--- trunk/libf/dyn3d/calfis.f90 2010/12/21 15:45:48 37 +++ trunk/libf/dyn3d/calfis.f90 2013/07/08 18:12:18 71 @@ -4,109 +4,99 @@ contains - SUBROUTINE calfis(rdayvrai, heure, pucov, pvcov, pteta, q, & - pmasse, pps, ppk, pphis, pphi, pducov, pdvcov, pdteta, pdq, pw, & - pdufi, pdvfi, pdhfi, pdqfi, pdpsfi, lafin) + SUBROUTINE calfis(rdayvrai, time, ucov, vcov, teta, q, ps, pk, phis, phi, & + dudyn, dv, w, dufi, dvfi, dtetafi, dqfi, dpfi, lafin) ! From dyn3d/calfis.F, version 1.3 2005/05/25 13:10:09 - ! Authors : P. Le Van, F. Hourdin + ! Authors: P. Le Van, F. Hourdin - ! 1. rearrangement des tableaux et transformation - ! variables dynamiques > variables physiques - ! 2. calcul des termes physiques - ! 3. retransformation des tendances physiques en tendances dynamiques - - ! remarques: - ! ---------- - - ! - les vents sont donnes dans la physique par leurs composantes - ! naturelles. - ! - la variable thermodynamique de la physique est une variable - ! intensive : T - ! pour la dynamique on prend T * (preff / p(l)) **kappa - ! - les deux seules variables dependant de la geometrie necessaires - ! pour la physique sont la latitude pour le rayonnement et - ! l'aire de la maille quand on veut integrer une grandeur - ! horizontalement. - - ! Input : - ! ------- - ! pucov covariant zonal velocity - ! pvcov covariant meridional velocity - ! pteta potential temperature - ! pps surface pressure - ! pmasse masse d'air dans chaque maille - ! pts surface temperature (K) - ! callrad clef d'appel au rayonnement - - ! Output : - ! -------- - ! pdufi tendency for the natural zonal velocity (ms-1) - ! pdvfi tendency for the natural meridional velocity - ! pdhfi tendency for the potential temperature - ! pdtsfi tendency for the surface temperature + ! 1. Réarrangement des tableaux et transformation des variables + ! dynamiques en variables physiques - ! pdtrad radiative tendencies \ both input - ! pfluxrad radiative fluxes / and output + ! 2. Calcul des termes physiques + ! 3. Retransformation des tendances physiques en tendances dynamiques - use comconst, only: kappa, cpp, dtphys, g, pi - use comvert, only: preff + ! Remarques: + + ! - Les vents sont donnés dans la physique par leurs composantes + ! naturelles. + + ! - La variable thermodynamique de la physique est une variable + ! intensive : T. + ! Pour la dynamique on prend T * (preff / p(l))**kappa + + ! - Les deux seules variables dépendant de la géométrie + ! nécessaires pour la physique sont la latitude pour le + ! rayonnement et l'aire de la maille quand on veut intégrer une + ! grandeur horizontalement. + + use comconst, only: kappa, cpp, dtphys, g use comgeom, only: apoln, cu_2d, cv_2d, unsaire_2d, apols, rlonu, rlonv use dimens_m, only: iim, jjm, llm, nqmx use dimphy, only: klon + use disvert_m, only: preff use grid_change, only: dyn_phy, gr_fi_dyn use iniadvtrac_m, only: niadv + use nr_util, only: pi use physiq_m, only: physiq use pressure_var, only: p3d, pls - ! Arguments : + ! Arguments : - LOGICAL, intent(in):: lafin - REAL, intent(in):: heure ! heure de la journée en fraction de jour + ! Output : + ! dvfi tendency for the natural meridional velocity + ! dtetafi tendency for the potential temperature + ! pdtsfi tendency for the surface temperature + + ! pdtrad radiative tendencies \ input and output + ! pfluxrad radiative fluxes / input and output - REAL pvcov(iim + 1, jjm, llm) - REAL pucov(iim + 1, jjm + 1, llm) - REAL pteta(iim + 1, jjm + 1, llm) - REAL pmasse(iim + 1, jjm + 1, llm) + REAL, intent(in):: rdayvrai + REAL, intent(in):: time ! heure de la journée en fraction de jour + REAL, intent(in):: ucov(iim + 1, jjm + 1, llm) + ! ucov covariant zonal velocity + REAL, intent(in):: vcov(iim + 1, jjm, llm) + ! vcov covariant meridional velocity + REAL, intent(in):: teta(iim + 1, jjm + 1, llm) + ! teta potential temperature REAL, intent(in):: q(iim + 1, jjm + 1, llm, nqmx) ! (mass fractions of advected fields) - REAL pphis(iim + 1, jjm + 1) - REAL pphi(iim + 1, jjm + 1, llm) - - REAL pdvcov(iim + 1, jjm, llm) - REAL pducov(iim + 1, jjm + 1, llm) - REAL pdteta(iim + 1, jjm + 1, llm) - REAL pdq(iim + 1, jjm + 1, llm, nqmx) - - REAL pw(iim + 1, jjm + 1, llm) - - REAL pps(iim + 1, jjm + 1) - REAL, intent(in):: ppk(iim + 1, jjm + 1, llm) - - REAL pdvfi(iim + 1, jjm, llm) - REAL pdufi(iim + 1, jjm + 1, llm) - REAL pdhfi(iim + 1, jjm + 1, llm) - REAL pdqfi(iim + 1, jjm + 1, llm, nqmx) - REAL pdpsfi(iim + 1, jjm + 1) + REAL, intent(in):: ps(iim + 1, jjm + 1) + ! ps surface pressure + REAL, intent(in):: pk(iim + 1, jjm + 1, llm) + REAL, intent(in):: phis(iim + 1, jjm + 1) + REAL, intent(in):: phi(iim + 1, jjm + 1, llm) + REAL dudyn(iim + 1, jjm + 1, llm) + REAL dv(iim + 1, jjm, llm) + REAL, intent(in):: w(iim + 1, jjm + 1, llm) + + REAL, intent(out):: dufi(iim + 1, jjm + 1, llm) + ! tendency for the covariant zonal velocity (m2 s-2) + + REAL dvfi(iim + 1, jjm, llm) + REAL, intent(out):: dtetafi(iim + 1, jjm + 1, llm) + REAL dqfi(iim + 1, jjm + 1, llm, nqmx) + REAL dpfi(iim + 1, jjm + 1) + LOGICAL, intent(in):: lafin - ! Local variables : + ! Local variables : INTEGER i, j, l, ig0, ig, iq, iiq REAL zpsrf(klon) - REAL zplev(klon, llm+1), zplay(klon, llm) - REAL zphi(klon, llm), zphis(klon) + REAL paprs(klon, llm+1), play(klon, llm) + REAL pphi(klon, llm), pphis(klon) - REAL zufi(klon, llm), v(klon, llm) + REAL u(klon, llm), v(klon, llm) real zvfi(iim + 1, jjm + 1, llm) - REAL ztfi(klon, llm) ! temperature + REAL t(klon, llm) ! temperature real qx(klon, llm, nqmx) ! mass fractions of advected fields - REAL pvervel(klon, llm) + REAL omega(klon, llm) - REAL zdufi(klon, llm), zdvfi(klon, llm) - REAL zdtfi(klon, llm), zdqfi(klon, llm, nqmx) - REAL zdpsrf(klon) + REAL d_u(klon, llm), d_v(klon, llm) ! tendances physiques du vent (m s-2) + REAL d_t(klon, llm), d_qx(klon, llm, nqmx) + REAL d_ps(klon) REAL z1(iim) REAL pksurcp(iim + 1, jjm + 1) @@ -116,263 +106,232 @@ REAL:: rtetaSTD(ntetaSTD) = (/350., 380., 405./) REAL PVteta(klon, ntetaSTD) - REAL, intent(in):: rdayvrai - !----------------------------------------------------------------------- !!print *, "Call sequence information: calfis" - ! 1. Initialisations : - ! latitude, longitude et aires des mailles pour la physique: + ! 1. Initialisations : + ! latitude, longitude et aires des mailles pour la physique: - ! 40. transformation des variables dynamiques en variables physiques: - ! 41. pressions au sol (en Pascals) + ! 40. transformation des variables dynamiques en variables physiques: + ! 41. pressions au sol (en Pascals) - zpsrf(1) = pps(1, 1) + zpsrf(1) = ps(1, 1) - ig0 = 2 + ig0 = 2 DO j = 2, jjm - CALL SCOPY(iim, pps(1, j), 1, zpsrf(ig0), 1) + CALL SCOPY(iim, ps(1, j), 1, zpsrf(ig0), 1) ig0 = ig0+iim ENDDO - zpsrf(klon) = pps(1, jjm + 1) + zpsrf(klon) = ps(1, jjm + 1) - ! 42. pression intercouches : + ! 42. pression intercouches : - ! .... zplev definis aux (llm +1) interfaces des couches .... - ! .... zplay definis aux (llm) milieux des couches .... + ! paprs defini aux (llm +1) interfaces des couches + ! play defini aux (llm) milieux des couches - ! ... Exner = cp * (p(l) / preff) ** kappa .... + ! Exner = cp * (p(l) / preff) ** kappa - forall (l = 1: llm+1) zplev(:, l) = pack(p3d(:, :, l), dyn_phy) + forall (l = 1: llm+1) paprs(:, l) = pack(p3d(:, :, l), dyn_phy) - ! 43. temperature naturelle (en K) et pressions milieux couches . + ! 43. temperature naturelle (en K) et pressions milieux couches DO l=1, llm - pksurcp = ppk(:, :, l) / cpp + pksurcp = pk(:, :, l) / cpp pls(:, :, l) = preff * pksurcp**(1./ kappa) - zplay(:, l) = pack(pls(:, :, l), dyn_phy) - ztfi(:, l) = pack(pteta(:, :, l) * pksurcp, dyn_phy) + play(:, l) = pack(pls(:, :, l), dyn_phy) + t(:, l) = pack(teta(:, :, l) * pksurcp, dyn_phy) ENDDO - ! 43.bis traceurs + ! 43.bis traceurs DO iq=1, nqmx iiq=niadv(iq) DO l=1, llm qx(1, l, iq) = q(1, 1, l, iiq) - ig0 = 2 + ig0 = 2 DO j=2, jjm DO i = 1, iim - qx(ig0, l, iq) = q(i, j, l, iiq) - ig0 = ig0 + 1 + qx(ig0, l, iq) = q(i, j, l, iiq) + ig0 = ig0 + 1 ENDDO ENDDO qx(ig0, l, iq) = q(1, jjm + 1, l, iiq) ENDDO ENDDO - ! Geopotentiel calcule par rapport a la surface locale: - forall (l = 1:llm) zphi(:, l) = pack(pphi(:, :, l), dyn_phy) - zphis = pack(pphis, dyn_phy) - DO l=1, llm - DO ig=1, klon - zphi(ig, l)=zphi(ig, l)-zphis(ig) - ENDDO - ENDDO + ! Geopotentiel calcule par rapport a la surface locale: + forall (l = 1:llm) pphi(:, l) = pack(phi(:, :, l), dyn_phy) + pphis = pack(phis, dyn_phy) + forall (l = 1:llm) pphi(:, l)=pphi(:, l) - pphis - ! Calcul de la vitesse verticale (en Pa*m*s ou Kg/s) + ! Calcul de la vitesse verticale (en Pa*m*s ou Kg/s) DO l=1, llm - pvervel(1, l)=pw(1, 1, l) * g /apoln + omega(1, l)=w(1, 1, l) * g /apoln ig0=2 DO j=2, jjm DO i = 1, iim - pvervel(ig0, l) = pw(i, j, l) * g * unsaire_2d(i, j) + omega(ig0, l) = w(i, j, l) * g * unsaire_2d(i, j) ig0 = ig0 + 1 ENDDO ENDDO - pvervel(ig0, l)=pw(1, jjm + 1, l) * g /apols + omega(ig0, l)=w(1, jjm + 1, l) * g /apols ENDDO - ! 45. champ u: + ! 45. champ u: - DO l=1, llm - DO j=2, jjm + DO l=1, llm + DO j=2, jjm ig0 = 1+(j-2)*iim - zufi(ig0+1, l)= 0.5 * & - (pucov(iim, j, l)/cu_2d(iim, j) + pucov(1, j, l)/cu_2d(1, j)) + u(ig0+1, l)= 0.5 & + * (ucov(iim, j, l) / cu_2d(iim, j) + ucov(1, j, l) / cu_2d(1, j)) DO i=2, iim - zufi(ig0+i, l)= 0.5 * & - (pucov(i-1, j, l)/cu_2d(i-1, j) & - + pucov(i, j, l)/cu_2d(i, j)) + u(ig0+i, l)= 0.5 * (ucov(i-1, j, l)/cu_2d(i-1, j) & + + ucov(i, j, l)/cu_2d(i, j)) end DO end DO end DO - ! 46.champ v: + ! 46.champ v: forall (j = 2: jjm, l = 1: llm) zvfi(:iim, j, l)= 0.5 & - * (pvcov(:iim, j-1, l) / cv_2d(:iim, j-1) & - + pvcov(:iim, j, l) / cv_2d(:iim, j)) + * (vcov(:iim, j-1, l) / cv_2d(:iim, j-1) & + + vcov(:iim, j, l) / cv_2d(:iim, j)) zvfi(iim + 1, 2:jjm, :) = zvfi(1, 2:jjm, :) - ! 47. champs de vents au pôle nord - ! U = 1 / pi * integrale [ v * cos(long) * d long ] - ! V = 1 / pi * integrale [ v * sin(long) * d long ] + ! 47. champs de vents au pôle nord + ! U = 1 / pi * integrale [ v * cos(long) * d long ] + ! V = 1 / pi * integrale [ v * sin(long) * d long ] DO l=1, llm - z1(1) =(rlonu(1)-rlonu(iim)+2.*pi)*pvcov(1, 1, l)/cv_2d(1, 1) + z1(1) =(rlonu(1)-rlonu(iim)+2.*pi)*vcov(1, 1, l)/cv_2d(1, 1) DO i=2, iim - z1(i) =(rlonu(i)-rlonu(i-1))*pvcov(i, 1, l)/cv_2d(i, 1) + z1(i) =(rlonu(i)-rlonu(i-1))*vcov(i, 1, l)/cv_2d(i, 1) ENDDO - zufi(1, l) = SUM(COS(rlonv(:iim)) * z1) / pi - zvfi(:, 1, l) = SUM(SIN(rlonv(:iim)) * z1) / pi + u(1, l) = SUM(COS(rlonv(:iim)) * z1) / pi + zvfi(:, 1, l) = SUM(SIN(rlonv(:iim)) * z1) / pi ENDDO - ! 48. champs de vents au pôle sud: - ! U = 1 / pi * integrale [ v * cos(long) * d long ] - ! V = 1 / pi * integrale [ v * sin(long) * d long ] + ! 48. champs de vents au pôle sud: + ! U = 1 / pi * integrale [ v * cos(long) * d long ] + ! V = 1 / pi * integrale [ v * sin(long) * d long ] DO l=1, llm - z1(1) =(rlonu(1)-rlonu(iim)+2.*pi)*pvcov(1, jjm, l) & + z1(1) =(rlonu(1)-rlonu(iim)+2.*pi)*vcov(1, jjm, l) & /cv_2d(1, jjm) DO i=2, iim - z1(i) =(rlonu(i)-rlonu(i-1))*pvcov(i, jjm, l)/cv_2d(i, jjm) + z1(i) =(rlonu(i)-rlonu(i-1))*vcov(i, jjm, l)/cv_2d(i, jjm) ENDDO - zufi(klon, l) = SUM(COS(rlonv(:iim)) * z1) / pi - zvfi(:, jjm + 1, l) = SUM(SIN(rlonv(:iim)) * z1) / pi + u(klon, l) = SUM(COS(rlonv(:iim)) * z1) / pi + zvfi(:, jjm + 1, l) = SUM(SIN(rlonv(:iim)) * z1) / pi ENDDO forall(l= 1: llm) v(:, l) = pack(zvfi(:, :, l), dyn_phy) !IM calcul PV a teta=350, 380, 405K - CALL PVtheta(klon, llm, pucov, pvcov, pteta, ztfi, zplay, zplev, & - ntetaSTD, rtetaSTD, PVteta) + CALL PVtheta(klon, llm, ucov, vcov, teta, t, play, paprs, ntetaSTD, & + rtetaSTD, PVteta) ! Appel de la physique : - CALL physiq(lafin, rdayvrai, heure, dtphys, zplev, zplay, zphi, & - zphis, zufi, v, ztfi, qx, pvervel, zdufi, zdvfi, & - zdtfi, zdqfi, zdpsrf, pducov, PVteta) ! diagnostic PVteta, Amip2 + CALL physiq(lafin, rdayvrai, time, dtphys, paprs, play, pphi, pphis, u, & + v, t, qx, omega, d_u, d_v, d_t, d_qx, d_ps, dudyn, PVteta) - ! transformation des tendances physiques en tendances dynamiques: + ! transformation des tendances physiques en tendances dynamiques: - ! tendance sur la pression : + ! tendance sur la pression : - pdpsfi = gr_fi_dyn(zdpsrf) + dpfi = gr_fi_dyn(d_ps) - ! 62. enthalpie potentielle + ! 62. enthalpie potentielle + do l=1, llm + dtetafi(:, :, l) = cpp * gr_fi_dyn(d_t(:, l)) / pk(:, :, l) + end do - DO l=1, llm - - DO i=1, iim + 1 - pdhfi(i, 1, l) = cpp * zdtfi(1, l) / ppk(i, 1 , l) - pdhfi(i, jjm + 1, l) = cpp * zdtfi(klon, l)/ ppk(i, jjm + 1, l) - ENDDO - - DO j=2, jjm - ig0=1+(j-2)*iim - DO i=1, iim - pdhfi(i, j, l) = cpp * zdtfi(ig0+i, l) / ppk(i, j, l) - ENDDO - pdhfi(iim + 1, j, l) = pdhfi(1, j, l) - ENDDO - - ENDDO - - ! 62. humidite specifique + ! 62. humidite specifique DO iq=1, nqmx DO l=1, llm DO i=1, iim + 1 - pdqfi(i, 1, l, iq) = zdqfi(1, l, iq) - pdqfi(i, jjm + 1, l, iq) = zdqfi(klon, l, iq) + dqfi(i, 1, l, iq) = d_qx(1, l, iq) + dqfi(i, jjm + 1, l, iq) = d_qx(klon, l, iq) ENDDO DO j=2, jjm ig0=1+(j-2)*iim DO i=1, iim - pdqfi(i, j, l, iq) = zdqfi(ig0+i, l, iq) + dqfi(i, j, l, iq) = d_qx(ig0+i, l, iq) ENDDO - pdqfi(iim + 1, j, l, iq) = pdqfi(1, j, l, iq) + dqfi(iim + 1, j, l, iq) = dqfi(1, j, l, iq) ENDDO ENDDO ENDDO - ! 63. traceurs + ! 63. traceurs - ! initialisation des tendances - pdqfi=0. + ! initialisation des tendances + dqfi=0. DO iq=1, nqmx iiq=niadv(iq) DO l=1, llm DO i=1, iim + 1 - pdqfi(i, 1, l, iiq) = zdqfi(1, l, iq) - pdqfi(i, jjm + 1, l, iiq) = zdqfi(klon, l, iq) + dqfi(i, 1, l, iiq) = d_qx(1, l, iq) + dqfi(i, jjm + 1, l, iiq) = d_qx(klon, l, iq) ENDDO DO j=2, jjm ig0=1+(j-2)*iim DO i=1, iim - pdqfi(i, j, l, iiq) = zdqfi(ig0+i, l, iq) + dqfi(i, j, l, iiq) = d_qx(ig0+i, l, iq) ENDDO - pdqfi(iim + 1, j, l, iiq) = pdqfi(1, j, l, iq) + dqfi(iim + 1, j, l, iiq) = dqfi(1, j, l, iq) ENDDO ENDDO ENDDO - ! 65. champ u: + ! 65. champ u: DO l=1, llm - DO i=1, iim + 1 - pdufi(i, 1, l) = 0. - pdufi(i, jjm + 1, l) = 0. + dufi(i, 1, l) = 0. + dufi(i, jjm + 1, l) = 0. ENDDO DO j=2, jjm ig0=1+(j-2)*iim DO i=1, iim-1 - pdufi(i, j, l)= & - 0.5*(zdufi(ig0+i, l)+zdufi(ig0+i+1, l))*cu_2d(i, j) + dufi(i, j, l)= 0.5*(d_u(ig0+i, l)+d_u(ig0+i+1, l))*cu_2d(i, j) ENDDO - pdufi(iim, j, l)= & - 0.5*(zdufi(ig0+1, l)+zdufi(ig0+iim, l))*cu_2d(iim, j) - pdufi(iim + 1, j, l)=pdufi(1, j, l) + dufi(iim, j, l)= 0.5*(d_u(ig0+1, l)+d_u(ig0+iim, l))*cu_2d(iim, j) + dufi(iim + 1, j, l)=dufi(1, j, l) ENDDO - ENDDO - ! 67. champ v: + ! 67. champ v: DO l=1, llm - DO j=2, jjm-1 ig0=1+(j-2)*iim DO i=1, iim - pdvfi(i, j, l)= & - 0.5*(zdvfi(ig0+i, l)+zdvfi(ig0+i+iim, l))*cv_2d(i, j) + dvfi(i, j, l)= 0.5*(d_v(ig0+i, l)+d_v(ig0+i+iim, l))*cv_2d(i, j) ENDDO - pdvfi(iim + 1, j, l) = pdvfi(1, j, l) + dvfi(iim + 1, j, l) = dvfi(1, j, l) ENDDO ENDDO - ! 68. champ v pres des poles: - ! v = U * cos(long) + V * SIN(long) + ! 68. champ v près des pôles: + ! v = U * cos(long) + V * SIN(long) DO l=1, llm DO i=1, iim - pdvfi(i, 1, l)= & - zdufi(1, l)*COS(rlonv(i))+zdvfi(1, l)*SIN(rlonv(i)) - pdvfi(i, jjm, l)=zdufi(klon, l)*COS(rlonv(i)) & - +zdvfi(klon, l)*SIN(rlonv(i)) - pdvfi(i, 1, l)= & - 0.5*(pdvfi(i, 1, l)+zdvfi(i+1, l))*cv_2d(i, 1) - pdvfi(i, jjm, l)= & - 0.5*(pdvfi(i, jjm, l)+zdvfi(klon-iim-1+i, l))*cv_2d(i, jjm) + dvfi(i, 1, l)= d_u(1, l)*COS(rlonv(i))+d_v(1, l)*SIN(rlonv(i)) + dvfi(i, jjm, l)=d_u(klon, l)*COS(rlonv(i)) +d_v(klon, l)*SIN(rlonv(i)) + dvfi(i, 1, l)= 0.5*(dvfi(i, 1, l)+d_v(i+1, l))*cv_2d(i, 1) + dvfi(i, jjm, l)= 0.5 & + * (dvfi(i, jjm, l) + d_v(klon - iim - 1 + i, l)) * cv_2d(i, jjm) ENDDO - pdvfi(iim + 1, 1, l) = pdvfi(1, 1, l) - pdvfi(iim + 1, jjm, l)= pdvfi(1, jjm, l) + dvfi(iim + 1, 1, l) = dvfi(1, 1, l) + dvfi(iim + 1, jjm, l)= dvfi(1, jjm, l) ENDDO END SUBROUTINE calfis