--- trunk/dyn3d/fxhyp.f 2014/09/04 10:40:24 105 +++ trunk/dyn3d/fxhyp.f 2015/01/28 16:10:02 121 @@ -4,397 +4,189 @@ contains - SUBROUTINE fxhyp(xzoomdeg, grossism, dzooma, tau, rlonm025, xprimm025, & - rlonv, xprimv, rlonu, xprimu, rlonp025, xprimp025, champmin, champmax) + SUBROUTINE fxhyp(xprimm025, rlonv, xprimv, rlonu, xprimu, xprimp025) ! From LMDZ4/libf/dyn3d/fxhyp.F, version 1.2, 2005/06/03 09:11:32 - ! Author: P. Le Van + ! Author: P. Le Van, from formulas by R. Sadourny ! Calcule les longitudes et dérivées dans la grille du GCM pour - ! une fonction f(x) à tangente hyperbolique. + ! une fonction f(x) à dérivée tangente hyperbolique. - ! On doit avoir grossism \times dzoom < pi (radians), en longitude. + ! Il vaut mieux avoir : grossismx \times dzoom < pi - USE dimens_m, ONLY: iim - USE paramet_m, ONLY: iip1 - - REAL, intent(in):: xzoomdeg - - REAL, intent(in):: grossism - ! grossissement (= 2 si 2 fois, = 3 si 3 fois, etc.) - - REAL, intent(in):: dzooma ! distance totale de la zone du zoom - - REAL, intent(in):: tau - ! raideur de la transition de l'intérieur à l'extérieur du zoom + ! Le premier point scalaire pour une grille regulière (grossismx = + ! 1., taux=0., clon=0.) est à - 180 degrés. - ! arguments de sortie - - REAL, dimension(iip1):: rlonm025, xprimm025, rlonv, xprimv - real, dimension(iip1):: rlonu, xprimu, rlonp025, xprimp025 + USE dimens_m, ONLY: iim + use fxhyp_loop_ik_m, only: fxhyp_loop_ik, nmax + use nr_util, only: pi_d, twopi_d, arth + use serre, only: clon, grossismx, dzoomx, taux - DOUBLE PRECISION, intent(out):: champmin, champmax + REAL, intent(out):: xprimm025(:), rlonv(:), xprimv(:) ! (iim + 1) + real, intent(out):: rlonu(:), xprimu(:), xprimp025(:) ! (iim + 1) ! Local: - INTEGER, PARAMETER:: nmax = 30000, nmax2 = 2*nmax - - LOGICAL, PARAMETER:: scal180 = .TRUE. - ! scal180 = .TRUE. si on veut avoir le premier point scalaire pour - ! une grille reguliere (grossism = 1., tau=0., clon=0.) a - ! -180. degres. sinon scal180 = .FALSE. - + real rlonm025(iim + 1), rlonp025(iim + 1) REAL dzoom - DOUBLE PRECISION xlon(iip1), xprimm(iip1), xuv - DOUBLE PRECISION xtild(0:nmax2) - DOUBLE PRECISION fhyp(0:nmax2), ffdx, beta, Xprimt(0:nmax2) - DOUBLE PRECISION Xf(0:nmax2), xxpr(0:nmax2) - DOUBLE PRECISION xvrai(iip1), xxprim(iip1) - DOUBLE PRECISION pi, depi, epsilon, xzoom, fa, fb - DOUBLE PRECISION Xf1, Xfi, a0, a1, a2, a3, xi2 - INTEGER i, it, ik, iter, ii, idif, ii1, ii2 - DOUBLE PRECISION xi, xo1, xmoy, xlon2, fxm, Xprimin + DOUBLE PRECISION xlon(iim) + DOUBLE PRECISION xtild(0:2 * nmax) + DOUBLE PRECISION fhyp(nmax:2 * nmax), ffdx, beta, Xprimt(0:2 * nmax) + DOUBLE PRECISION Xf(0:2 * nmax), xxpr(2 * nmax) + DOUBLE PRECISION xzoom, fa, fb + INTEGER i + DOUBLE PRECISION xmoy, fxm DOUBLE PRECISION decalx - INTEGER is2 - SAVE is2 !---------------------------------------------------------------------- - pi = 2. * ASIN(1.) - depi = 2. * pi - epsilon = 1.e-3 - xzoom = xzoomdeg * pi/180. - - decalx = .75 - IF (grossism == 1. .AND. scal180) THEN - decalx = 1. - ENDIF - - print *, 'FXHYP scal180, decalx', scal180, decalx - - IF (dzooma.LT.1.) THEN - dzoom = dzooma * depi - ELSEIF (dzooma.LT. 25.) THEN - print *, "Le paramètre dzoomx pour fxhyp est trop petit. " & - // "L'augmenter et relancer." - STOP 1 - ELSE - dzoom = dzooma * pi/180. - ENDIF - - print *, ' xzoom(rad), grossism, tau, dzoom (rad):' - print *, xzoom, grossism, tau, dzoom - - DO i = 0, nmax2 - xtild(i) = - pi + FLOAT(i) * depi /nmax2 - ENDDO - - DO i = nmax, nmax2 - fa = tau* (dzoom/2. - xtild(i)) - fb = xtild(i) * (pi - xtild(i)) - - IF (200.* fb .LT. - fa) THEN - fhyp (i) = - 1. - ELSEIF (200. * fb .LT. fa) THEN - fhyp (i) = 1. + print *, "Call sequence information: fxhyp" + + xzoom = clon * pi_d / 180d0 + + IF (grossismx == 1.) THEN + decalx = 1d0 + else + decalx = 0.75d0 + END IF + + dzoom = dzoomx * twopi_d + xtild = arth(- pi_d, pi_d / nmax, 2 * nmax + 1) + + ! Compute fhyp: + DO i = nmax, 2 * nmax + fa = taux * (dzoom / 2. - xtild(i)) + fb = xtild(i) * (pi_d - xtild(i)) + + IF (200. * fb < - fa) THEN + fhyp(i) = - 1. + ELSE IF (200. * fb < fa) THEN + fhyp(i) = 1. ELSE - IF (ABS(fa).LT.1.e-13.AND.ABS(fb).LT.1.e-13) THEN - IF (200.*fb + fa.LT.1.e-10) THEN - fhyp (i) = - 1. - ELSEIF (200.*fb - fa.LT.1.e-10) THEN - fhyp (i) = 1. - ENDIF + IF (ABS(fa) < 1e-13 .AND. ABS(fb) < 1e-13) THEN + IF (200. * fb + fa < 1e-10) THEN + fhyp(i) = - 1. + ELSE IF (200. * fb - fa < 1e-10) THEN + fhyp(i) = 1. + END IF ELSE - fhyp (i) = TANH (fa/fb) - ENDIF - ENDIF + fhyp(i) = TANH(fa / fb) + END IF + END IF IF (xtild(i) == 0.) fhyp(i) = 1. - IF (xtild(i) == pi) fhyp(i) = -1. - ENDDO + IF (xtild(i) == pi_d) fhyp(i) = -1. + END DO ! Calcul de beta ffdx = 0. - DO i = nmax + 1, nmax2 + DO i = nmax + 1, 2 * nmax xmoy = 0.5 * (xtild(i-1) + xtild(i)) - fa = tau* (dzoom/2. - xmoy) - fb = xmoy * (pi - xmoy) + fa = taux * (dzoom / 2. - xmoy) + fb = xmoy * (pi_d - xmoy) - IF (200.* fb .LT. - fa) THEN + IF (200. * fb < - fa) THEN fxm = - 1. - ELSEIF (200. * fb .LT. fa) THEN + ELSE IF (200. * fb < fa) THEN fxm = 1. ELSE - IF (ABS(fa).LT.1.e-13.AND.ABS(fb).LT.1.e-13) THEN - IF (200.*fb + fa.LT.1.e-10) THEN + IF (ABS(fa) < 1e-13 .AND. ABS(fb) < 1e-13) THEN + IF (200. * fb + fa < 1e-10) THEN fxm = - 1. - ELSEIF (200.*fb - fa.LT.1.e-10) THEN + ELSE IF (200. * fb - fa < 1e-10) THEN fxm = 1. - ENDIF + END IF ELSE - fxm = TANH (fa/fb) - ENDIF - ENDIF + fxm = TANH(fa / fb) + END IF + END IF IF (xmoy == 0.) fxm = 1. - IF (xmoy == pi) fxm = -1. + IF (xmoy == pi_d) fxm = -1. ffdx = ffdx + fxm * (xtild(i) - xtild(i-1)) - ENDDO + END DO - beta = (grossism * ffdx - pi) / (ffdx - pi) + print *, "ffdx = ", ffdx + beta = (grossismx * ffdx - pi_d) / (ffdx - pi_d) + print *, "beta = ", beta - IF (2.*beta - grossism <= 0.) THEN + IF (2. * beta - grossismx <= 0.) THEN print *, 'Attention ! La valeur beta calculée dans fxhyp est mauvaise.' - print *, 'Modifier les valeurs de grossismx, tau ou dzoomx et relancer.' + print *, 'Modifier les valeurs de grossismx, taux ou dzoomx et relancer.' STOP 1 - ENDIF + END IF ! calcul de Xprimt + Xprimt(nmax:2 * nmax) = beta + (grossismx - beta) * fhyp + xprimt(:nmax - 1) = xprimt(2 * nmax:nmax + 1:- 1) - DO i = nmax, nmax2 - Xprimt(i) = beta + (grossism - beta) * fhyp(i) - ENDDO - - DO i = nmax + 1, nmax2 - Xprimt(nmax2 - i) = Xprimt(i) - ENDDO - - ! Calcul de Xf - - Xf(0) = - pi + ! Calcul de Xf - DO i = nmax + 1, nmax2 + DO i = nmax + 1, 2 * nmax xmoy = 0.5 * (xtild(i-1) + xtild(i)) - fa = tau* (dzoom/2. - xmoy) - fb = xmoy * (pi - xmoy) + fa = taux * (dzoom / 2. - xmoy) + fb = xmoy * (pi_d - xmoy) - IF (200.* fb .LT. - fa) THEN + IF (200. * fb < - fa) THEN fxm = - 1. - ELSEIF (200. * fb .LT. fa) THEN + ELSE IF (200. * fb < fa) THEN fxm = 1. ELSE - fxm = TANH (fa/fb) - ENDIF + fxm = TANH(fa / fb) + END IF IF (xmoy == 0.) fxm = 1. - IF (xmoy == pi) fxm = -1. - xxpr(i) = beta + (grossism - beta) * fxm - ENDDO - - DO i = nmax + 1, nmax2 - xxpr(nmax2-i + 1) = xxpr(i) - ENDDO + IF (xmoy == pi_d) fxm = -1. + xxpr(i) = beta + (grossismx - beta) * fxm + END DO - DO i=1, nmax2 - Xf(i) = Xf(i-1) + xxpr(i) * (xtild(i) - xtild(i-1)) - ENDDO + xxpr(:nmax) = xxpr(2 * nmax:nmax + 1:- 1) - ! xuv = 0. si calcul aux pts scalaires - ! xuv = 0.5 si calcul aux pts U + Xf(0) = - pi_d - print * + DO i=1, 2 * nmax - 1 + Xf(i) = Xf(i-1) + xxpr(i) * (xtild(i) - xtild(i-1)) + END DO + + Xf(2 * nmax) = pi_d - DO ik = 1, 4 - IF (ik == 1) THEN - xuv = -0.25 - ELSE IF (ik == 2) THEN - xuv = 0. - ELSE IF (ik == 3) THEN - xuv = 0.50 - ELSE IF (ik == 4) THEN - xuv = 0.25 - ENDIF - - xo1 = 0. - - ii1=1 - ii2=iim - IF (ik == 1.and.grossism == 1.) THEN - ii1 = 2 - ii2 = iim + 1 - ENDIF - - DO i = ii1, ii2 - xlon2 = - pi + (FLOAT(i) + xuv - decalx) * depi / FLOAT(iim) - Xfi = xlon2 - - it = nmax2 - do while (xfi < xf(it) .and. it >= 1) - it = it - 1 - end do - - ! Calcul de Xf(xi) - - xi = xtild(it) - - IF (it == nmax2) THEN - it = nmax2 -1 - Xf(it + 1) = pi - ENDIF - - ! Appel de la routine qui calcule les coefficients a0, a1, - ! a2, a3 d'un polynome de degre 3 qui passe par les points - ! (Xf(it), xtild(it)) et (Xf(it + 1), xtild(it + 1)) - - CALL coefpoly(Xf(it), Xf(it + 1), Xprimt(it), Xprimt(it + 1), & - xtild(it), xtild(it + 1), a0, a1, a2, a3) - - Xf1 = Xf(it) - Xprimin = a1 + 2.* a2 * xi + 3.*a3 * xi *xi - - iter = 1 - - do - xi = xi - (Xf1 - Xfi)/ Xprimin - IF (ABS(xi - xo1) <= epsilon .or. iter == 300) exit - xo1 = xi - xi2 = xi * xi - Xf1 = a0 + a1 * xi + a2 * xi2 + a3 * xi2 * xi - Xprimin = a1 + 2.* a2 * xi + 3.* a3 * xi2 - end DO - - if (ABS(xi - xo1) > epsilon) then - ! iter == 300 - print *, 'Pas de solution.' - print *, i, xlon2 - STOP 1 - end if - - - xxprim(i) = depi/ (FLOAT(iim) * Xprimin) - xvrai(i) = xi + xzoom - end DO - - IF (ik == 1.and.grossism == 1.) THEN - xvrai(1) = xvrai(iip1)-depi - xxprim(1) = xxprim(iip1) - ENDIF - DO i = 1, iim - xlon(i) = xvrai(i) - xprimm(i) = xxprim(i) - ENDDO - DO i = 1, iim -1 - IF (xvrai(i + 1).LT. xvrai(i)) THEN - print *, 'Problème avec rlonu(', i + 1, & - ') plus petit que rlonu(', i, ')' - STOP 1 - ENDIF - ENDDO - - ! Reorganisation des longitudes pour les avoir entre - pi et pi - - champmin = 1.e12 - champmax = -1.e12 - DO i = 1, iim - champmin = MIN(champmin, xvrai(i)) - champmax = MAX(champmax, xvrai(i)) - ENDDO - - IF (.not. (champmin >= -pi-0.10.and.champmax <= pi + 0.10)) THEN - print *, 'Reorganisation des longitudes pour avoir entre - pi', & - ' et pi ' - - IF (xzoom <= 0.) THEN - IF (ik == 1) THEN - i = 1 - - do while (xvrai(i) < - pi .and. i < iim) - i = i + 1 - end do - - if (xvrai(i) < - pi) then - print *, ' PBS. 1 ! Xvrai plus petit que - pi ! ' - STOP 1 - end if - - is2 = i - ENDIF - - IF (is2.NE. 1) THEN - DO ii = is2, iim - xlon (ii-is2 + 1) = xvrai(ii) - xprimm(ii-is2 + 1) = xxprim(ii) - ENDDO - DO ii = 1, is2 -1 - xlon (ii + iim-is2 + 1) = xvrai(ii) + depi - xprimm(ii + iim-is2 + 1) = xxprim(ii) - ENDDO - ENDIF - ELSE - IF (ik == 1) THEN - i = iim - - do while (xvrai(i) > pi .and. i > 1) - i = i - 1 - end do - - if (xvrai(i) > pi) then - print *, ' PBS. 2 ! Xvrai plus grand que pi ! ' - STOP 1 - end if - - is2 = i - ENDIF - idif = iim -is2 - DO ii = 1, is2 - xlon (ii + idif) = xvrai(ii) - xprimm(ii + idif) = xxprim(ii) - ENDDO - DO ii = 1, idif - xlon (ii) = xvrai (ii + is2) - depi - xprimm(ii) = xxprim(ii + is2) - ENDDO - ENDIF - ENDIF - - ! Fin de la reorganisation - - xlon (iip1) = xlon(1) + depi - xprimm(iip1) = xprimm (1) - - DO i = 1, iim + 1 - xvrai(i) = xlon(i)*180./pi - ENDDO - - IF (ik == 1) THEN - DO i = 1, iim + 1 - rlonm025(i) = xlon(i) - xprimm025(i) = xprimm(i) - ENDDO - ELSE IF (ik == 2) THEN - DO i = 1, iim + 1 - rlonv(i) = xlon(i) - xprimv(i) = xprimm(i) - ENDDO - ELSE IF (ik == 3) THEN - DO i = 1, iim + 1 - rlonu(i) = xlon(i) - xprimu(i) = xprimm(i) - ENDDO - ELSE IF (ik == 4) THEN - DO i = 1, iim + 1 - rlonp025(i) = xlon(i) - xprimp025(i) = xprimm(i) - ENDDO - ENDIF - end DO + call fxhyp_loop_ik(1, decalx, xf, xtild, Xprimt, xzoom, rlonm025, & + xprimm025, xuv = - 0.25d0) + call fxhyp_loop_ik(2, decalx, xf, xtild, Xprimt, xzoom, rlonv, xprimv, & + xuv = 0d0) + call fxhyp_loop_ik(3, decalx, xf, xtild, Xprimt, xzoom, rlonu, xprimu, & + xuv = 0.5d0) + call fxhyp_loop_ik(4, decalx, xf, xtild, Xprimt, xzoom, rlonp025, & + xprimp025, xuv = 0.25d0) print * - DO i = 1, iim - xlon(i) = rlonv(i + 1) - rlonv(i) - ENDDO - champmin = 1.e12 - champmax = -1.e12 - DO i = 1, iim - champmin = MIN(champmin, xlon(i)) - champmax = MAX(champmax, xlon(i)) - ENDDO - champmin = champmin * 180./pi - champmax = champmax * 180./pi + forall (i = 1: iim) xlon(i) = rlonv(i + 1) - rlonv(i) + print *, "Minimum longitude step:", MINval(xlon) * 180. / pi_d, "°" + print *, "Maximum longitude step:", MAXval(xlon) * 180. / pi_d, "°" + + DO i = 1, iim + 1 + IF (rlonp025(i) < rlonv(i)) THEN + print *, 'rlonp025(', i, ') = ', rlonp025(i) + print *, "< rlonv(", i, ") = ", rlonv(i) + STOP 1 + END IF + + IF (rlonv(i) < rlonm025(i)) THEN + print *, 'rlonv(', i, ') = ', rlonv(i) + print *, "< rlonm025(", i, ") = ", rlonm025(i) + STOP 1 + END IF + + IF (rlonp025(i) > rlonu(i)) THEN + print *, 'rlonp025(', i, ') = ', rlonp025(i) + print *, "> rlonu(", i, ") = ", rlonu(i) + STOP 1 + END IF + END DO END SUBROUTINE fxhyp