--- trunk/dyn3d/fxhyp.f 2015/01/28 16:10:02 121 +++ trunk/dyn3d/fxhyp.f 2015/02/27 16:44:07 131 @@ -18,156 +18,194 @@ ! 1., taux=0., clon=0.) est à - 180 degrés. USE dimens_m, ONLY: iim - use fxhyp_loop_ik_m, only: fxhyp_loop_ik, nmax - use nr_util, only: pi_d, twopi_d, arth + use invert_zoom_x_m, only: invert_zoom_x, nmax + use nr_util, only: pi, pi_d, twopi, twopi_d, arth + use principal_cshift_m, only: principal_cshift use serre, only: clon, grossismx, dzoomx, taux REAL, intent(out):: xprimm025(:), rlonv(:), xprimv(:) ! (iim + 1) real, intent(out):: rlonu(:), xprimu(:), xprimp025(:) ! (iim + 1) ! Local: - real rlonm025(iim + 1), rlonp025(iim + 1) - REAL dzoom - DOUBLE PRECISION xlon(iim) + REAL dzoom, step + real d_rlonv(iim) DOUBLE PRECISION xtild(0:2 * nmax) DOUBLE PRECISION fhyp(nmax:2 * nmax), ffdx, beta, Xprimt(0:2 * nmax) DOUBLE PRECISION Xf(0:2 * nmax), xxpr(2 * nmax) - DOUBLE PRECISION xzoom, fa, fb - INTEGER i + DOUBLE PRECISION fa, fb + INTEGER i, is2 DOUBLE PRECISION xmoy, fxm - DOUBLE PRECISION decalx !---------------------------------------------------------------------- print *, "Call sequence information: fxhyp" - xzoom = clon * pi_d / 180d0 + test_grossismx: if (grossismx == 1.) then + step = twopi / iim - IF (grossismx == 1.) THEN - decalx = 1d0 + xprimm025(:iim) = step + xprimp025(:iim) = step + xprimv(:iim) = step + xprimu(:iim) = step + + rlonv(:iim) = arth(- pi + clon, step, iim) + rlonm025(:iim) = rlonv(:iim) - 0.25 * step + rlonp025(:iim) = rlonv(:iim) + 0.25 * step + rlonu(:iim) = rlonv(:iim) + 0.5 * step else - decalx = 0.75d0 - END IF - - dzoom = dzoomx * twopi_d - xtild = arth(- pi_d, pi_d / nmax, 2 * nmax + 1) + dzoom = dzoomx * twopi_d + xtild = arth(- pi_d, pi_d / nmax, 2 * nmax + 1) - ! Compute fhyp: - DO i = nmax, 2 * nmax - fa = taux * (dzoom / 2. - xtild(i)) - fb = xtild(i) * (pi_d - xtild(i)) - - IF (200. * fb < - fa) THEN - fhyp(i) = - 1. - ELSE IF (200. * fb < fa) THEN - fhyp(i) = 1. - ELSE - IF (ABS(fa) < 1e-13 .AND. ABS(fb) < 1e-13) THEN - IF (200. * fb + fa < 1e-10) THEN - fhyp(i) = - 1. - ELSE IF (200. * fb - fa < 1e-10) THEN - fhyp(i) = 1. - END IF + ! Compute fhyp: + DO i = nmax, 2 * nmax + fa = taux * (dzoom / 2. - xtild(i)) + fb = xtild(i) * (pi_d - xtild(i)) + + IF (200. * fb < - fa) THEN + fhyp(i) = - 1. + ELSE IF (200. * fb < fa) THEN + fhyp(i) = 1. ELSE - fhyp(i) = TANH(fa / fb) + IF (ABS(fa) < 1e-13 .AND. ABS(fb) < 1e-13) THEN + IF (200. * fb + fa < 1e-10) THEN + fhyp(i) = - 1. + ELSE IF (200. * fb - fa < 1e-10) THEN + fhyp(i) = 1. + END IF + ELSE + fhyp(i) = TANH(fa / fb) + END IF END IF - END IF - IF (xtild(i) == 0.) fhyp(i) = 1. - IF (xtild(i) == pi_d) fhyp(i) = -1. - END DO - - ! Calcul de beta - - ffdx = 0. - - DO i = nmax + 1, 2 * nmax - xmoy = 0.5 * (xtild(i-1) + xtild(i)) - fa = taux * (dzoom / 2. - xmoy) - fb = xmoy * (pi_d - xmoy) - - IF (200. * fb < - fa) THEN - fxm = - 1. - ELSE IF (200. * fb < fa) THEN - fxm = 1. - ELSE - IF (ABS(fa) < 1e-13 .AND. ABS(fb) < 1e-13) THEN - IF (200. * fb + fa < 1e-10) THEN - fxm = - 1. - ELSE IF (200. * fb - fa < 1e-10) THEN - fxm = 1. - END IF + IF (xtild(i) == 0.) fhyp(i) = 1. + IF (xtild(i) == pi_d) fhyp(i) = -1. + END DO + + ! Calcul de beta + + ffdx = 0. + + DO i = nmax + 1, 2 * nmax + xmoy = 0.5 * (xtild(i-1) + xtild(i)) + fa = taux * (dzoom / 2. - xmoy) + fb = xmoy * (pi_d - xmoy) + + IF (200. * fb < - fa) THEN + fxm = - 1. + ELSE IF (200. * fb < fa) THEN + fxm = 1. ELSE - fxm = TANH(fa / fb) + IF (ABS(fa) < 1e-13 .AND. ABS(fb) < 1e-13) THEN + IF (200. * fb + fa < 1e-10) THEN + fxm = - 1. + ELSE IF (200. * fb - fa < 1e-10) THEN + fxm = 1. + END IF + ELSE + fxm = TANH(fa / fb) + END IF END IF - END IF - IF (xmoy == 0.) fxm = 1. - IF (xmoy == pi_d) fxm = -1. + IF (xmoy == 0.) fxm = 1. + IF (xmoy == pi_d) fxm = -1. - ffdx = ffdx + fxm * (xtild(i) - xtild(i-1)) - END DO + ffdx = ffdx + fxm * (xtild(i) - xtild(i-1)) + END DO - print *, "ffdx = ", ffdx - beta = (grossismx * ffdx - pi_d) / (ffdx - pi_d) - print *, "beta = ", beta - - IF (2. * beta - grossismx <= 0.) THEN - print *, 'Attention ! La valeur beta calculée dans fxhyp est mauvaise.' - print *, 'Modifier les valeurs de grossismx, taux ou dzoomx et relancer.' - STOP 1 - END IF + print *, "ffdx = ", ffdx + beta = (grossismx * ffdx - pi_d) / (ffdx - pi_d) + print *, "beta = ", beta + + IF (2. * beta - grossismx <= 0.) THEN + print *, 'Bad choice of grossismx, taux, dzoomx.' + print *, 'Decrease dzoomx or grossismx.' + STOP 1 + END IF + + ! calcul de Xprimt + Xprimt(nmax:2 * nmax) = beta + (grossismx - beta) * fhyp + xprimt(:nmax - 1) = xprimt(2 * nmax:nmax + 1:- 1) + + ! Calcul de Xf + + DO i = nmax + 1, 2 * nmax + xmoy = 0.5 * (xtild(i-1) + xtild(i)) + fa = taux * (dzoom / 2. - xmoy) + fb = xmoy * (pi_d - xmoy) + + IF (200. * fb < - fa) THEN + fxm = - 1. + ELSE IF (200. * fb < fa) THEN + fxm = 1. + ELSE + fxm = TANH(fa / fb) + END IF - ! calcul de Xprimt - Xprimt(nmax:2 * nmax) = beta + (grossismx - beta) * fhyp - xprimt(:nmax - 1) = xprimt(2 * nmax:nmax + 1:- 1) - - ! Calcul de Xf - - DO i = nmax + 1, 2 * nmax - xmoy = 0.5 * (xtild(i-1) + xtild(i)) - fa = taux * (dzoom / 2. - xmoy) - fb = xmoy * (pi_d - xmoy) - - IF (200. * fb < - fa) THEN - fxm = - 1. - ELSE IF (200. * fb < fa) THEN - fxm = 1. + IF (xmoy == 0.) fxm = 1. + IF (xmoy == pi_d) fxm = -1. + xxpr(i) = beta + (grossismx - beta) * fxm + END DO + + xxpr(:nmax) = xxpr(2 * nmax:nmax + 1:- 1) + + Xf(0) = - pi_d + + DO i=1, 2 * nmax - 1 + Xf(i) = Xf(i-1) + xxpr(i) * (xtild(i) - xtild(i-1)) + END DO + + Xf(2 * nmax) = pi_d + + call invert_zoom_x(xf, xtild, Xprimt, rlonm025(:iim), xprimm025(:iim), & + xuv = - 0.25d0) + call invert_zoom_x(xf, xtild, Xprimt, rlonv(:iim), xprimv(:iim), & + xuv = 0d0) + call invert_zoom_x(xf, xtild, Xprimt, rlonu(:iim), xprimu(:iim), & + xuv = 0.5d0) + call invert_zoom_x(xf, xtild, Xprimt, rlonp025(:iim), xprimp025(:iim), & + xuv = 0.25d0) + end if test_grossismx + + is2 = 0 + + IF (MINval(rlonm025(:iim)) < - pi - 0.1 & + .or. MAXval(rlonm025(:iim)) > pi + 0.1) THEN + IF (clon <= 0.) THEN + is2 = 1 + + do while (rlonm025(is2) < - pi .and. is2 < iim) + is2 = is2 + 1 + end do + + if (rlonm025(is2) < - pi) then + print *, 'Rlonm025 plus petit que - pi !' + STOP 1 + end if ELSE - fxm = TANH(fa / fb) + is2 = iim + + do while (rlonm025(is2) > pi .and. is2 > 1) + is2 = is2 - 1 + end do + + if (rlonm025(is2) > pi) then + print *, 'Rlonm025 plus grand que pi !' + STOP 1 + end if END IF + END IF - IF (xmoy == 0.) fxm = 1. - IF (xmoy == pi_d) fxm = -1. - xxpr(i) = beta + (grossismx - beta) * fxm - END DO - - xxpr(:nmax) = xxpr(2 * nmax:nmax + 1:- 1) - - Xf(0) = - pi_d - - DO i=1, 2 * nmax - 1 - Xf(i) = Xf(i-1) + xxpr(i) * (xtild(i) - xtild(i-1)) - END DO - - Xf(2 * nmax) = pi_d - - call fxhyp_loop_ik(1, decalx, xf, xtild, Xprimt, xzoom, rlonm025, & - xprimm025, xuv = - 0.25d0) - call fxhyp_loop_ik(2, decalx, xf, xtild, Xprimt, xzoom, rlonv, xprimv, & - xuv = 0d0) - call fxhyp_loop_ik(3, decalx, xf, xtild, Xprimt, xzoom, rlonu, xprimu, & - xuv = 0.5d0) - call fxhyp_loop_ik(4, decalx, xf, xtild, Xprimt, xzoom, rlonp025, & - xprimp025, xuv = 0.25d0) - - print * - - forall (i = 1: iim) xlon(i) = rlonv(i + 1) - rlonv(i) - print *, "Minimum longitude step:", MINval(xlon) * 180. / pi_d, "°" - print *, "Maximum longitude step:", MAXval(xlon) * 180. / pi_d, "°" + call principal_cshift(is2, rlonm025, xprimm025) + call principal_cshift(is2, rlonv, xprimv) + call principal_cshift(is2, rlonu, xprimu) + call principal_cshift(is2, rlonp025, xprimp025) + + forall (i = 1: iim) d_rlonv(i) = rlonv(i + 1) - rlonv(i) + print *, "Minimum longitude step:", MINval(d_rlonv) * 180. / pi, "degrees" + print *, "Maximum longitude step:", MAXval(d_rlonv) * 180. / pi, "degrees" + ! Check that rlonm025 <= rlonv <= rlonp025 <= rlonu: DO i = 1, iim + 1 IF (rlonp025(i) < rlonv(i)) THEN print *, 'rlonp025(', i, ') = ', rlonp025(i)