--- trunk/dyn3d/fxhyp.f 2014/09/18 13:36:51 112 +++ trunk/Sources/dyn3d/fxhyp.f 2015/06/10 16:46:46 144 @@ -4,397 +4,172 @@ contains - SUBROUTINE fxhyp(xzoomdeg, grossism, dzooma, tau, rlonm025, xprimm025, & - rlonv, xprimv, rlonu, xprimu, rlonp025, xprimp025, champmin, champmax) + SUBROUTINE fxhyp(xprimm025, rlonv, xprimv, rlonu, xprimu, xprimp025) ! From LMDZ4/libf/dyn3d/fxhyp.F, version 1.2, 2005/06/03 09:11:32 - ! Author: P. Le Van + ! Author: P. Le Van, from formulas by R. Sadourny ! Calcule les longitudes et dérivées dans la grille du GCM pour - ! une fonction f(x) à tangente hyperbolique. + ! une fonction f(x) à dérivée tangente hyperbolique. - ! On doit avoir grossism \times dzoom < pi (radians), en longitude. + ! Il vaut mieux avoir : grossismx \times dzoom < pi - USE dimens_m, ONLY: iim - USE paramet_m, ONLY: iip1 - - REAL, intent(in):: xzoomdeg - - REAL, intent(in):: grossism - ! grossissement (= 2 si 2 fois, = 3 si 3 fois, etc.) - - REAL, intent(in):: dzooma ! distance totale de la zone du zoom - - REAL, intent(in):: tau - ! raideur de la transition de l'intérieur à l'extérieur du zoom + ! Le premier point scalaire pour une grille regulière (grossismx = + ! 1., taux=0., clon=0.) est à - 180 degrés. - ! arguments de sortie - - REAL, dimension(iip1):: rlonm025, xprimm025, rlonv, xprimv - real, dimension(iip1):: rlonu, xprimu, rlonp025, xprimp025 + USE dimens_m, ONLY: iim + use dynetat0_m, only: clon, grossismx, dzoomx, taux + use invert_zoom_x_m, only: invert_zoom_x, nmax + use nr_util, only: pi, pi_d, twopi, twopi_d, arth + use principal_cshift_m, only: principal_cshift + use tanh_cautious_m, only: tanh_cautious - DOUBLE PRECISION, intent(out):: champmin, champmax + REAL, intent(out):: xprimm025(:), rlonv(:), xprimv(:) ! (iim + 1) + real, intent(out):: rlonu(:), xprimu(:), xprimp025(:) ! (iim + 1) ! Local: - - INTEGER, PARAMETER:: nmax = 30000, nmax2 = 2*nmax - - LOGICAL, PARAMETER:: scal180 = .TRUE. - ! scal180 = .TRUE. si on veut avoir le premier point scalaire pour - ! une grille reguliere (grossism = 1., tau=0., clon=0.) a - ! -180. degres. sinon scal180 = .FALSE. - - REAL dzoom - DOUBLE PRECISION xlon(iip1), xprimm(iip1), xuv - DOUBLE PRECISION xtild(0:nmax2) - DOUBLE PRECISION fhyp(0:nmax2), ffdx, beta, Xprimt(0:nmax2) - DOUBLE PRECISION Xf(0:nmax2), xxpr(0:nmax2) - DOUBLE PRECISION xvrai(iip1), xxprim(iip1) - DOUBLE PRECISION pi, depi, epsilon, xzoom, fa, fb - DOUBLE PRECISION Xf1, Xfi, a0, a1, a2, a3, xi2 - INTEGER i, it, ik, iter, ii, idif, ii1, ii2 - DOUBLE PRECISION xi, xo1, xmoy, xlon2, fxm, Xprimin - DOUBLE PRECISION decalx - INTEGER is2 - SAVE is2 + real rlonm025(iim + 1), rlonp025(iim + 1) + REAL dzoom, step + real d_rlonv(iim) + DOUBLE PRECISION xtild(0:2 * nmax) + DOUBLE PRECISION fhyp(nmax:2 * nmax), ffdx, beta, Xprimt(0:2 * nmax) + DOUBLE PRECISION Xf(0:2 * nmax), xxpr(2 * nmax) + INTEGER i, is2 + DOUBLE PRECISION, dimension(nmax + 1:2 * nmax):: xmoy, fxm !---------------------------------------------------------------------- - pi = 2. * ASIN(1.) - depi = 2. * pi - epsilon = 1.e-3 - xzoom = xzoomdeg * pi/180. - - decalx = .75 - IF (grossism == 1. .AND. scal180) THEN - decalx = 1. - ENDIF - - print *, 'FXHYP scal180, decalx', scal180, decalx - - IF (dzooma.LT.1.) THEN - dzoom = dzooma * depi - ELSEIF (dzooma.LT. 25.) THEN - print *, "Le paramètre dzoomx pour fxhyp est trop petit. " & - // "L'augmenter et relancer." - STOP 1 - ELSE - dzoom = dzooma * pi/180. - END IF + print *, "Call sequence information: fxhyp" - print *, ' xzoom(rad), grossism, tau, dzoom (rad):' - print *, xzoom, grossism, tau, dzoom + test_grossismx: if (grossismx == 1.) then + step = twopi / iim - DO i = 0, nmax2 - xtild(i) = - pi + REAL(i) * depi /nmax2 - ENDDO - - DO i = nmax, nmax2 - fa = tau* (dzoom/2. - xtild(i)) - fb = xtild(i) * (pi - xtild(i)) - - IF (200.* fb .LT. - fa) THEN - fhyp (i) = - 1. - ELSEIF (200. * fb .LT. fa) THEN - fhyp (i) = 1. - ELSE - IF (ABS(fa).LT.1.e-13.AND.ABS(fb).LT.1.e-13) THEN - IF (200.*fb + fa.LT.1.e-10) THEN - fhyp (i) = - 1. - ELSEIF (200.*fb - fa.LT.1.e-10) THEN - fhyp (i) = 1. - ENDIF - ELSE - fhyp (i) = TANH (fa/fb) - ENDIF + xprimm025(:iim) = step + xprimp025(:iim) = step + xprimv(:iim) = step + xprimu(:iim) = step + + rlonv(:iim) = arth(- pi + clon, step, iim) + rlonm025(:iim) = rlonv(:iim) - 0.25 * step + rlonp025(:iim) = rlonv(:iim) + 0.25 * step + rlonu(:iim) = rlonv(:iim) + 0.5 * step + else test_grossismx + dzoom = dzoomx * twopi_d + xtild = arth(- pi_d, pi_d / nmax, 2 * nmax + 1) + forall (i = nmax + 1:2 * nmax) xmoy(i) = 0.5d0 * (xtild(i-1) + xtild(i)) + + ! Compute fhyp: + fhyp(nmax + 1:2 * nmax - 1) = tanh_cautious(taux * (dzoom / 2. & + - xtild(nmax + 1:2 * nmax - 1)), xtild(nmax + 1:2 * nmax - 1) & + * (pi_d - xtild(nmax + 1:2 * nmax - 1))) + fhyp(nmax) = 1d0 + fhyp(2 * nmax) = -1d0 + + fxm = tanh_cautious(taux * (dzoom / 2. - xmoy), xmoy * (pi_d - xmoy)) + + ! Calcul de beta + + ffdx = 0. + + DO i = nmax + 1, 2 * nmax + ffdx = ffdx + fxm(i) * (xtild(i) - xtild(i-1)) + END DO + + print *, "ffdx = ", ffdx + beta = (pi_d - grossismx * ffdx) / (pi_d - ffdx) + print *, "beta = ", beta + + IF (2. * beta - grossismx <= 0.) THEN + print *, 'Bad choice of grossismx, taux, dzoomx.' + print *, 'Decrease dzoomx or grossismx.' + STOP 1 END IF - IF (xtild(i) == 0.) fhyp(i) = 1. - IF (xtild(i) == pi) fhyp(i) = -1. - END DO - - ! Calcul de beta - - ffdx = 0. - - DO i = nmax + 1, nmax2 - xmoy = 0.5 * (xtild(i-1) + xtild(i)) - fa = tau* (dzoom/2. - xmoy) - fb = xmoy * (pi - xmoy) - - IF (200.* fb .LT. - fa) THEN - fxm = - 1. - ELSEIF (200. * fb .LT. fa) THEN - fxm = 1. - ELSE - IF (ABS(fa).LT.1.e-13.AND.ABS(fb).LT.1.e-13) THEN - IF (200.*fb + fa.LT.1.e-10) THEN - fxm = - 1. - ELSEIF (200.*fb - fa.LT.1.e-10) THEN - fxm = 1. - ENDIF - ELSE - fxm = TANH (fa/fb) - ENDIF - ENDIF - - IF (xmoy == 0.) fxm = 1. - IF (xmoy == pi) fxm = -1. - - ffdx = ffdx + fxm * (xtild(i) - xtild(i-1)) - ENDDO - - beta = (grossism * ffdx - pi) / (ffdx - pi) - - IF (2.*beta - grossism <= 0.) THEN - print *, 'Attention ! La valeur beta calculée dans fxhyp est mauvaise.' - print *, 'Modifier les valeurs de grossismx, tau ou dzoomx et relancer.' - STOP 1 - END IF - - ! calcul de Xprimt + ! calcul de Xprimt + Xprimt(nmax:2 * nmax) = beta + (grossismx - beta) * fhyp + xprimt(:nmax - 1) = xprimt(2 * nmax:nmax + 1:- 1) + + ! Calcul de Xf + + xxpr(nmax + 1:2 * nmax) = beta + (grossismx - beta) * fxm + xxpr(:nmax) = xxpr(2 * nmax:nmax + 1:- 1) + + Xf(0) = - pi_d + + DO i=1, 2 * nmax - 1 + Xf(i) = Xf(i-1) + xxpr(i) * (xtild(i) - xtild(i-1)) + END DO + + Xf(2 * nmax) = pi_d + + call invert_zoom_x(xf, xtild, Xprimt, rlonm025(:iim), xprimm025(:iim), & + xuv = - 0.25d0) + call invert_zoom_x(xf, xtild, Xprimt, rlonv(:iim), xprimv(:iim), & + xuv = 0d0) + call invert_zoom_x(xf, xtild, Xprimt, rlonu(:iim), xprimu(:iim), & + xuv = 0.5d0) + call invert_zoom_x(xf, xtild, Xprimt, rlonp025(:iim), xprimp025(:iim), & + xuv = 0.25d0) + end if test_grossismx + + is2 = 0 + + IF (MINval(rlonm025(:iim)) < - pi - 0.1 & + .or. MAXval(rlonm025(:iim)) > pi + 0.1) THEN + IF (clon <= 0.) THEN + is2 = 1 - DO i = nmax, nmax2 - Xprimt(i) = beta + (grossism - beta) * fhyp(i) - END DO - - DO i = nmax + 1, nmax2 - Xprimt(nmax2 - i) = Xprimt(i) - END DO - - ! Calcul de Xf - - Xf(0) = - pi + do while (rlonm025(is2) < - pi .and. is2 < iim) + is2 = is2 + 1 + end do - DO i = nmax + 1, nmax2 - xmoy = 0.5 * (xtild(i-1) + xtild(i)) - fa = tau* (dzoom/2. - xmoy) - fb = xmoy * (pi - xmoy) - - IF (200.* fb .LT. - fa) THEN - fxm = - 1. - ELSEIF (200. * fb .LT. fa) THEN - fxm = 1. + if (rlonm025(is2) < - pi) then + print *, 'Rlonm025 plus petit que - pi !' + STOP 1 + end if ELSE - fxm = TANH (fa/fb) - ENDIF + is2 = iim - IF (xmoy == 0.) fxm = 1. - IF (xmoy == pi) fxm = -1. - xxpr(i) = beta + (grossism - beta) * fxm - ENDDO - - DO i = nmax + 1, nmax2 - xxpr(nmax2-i + 1) = xxpr(i) - ENDDO - - DO i=1, nmax2 - Xf(i) = Xf(i-1) + xxpr(i) * (xtild(i) - xtild(i-1)) - ENDDO - - ! xuv = 0. si calcul aux pts scalaires - ! xuv = 0.5 si calcul aux pts U - - print * - - DO ik = 1, 4 - IF (ik == 1) THEN - xuv = -0.25 - ELSE IF (ik == 2) THEN - xuv = 0. - ELSE IF (ik == 3) THEN - xuv = 0.50 - ELSE IF (ik == 4) THEN - xuv = 0.25 - ENDIF - - xo1 = 0. - - ii1=1 - ii2=iim - IF (ik == 1.and.grossism == 1.) THEN - ii1 = 2 - ii2 = iim + 1 - ENDIF - - DO i = ii1, ii2 - xlon2 = - pi + (REAL(i) + xuv - decalx) * depi / REAL(iim) - Xfi = xlon2 - - it = nmax2 - do while (xfi < xf(it) .and. it >= 1) - it = it - 1 + do while (rlonm025(is2) > pi .and. is2 > 1) + is2 = is2 - 1 end do - ! Calcul de Xf(xi) - - xi = xtild(it) - - IF (it == nmax2) THEN - it = nmax2 -1 - Xf(it + 1) = pi - ENDIF - - ! Appel de la routine qui calcule les coefficients a0, a1, - ! a2, a3 d'un polynome de degre 3 qui passe par les points - ! (Xf(it), xtild(it)) et (Xf(it + 1), xtild(it + 1)) - - CALL coefpoly(Xf(it), Xf(it + 1), Xprimt(it), Xprimt(it + 1), & - xtild(it), xtild(it + 1), a0, a1, a2, a3) - - Xf1 = Xf(it) - Xprimin = a1 + 2.* a2 * xi + 3.*a3 * xi *xi - - iter = 1 - - do - xi = xi - (Xf1 - Xfi)/ Xprimin - IF (ABS(xi - xo1) <= epsilon .or. iter == 300) exit - xo1 = xi - xi2 = xi * xi - Xf1 = a0 + a1 * xi + a2 * xi2 + a3 * xi2 * xi - Xprimin = a1 + 2.* a2 * xi + 3.* a3 * xi2 - end DO - - if (ABS(xi - xo1) > epsilon) then - ! iter == 300 - print *, 'Pas de solution.' - print *, i, xlon2 + if (rlonm025(is2) > pi) then + print *, 'Rlonm025 plus grand que pi !' STOP 1 end if + END IF + END IF + call principal_cshift(is2, rlonm025, xprimm025) + call principal_cshift(is2, rlonv, xprimv) + call principal_cshift(is2, rlonu, xprimu) + call principal_cshift(is2, rlonp025, xprimp025) + + forall (i = 1: iim) d_rlonv(i) = rlonv(i + 1) - rlonv(i) + print *, "Minimum longitude step:", MINval(d_rlonv) * 180. / pi, "degrees" + print *, "Maximum longitude step:", MAXval(d_rlonv) * 180. / pi, "degrees" + + ! Check that rlonm025 <= rlonv <= rlonp025 <= rlonu: + DO i = 1, iim + 1 + IF (rlonp025(i) < rlonv(i)) THEN + print *, 'rlonp025(', i, ') = ', rlonp025(i) + print *, "< rlonv(", i, ") = ", rlonv(i) + STOP 1 + END IF - xxprim(i) = depi/ (REAL(iim) * Xprimin) - xvrai(i) = xi + xzoom - end DO - - IF (ik == 1.and.grossism == 1.) THEN - xvrai(1) = xvrai(iip1)-depi - xxprim(1) = xxprim(iip1) - ENDIF - DO i = 1, iim - xlon(i) = xvrai(i) - xprimm(i) = xxprim(i) - ENDDO - DO i = 1, iim -1 - IF (xvrai(i + 1).LT. xvrai(i)) THEN - print *, 'Problème avec rlonu(', i + 1, & - ') plus petit que rlonu(', i, ')' - STOP 1 - ENDIF - ENDDO - - ! Reorganisation des longitudes pour les avoir entre - pi et pi + IF (rlonv(i) < rlonm025(i)) THEN + print *, 'rlonv(', i, ') = ', rlonv(i) + print *, "< rlonm025(", i, ") = ", rlonm025(i) + STOP 1 + END IF - champmin = 1.e12 - champmax = -1.e12 - DO i = 1, iim - champmin = MIN(champmin, xvrai(i)) - champmax = MAX(champmax, xvrai(i)) - ENDDO - - IF (.not. (champmin >= -pi-0.10.and.champmax <= pi + 0.10)) THEN - print *, 'Reorganisation des longitudes pour avoir entre - pi', & - ' et pi ' - - IF (xzoom <= 0.) THEN - IF (ik == 1) THEN - i = 1 - - do while (xvrai(i) < - pi .and. i < iim) - i = i + 1 - end do - - if (xvrai(i) < - pi) then - print *, ' PBS. 1 ! Xvrai plus petit que - pi ! ' - STOP 1 - end if - - is2 = i - ENDIF - - IF (is2.NE. 1) THEN - DO ii = is2, iim - xlon (ii-is2 + 1) = xvrai(ii) - xprimm(ii-is2 + 1) = xxprim(ii) - ENDDO - DO ii = 1, is2 -1 - xlon (ii + iim-is2 + 1) = xvrai(ii) + depi - xprimm(ii + iim-is2 + 1) = xxprim(ii) - ENDDO - ENDIF - ELSE - IF (ik == 1) THEN - i = iim - - do while (xvrai(i) > pi .and. i > 1) - i = i - 1 - end do - - if (xvrai(i) > pi) then - print *, ' PBS. 2 ! Xvrai plus grand que pi ! ' - STOP 1 - end if - - is2 = i - ENDIF - idif = iim -is2 - DO ii = 1, is2 - xlon (ii + idif) = xvrai(ii) - xprimm(ii + idif) = xxprim(ii) - ENDDO - DO ii = 1, idif - xlon (ii) = xvrai (ii + is2) - depi - xprimm(ii) = xxprim(ii + is2) - ENDDO - ENDIF - ENDIF - - ! Fin de la reorganisation - - xlon (iip1) = xlon(1) + depi - xprimm(iip1) = xprimm (1) - - DO i = 1, iim + 1 - xvrai(i) = xlon(i)*180./pi - ENDDO - - IF (ik == 1) THEN - DO i = 1, iim + 1 - rlonm025(i) = xlon(i) - xprimm025(i) = xprimm(i) - ENDDO - ELSE IF (ik == 2) THEN - DO i = 1, iim + 1 - rlonv(i) = xlon(i) - xprimv(i) = xprimm(i) - ENDDO - ELSE IF (ik == 3) THEN - DO i = 1, iim + 1 - rlonu(i) = xlon(i) - xprimu(i) = xprimm(i) - ENDDO - ELSE IF (ik == 4) THEN - DO i = 1, iim + 1 - rlonp025(i) = xlon(i) - xprimp025(i) = xprimm(i) - ENDDO - ENDIF - end DO - - print * - - DO i = 1, iim - xlon(i) = rlonv(i + 1) - rlonv(i) - ENDDO - champmin = 1.e12 - champmax = -1.e12 - DO i = 1, iim - champmin = MIN(champmin, xlon(i)) - champmax = MAX(champmax, xlon(i)) - ENDDO - champmin = champmin * 180./pi - champmax = champmax * 180./pi + IF (rlonp025(i) > rlonu(i)) THEN + print *, 'rlonp025(', i, ') = ', rlonp025(i) + print *, "> rlonu(", i, ") = ", rlonu(i) + STOP 1 + END IF + END DO END SUBROUTINE fxhyp