--- trunk/dyn3d/fxhyp.f 2014/12/18 17:30:24 118 +++ trunk/dyn3d/fxhyp.f 2015/01/07 14:34:57 119 @@ -4,113 +4,96 @@ contains - SUBROUTINE fxhyp(xzoomdeg, grossism, dzooma, tau, rlonm025, xprimm025, & - rlonv, xprimv, rlonu, xprimu, rlonp025, xprimp025, champmin, champmax) + SUBROUTINE fxhyp(xprimm025, rlonv, xprimv, rlonu, xprimu, xprimp025) ! From LMDZ4/libf/dyn3d/fxhyp.F, version 1.2, 2005/06/03 09:11:32 - ! Author: P. Le Van + ! Author: P. Le Van, from formulas by R. Sadourny ! Calcule les longitudes et dérivées dans la grille du GCM pour - ! une fonction f(x) à tangente hyperbolique. + ! une fonction f(x) à dérivée tangente hyperbolique. - ! On doit avoir grossism \times dzoom < pi (radians), en longitude. + ! On doit avoir grossismx \times dzoomx < pi (radians) USE dimens_m, ONLY: iim - USE paramet_m, ONLY: iip1 + use nr_util, only: pi_d, twopi_d + use serre, only: clon, grossismx, dzoomx, taux - REAL, intent(in):: xzoomdeg - - REAL, intent(in):: grossism - ! grossissement (= 2 si 2 fois, = 3 si 3 fois, etc.) - - REAL, intent(in):: dzooma ! distance totale de la zone du zoom - - REAL, intent(in):: tau - ! raideur de la transition de l'intérieur à l'extérieur du zoom - - ! arguments de sortie - - REAL, dimension(iip1):: rlonm025, xprimm025, rlonv, xprimv - real, dimension(iip1):: rlonu, xprimu, rlonp025, xprimp025 - - DOUBLE PRECISION, intent(out):: champmin, champmax + REAL, intent(out):: xprimm025(:), rlonv(:), xprimv(:) ! (iim + 1) + real, intent(out):: rlonu(:), xprimu(:), xprimp025(:) ! (iim + 1) ! Local: + DOUBLE PRECISION champmin, champmax + real rlonm025(iim + 1), rlonp025(iim + 1) INTEGER, PARAMETER:: nmax = 30000, nmax2 = 2*nmax LOGICAL, PARAMETER:: scal180 = .TRUE. ! scal180 = .TRUE. si on veut avoir le premier point scalaire pour - ! une grille reguliere (grossism = 1., tau=0., clon=0.) a + ! une grille reguliere (grossismx = 1., taux=0., clon=0.) a ! -180. degres. sinon scal180 = .FALSE. REAL dzoom - DOUBLE PRECISION xlon(iip1), xprimm(iip1), xuv + DOUBLE PRECISION xlon(iim + 1), xprimm(iim + 1), xuv DOUBLE PRECISION xtild(0:nmax2) DOUBLE PRECISION fhyp(0:nmax2), ffdx, beta, Xprimt(0:nmax2) DOUBLE PRECISION Xf(0:nmax2), xxpr(0:nmax2) - DOUBLE PRECISION xvrai(iip1), xxprim(iip1) - DOUBLE PRECISION pi, depi, epsilon, xzoom, fa, fb + DOUBLE PRECISION xvrai(iim + 1), xxprim(iim + 1) + DOUBLE PRECISION my_eps, xzoom, fa, fb DOUBLE PRECISION Xf1, Xfi, a0, a1, a2, a3, xi2 INTEGER i, it, ik, iter, ii, idif, ii1, ii2 DOUBLE PRECISION xi, xo1, xmoy, xlon2, fxm, Xprimin DOUBLE PRECISION decalx - INTEGER is2 - SAVE is2 + INTEGER, save:: is2 !---------------------------------------------------------------------- - pi = 2. * ASIN(1.) - depi = 2. * pi - epsilon = 1.e-3 - xzoom = xzoomdeg * pi/180. + my_eps = 1e-3 + xzoom = clon * pi_d / 180. - decalx = .75 - IF (grossism == 1. .AND. scal180) THEN + IF (grossismx == 1. .AND. scal180) THEN decalx = 1. - ENDIF - - print *, 'FXHYP scal180, decalx', scal180, decalx + else + decalx = 0.75 + END IF - IF (dzooma.LT.1.) THEN - dzoom = dzooma * depi - ELSEIF (dzooma.LT. 25.) THEN + IF (dzoomx < 1.) THEN + dzoom = dzoomx * twopi_d + ELSE IF (dzoomx < 25.) THEN print *, "Le paramètre dzoomx pour fxhyp est trop petit. " & // "L'augmenter et relancer." STOP 1 ELSE - dzoom = dzooma * pi/180. + dzoom = dzoomx * pi_d / 180. END IF - print *, ' xzoom(rad), grossism, tau, dzoom (rad):' - print *, xzoom, grossism, tau, dzoom + print *, 'dzoom (rad):', dzoom DO i = 0, nmax2 - xtild(i) = - pi + REAL(i) * depi /nmax2 - ENDDO + xtild(i) = - pi_d + REAL(i) * twopi_d / nmax2 + END DO DO i = nmax, nmax2 - fa = tau* (dzoom/2. - xtild(i)) - fb = xtild(i) * (pi - xtild(i)) + fa = taux* (dzoom / 2. - xtild(i)) + fb = xtild(i) * (pi_d - xtild(i)) - IF (200.* fb .LT. - fa) THEN - fhyp (i) = - 1. - ELSEIF (200. * fb .LT. fa) THEN - fhyp (i) = 1. + IF (200.* fb < - fa) THEN + fhyp(i) = - 1. + ELSE IF (200. * fb < fa) THEN + fhyp(i) = 1. ELSE - IF (ABS(fa).LT.1.e-13.AND.ABS(fb).LT.1.e-13) THEN - IF (200.*fb + fa.LT.1.e-10) THEN - fhyp (i) = - 1. - ELSEIF (200.*fb - fa.LT.1.e-10) THEN - fhyp (i) = 1. - ENDIF + IF (ABS(fa) < 1e-13.AND.ABS(fb) < 1e-13) THEN + IF (200.*fb + fa < 1e-10) THEN + fhyp(i) = - 1. + ELSE IF (200.*fb - fa < 1e-10) THEN + fhyp(i) = 1. + END IF ELSE - fhyp (i) = TANH (fa/fb) - ENDIF + fhyp(i) = TANH(fa / fb) + END IF END IF IF (xtild(i) == 0.) fhyp(i) = 1. - IF (xtild(i) == pi) fhyp(i) = -1. + IF (xtild(i) == pi_d) fhyp(i) = -1. END DO ! Calcul de beta @@ -119,43 +102,43 @@ DO i = nmax + 1, nmax2 xmoy = 0.5 * (xtild(i-1) + xtild(i)) - fa = tau* (dzoom/2. - xmoy) - fb = xmoy * (pi - xmoy) + fa = taux* (dzoom / 2. - xmoy) + fb = xmoy * (pi_d - xmoy) - IF (200.* fb .LT. - fa) THEN + IF (200.* fb < - fa) THEN fxm = - 1. - ELSEIF (200. * fb .LT. fa) THEN + ELSE IF (200. * fb < fa) THEN fxm = 1. ELSE - IF (ABS(fa).LT.1.e-13.AND.ABS(fb).LT.1.e-13) THEN - IF (200.*fb + fa.LT.1.e-10) THEN + IF (ABS(fa) < 1e-13.AND.ABS(fb) < 1e-13) THEN + IF (200.*fb + fa < 1e-10) THEN fxm = - 1. - ELSEIF (200.*fb - fa.LT.1.e-10) THEN + ELSE IF (200.*fb - fa < 1e-10) THEN fxm = 1. - ENDIF + END IF ELSE - fxm = TANH (fa/fb) - ENDIF - ENDIF + fxm = TANH(fa / fb) + END IF + END IF IF (xmoy == 0.) fxm = 1. - IF (xmoy == pi) fxm = -1. + IF (xmoy == pi_d) fxm = -1. ffdx = ffdx + fxm * (xtild(i) - xtild(i-1)) - ENDDO + END DO - beta = (grossism * ffdx - pi) / (ffdx - pi) + beta = (grossismx * ffdx - pi_d) / (ffdx - pi_d) - IF (2.*beta - grossism <= 0.) THEN + IF (2. * beta - grossismx <= 0.) THEN print *, 'Attention ! La valeur beta calculée dans fxhyp est mauvaise.' - print *, 'Modifier les valeurs de grossismx, tau ou dzoomx et relancer.' + print *, 'Modifier les valeurs de grossismx, taux ou dzoomx et relancer.' STOP 1 END IF ! calcul de Xprimt DO i = nmax, nmax2 - Xprimt(i) = beta + (grossism - beta) * fhyp(i) + Xprimt(i) = beta + (grossismx - beta) * fhyp(i) END DO DO i = nmax + 1, nmax2 @@ -164,40 +147,38 @@ ! Calcul de Xf - Xf(0) = - pi + Xf(0) = - pi_d DO i = nmax + 1, nmax2 xmoy = 0.5 * (xtild(i-1) + xtild(i)) - fa = tau* (dzoom/2. - xmoy) - fb = xmoy * (pi - xmoy) + fa = taux* (dzoom / 2. - xmoy) + fb = xmoy * (pi_d - xmoy) - IF (200.* fb .LT. - fa) THEN + IF (200.* fb < - fa) THEN fxm = - 1. - ELSEIF (200. * fb .LT. fa) THEN + ELSE IF (200. * fb < fa) THEN fxm = 1. ELSE - fxm = TANH (fa/fb) - ENDIF + fxm = TANH(fa / fb) + END IF IF (xmoy == 0.) fxm = 1. - IF (xmoy == pi) fxm = -1. - xxpr(i) = beta + (grossism - beta) * fxm - ENDDO + IF (xmoy == pi_d) fxm = -1. + xxpr(i) = beta + (grossismx - beta) * fxm + END DO DO i = nmax + 1, nmax2 xxpr(nmax2-i + 1) = xxpr(i) - ENDDO + END DO DO i=1, nmax2 Xf(i) = Xf(i-1) + xxpr(i) * (xtild(i) - xtild(i-1)) - ENDDO - - ! xuv = 0. si calcul aux pts scalaires - ! xuv = 0.5 si calcul aux pts U + END DO - print * + ! xuv = 0. si calcul aux points scalaires + ! xuv = 0.5 si calcul aux points U - DO ik = 1, 4 + loop_ik: DO ik = 1, 4 IF (ik == 1) THEN xuv = -0.25 ELSE IF (ik == 2) THEN @@ -206,19 +187,19 @@ xuv = 0.50 ELSE IF (ik == 4) THEN xuv = 0.25 - ENDIF + END IF xo1 = 0. ii1=1 ii2=iim - IF (ik == 1.and.grossism == 1.) THEN + IF (ik == 1.and.grossismx == 1.) THEN ii1 = 2 ii2 = iim + 1 - ENDIF + END IF DO i = ii1, ii2 - xlon2 = - pi + (REAL(i) + xuv - decalx) * depi / REAL(iim) + xlon2 = - pi_d + (REAL(i) + xuv - decalx) * twopi_d / REAL(iim) Xfi = xlon2 it = nmax2 @@ -232,8 +213,8 @@ IF (it == nmax2) THEN it = nmax2 -1 - Xf(it + 1) = pi - ENDIF + Xf(it + 1) = pi_d + END IF ! Appel de la routine qui calcule les coefficients a0, a1, ! a2, a3 d'un polynome de degre 3 qui passe par les points @@ -248,52 +229,53 @@ iter = 1 do - xi = xi - (Xf1 - Xfi)/ Xprimin - IF (ABS(xi - xo1) <= epsilon .or. iter == 300) exit + xi = xi - (Xf1 - Xfi) / Xprimin + IF (ABS(xi - xo1) <= my_eps .or. iter == 300) exit xo1 = xi xi2 = xi * xi Xf1 = a0 + a1 * xi + a2 * xi2 + a3 * xi2 * xi Xprimin = a1 + 2.* a2 * xi + 3.* a3 * xi2 end DO - if (ABS(xi - xo1) > epsilon) then + if (ABS(xi - xo1) > my_eps) then ! iter == 300 print *, 'Pas de solution.' print *, i, xlon2 STOP 1 end if - - xxprim(i) = depi/ (REAL(iim) * Xprimin) + xxprim(i) = twopi_d / (REAL(iim) * Xprimin) xvrai(i) = xi + xzoom end DO - IF (ik == 1.and.grossism == 1.) THEN - xvrai(1) = xvrai(iip1)-depi - xxprim(1) = xxprim(iip1) - ENDIF + IF (ik == 1 .and. grossismx == 1.) THEN + xvrai(1) = xvrai(iim + 1)-twopi_d + xxprim(1) = xxprim(iim + 1) + END IF + DO i = 1, iim xlon(i) = xvrai(i) xprimm(i) = xxprim(i) - ENDDO + END DO + DO i = 1, iim -1 - IF (xvrai(i + 1).LT. xvrai(i)) THEN + IF (xvrai(i + 1) < xvrai(i)) THEN print *, 'Problème avec rlonu(', i + 1, & ') plus petit que rlonu(', i, ')' STOP 1 - ENDIF - ENDDO + END IF + END DO - ! Reorganisation des longitudes pour les avoir entre - pi et pi + ! Réorganisation des longitudes pour les avoir entre - pi et pi - champmin = 1.e12 - champmax = -1.e12 + champmin = 1e12 + champmax = -1e12 DO i = 1, iim champmin = MIN(champmin, xvrai(i)) champmax = MAX(champmax, xvrai(i)) - ENDDO + END DO - IF (.not. (champmin >= -pi-0.10.and.champmax <= pi + 0.10)) THEN + IF (.not. (champmin >= -pi_d - 0.1 .and. champmax <= pi_d + 0.1)) THEN print *, 'Reorganisation des longitudes pour avoir entre - pi', & ' et pi ' @@ -301,100 +283,126 @@ IF (ik == 1) THEN i = 1 - do while (xvrai(i) < - pi .and. i < iim) + do while (xvrai(i) < - pi_d .and. i < iim) i = i + 1 end do - if (xvrai(i) < - pi) then - print *, ' PBS. 1 ! Xvrai plus petit que - pi ! ' + if (xvrai(i) < - pi_d) then + print *, 'Xvrai plus petit que - pi !' STOP 1 end if is2 = i - ENDIF + END IF IF (is2.NE. 1) THEN DO ii = is2, iim - xlon (ii-is2 + 1) = xvrai(ii) + xlon(ii-is2 + 1) = xvrai(ii) xprimm(ii-is2 + 1) = xxprim(ii) - ENDDO + END DO DO ii = 1, is2 -1 - xlon (ii + iim-is2 + 1) = xvrai(ii) + depi + xlon(ii + iim-is2 + 1) = xvrai(ii) + twopi_d xprimm(ii + iim-is2 + 1) = xxprim(ii) - ENDDO - ENDIF + END DO + END IF ELSE IF (ik == 1) THEN i = iim - do while (xvrai(i) > pi .and. i > 1) + do while (xvrai(i) > pi_d .and. i > 1) i = i - 1 end do - if (xvrai(i) > pi) then - print *, ' PBS. 2 ! Xvrai plus grand que pi ! ' + if (xvrai(i) > pi_d) then + print *, 'Xvrai plus grand que pi !' STOP 1 end if is2 = i - ENDIF + END IF + idif = iim -is2 + DO ii = 1, is2 - xlon (ii + idif) = xvrai(ii) + xlon(ii + idif) = xvrai(ii) xprimm(ii + idif) = xxprim(ii) - ENDDO + END DO + DO ii = 1, idif - xlon (ii) = xvrai (ii + is2) - depi + xlon(ii) = xvrai(ii + is2) - twopi_d xprimm(ii) = xxprim(ii + is2) - ENDDO - ENDIF - ENDIF + END DO + END IF + END IF ! Fin de la reorganisation - xlon (iip1) = xlon(1) + depi - xprimm(iip1) = xprimm (1) + xlon(iim + 1) = xlon(1) + twopi_d + xprimm(iim + 1) = xprimm(1) DO i = 1, iim + 1 - xvrai(i) = xlon(i)*180./pi - ENDDO + xvrai(i) = xlon(i)*180. / pi_d + END DO IF (ik == 1) THEN DO i = 1, iim + 1 rlonm025(i) = xlon(i) xprimm025(i) = xprimm(i) - ENDDO + END DO ELSE IF (ik == 2) THEN - DO i = 1, iim + 1 - rlonv(i) = xlon(i) - xprimv(i) = xprimm(i) - ENDDO + rlonv = xlon + xprimv = xprimm ELSE IF (ik == 3) THEN DO i = 1, iim + 1 rlonu(i) = xlon(i) xprimu(i) = xprimm(i) - ENDDO + END DO ELSE IF (ik == 4) THEN DO i = 1, iim + 1 rlonp025(i) = xlon(i) xprimp025(i) = xprimm(i) - ENDDO - ENDIF - end DO + END DO + END IF + end DO loop_ik print * DO i = 1, iim xlon(i) = rlonv(i + 1) - rlonv(i) - ENDDO - champmin = 1.e12 - champmax = -1.e12 + END DO + champmin = 1e12 + champmax = -1e12 DO i = 1, iim champmin = MIN(champmin, xlon(i)) champmax = MAX(champmax, xlon(i)) - ENDDO - champmin = champmin * 180./pi - champmax = champmax * 180./pi + END DO + champmin = champmin * 180. / pi_d + champmax = champmax * 180. / pi_d + + DO i = 1, iim + 1 + IF (rlonp025(i) < rlonv(i)) THEN + print *, ' Attention ! rlonp025 < rlonv', i + STOP 1 + END IF + + IF (rlonv(i) < rlonm025(i)) THEN + print *, ' Attention ! rlonm025 > rlonv', i + STOP 1 + END IF + + IF (rlonp025(i) > rlonu(i)) THEN + print *, ' Attention ! rlonp025 > rlonu', i + STOP 1 + END IF + END DO + + print *, ' Longitudes ' + print 3, champmin, champmax + +3 Format(1x, ' Au centre du zoom, la longueur de la maille est', & + ' d environ ', f0.2, ' degres ', /, & + ' alors que la maille en dehors de la zone du zoom est ', & + "d'environ", f0.2, ' degres ') END SUBROUTINE fxhyp