 2, jjm + ig0 = 1 + (j - 2) * iim + DO i = 1, iim - 1 + dufi(i, j, l) = 0.5 * (d_u(ig0 + i, l) + d_u(ig0 + i+1, l)) & + * cu_2d(i, j) ENDDO - pdufi(iim,j,l)= & - 0.5*(zdufi(ig0+1,l)+zdufi(ig0+iim,l))*cu_2d(iim,j) - pdufi(iim + 1,j,l)=pdufi(1,j,l) + dufi(iim, j, l) = 0.5 * (d_u(ig0 + 1, l) + d_u(ig0 + iim, l)) & + * cu_2d(iim, j) + dufi(iim + 1, j, l) = dufi(1, j, l) ENDDO - ENDDO - ! 67. champ v: + ! 67. champ v: - DO l=1,llm - - DO j=2,jjm-1 - ig0=1+(j-2)*iim - DO i=1,iim - pdvfi(i,j,l)= & - 0.5*(zdvfi(ig0+i,l)+zdvfi(ig0+i+iim,l))*cv_2d(i,j) + DO l = 1, llm + DO j = 2, jjm - 1 + ig0 = 1 + (j - 2) * iim + DO i = 1, iim + dvfi(i, j, l) = 0.5 * (d_v(ig0 + i, l) + d_v(ig0 + i+iim, l)) & + * cv_2d(i, j) ENDDO - pdvfi(iim + 1,j,l) = pdvfi(1,j,l) + dvfi(iim + 1, j, l) = dvfi(1, j, l) ENDDO ENDDO - ! 68. champ v pres des poles: - ! v = U * cos(long) + V * SIN(long) - - DO l=1,llm + ! 68. champ v pr\`es des p\^oles: + ! v = U * cos(long) + V * SIN(long) - DO i=1,iim - pdvfi(i,1,l)= & - zdufi(1,l)*COS(rlonv(i))+zdvfi(1,l)*SIN(rlonv(i)) - pdvfi(i,jjm,l)=zdufi(klon,l)*COS(rlonv(i)) & - +zdvfi(klon,l)*SIN(rlonv(i)) - pdvfi(i,1,l)= & - 0.5*(pdvfi(i,1,l)+zdvfi(i+1,l))*cv_2d(i,1) - pdvfi(i,jjm,l)= & - 0.5*(pdvfi(i,jjm,l)+zdvfi(klon-iim-1+i,l))*cv_2d(i,jjm) + DO l = 1, llm + DO i = 1, iim + dvfi(i, 1, l) = d_u(1, l) * COS(rlonv(i)) + d_v(1, l) * SIN(rlonv(i)) + dvfi(i, jjm, l) = d_u(klon, l) * COS(rlonv(i)) & + + d_v(klon, l) * SIN(rlonv(i)) + dvfi(i, 1, l) = 0.5 * (dvfi(i, 1, l) + d_v(i + 1, l)) * cv_2d(i, 1) + dvfi(i, jjm, l) = 0.5 & + * (dvfi(i, jjm, l) + d_v(klon - iim - 1 + i, l)) * cv_2d(i, jjm) ENDDO - pdvfi(iim + 1,1,l) = pdvfi(1,1,l) - pdvfi(iim + 1,jjm,l)= pdvfi(1,jjm,l) - + dvfi(iim + 1, 1, l) = dvfi(1, 1, l) + dvfi(iim + 1, jjm, l) = dvfi(1, jjm, l) ENDDO - firstcal = .FALSE. - END SUBROUTINE calfis end module calfis_m