--- trunk/dyn3d/fxhyp.f 2015/02/27 16:44:07 131 +++ trunk/Sources/dyn3d/fxhyp.f 2015/06/17 14:20:14 147 @@ -15,27 +15,25 @@ ! Il vaut mieux avoir : grossismx \times dzoom < pi ! Le premier point scalaire pour une grille regulière (grossismx = - ! 1., taux=0., clon=0.) est à - 180 degrés. + ! 1., taux = 0., clon = 0.) est à - 180 degrés. USE dimens_m, ONLY: iim + use dynetat0_m, only: clon, grossismx, dzoomx, taux use invert_zoom_x_m, only: invert_zoom_x, nmax use nr_util, only: pi, pi_d, twopi, twopi_d, arth use principal_cshift_m, only: principal_cshift - use serre, only: clon, grossismx, dzoomx, taux + use tanh_cautious_m, only: tanh_cautious REAL, intent(out):: xprimm025(:), rlonv(:), xprimv(:) ! (iim + 1) real, intent(out):: rlonu(:), xprimu(:), xprimp025(:) ! (iim + 1) ! Local: - real rlonm025(iim + 1), rlonp025(iim + 1) + real rlonm025(iim + 1), rlonp025(iim + 1), d_rlonv(iim) REAL dzoom, step - real d_rlonv(iim) - DOUBLE PRECISION xtild(0:2 * nmax) - DOUBLE PRECISION fhyp(nmax:2 * nmax), ffdx, beta, Xprimt(0:2 * nmax) - DOUBLE PRECISION Xf(0:2 * nmax), xxpr(2 * nmax) - DOUBLE PRECISION fa, fb + DOUBLE PRECISION, dimension(0:nmax):: xtild, fhyp, G, Xf, ffdx + DOUBLE PRECISION beta INTEGER i, is2 - DOUBLE PRECISION xmoy, fxm + DOUBLE PRECISION xmoy(nmax), fxm(nmax) !---------------------------------------------------------------------- @@ -53,117 +51,49 @@ rlonm025(:iim) = rlonv(:iim) - 0.25 * step rlonp025(:iim) = rlonv(:iim) + 0.25 * step rlonu(:iim) = rlonv(:iim) + 0.5 * step - else + else test_grossismx dzoom = dzoomx * twopi_d - xtild = arth(- pi_d, pi_d / nmax, 2 * nmax + 1) + xtild = arth(0d0, pi_d / nmax, nmax + 1) + forall (i = 1:nmax) xmoy(i) = 0.5d0 * (xtild(i-1) + xtild(i)) ! Compute fhyp: - DO i = nmax, 2 * nmax - fa = taux * (dzoom / 2. - xtild(i)) - fb = xtild(i) * (pi_d - xtild(i)) - - IF (200. * fb < - fa) THEN - fhyp(i) = - 1. - ELSE IF (200. * fb < fa) THEN - fhyp(i) = 1. - ELSE - IF (ABS(fa) < 1e-13 .AND. ABS(fb) < 1e-13) THEN - IF (200. * fb + fa < 1e-10) THEN - fhyp(i) = - 1. - ELSE IF (200. * fb - fa < 1e-10) THEN - fhyp(i) = 1. - END IF - ELSE - fhyp(i) = TANH(fa / fb) - END IF - END IF + fhyp(1:nmax - 1) = tanh_cautious(taux * (dzoom / 2d0 & + - xtild(1:nmax - 1)), xtild(1:nmax - 1) & + * (pi_d - xtild(1:nmax - 1))) + fhyp(0) = 1d0 + fhyp(nmax) = -1d0 - IF (xtild(i) == 0.) fhyp(i) = 1. - IF (xtild(i) == pi_d) fhyp(i) = -1. - END DO - - ! Calcul de beta + fxm = tanh_cautious(taux * (dzoom / 2d0 - xmoy), xmoy * (pi_d - xmoy)) - ffdx = 0. + ! Compute \int_0 ^{\tilde x} F: - DO i = nmax + 1, 2 * nmax - xmoy = 0.5 * (xtild(i-1) + xtild(i)) - fa = taux * (dzoom / 2. - xmoy) - fb = xmoy * (pi_d - xmoy) - - IF (200. * fb < - fa) THEN - fxm = - 1. - ELSE IF (200. * fb < fa) THEN - fxm = 1. - ELSE - IF (ABS(fa) < 1e-13 .AND. ABS(fb) < 1e-13) THEN - IF (200. * fb + fa < 1e-10) THEN - fxm = - 1. - ELSE IF (200. * fb - fa < 1e-10) THEN - fxm = 1. - END IF - ELSE - fxm = TANH(fa / fb) - END IF - END IF + ffdx(0) = 0d0 - IF (xmoy == 0.) fxm = 1. - IF (xmoy == pi_d) fxm = -1. - - ffdx = ffdx + fxm * (xtild(i) - xtild(i-1)) + DO i = 1, nmax + ffdx(i) = ffdx(i - 1) + fxm(i) * (xtild(i) - xtild(i-1)) END DO - print *, "ffdx = ", ffdx - beta = (grossismx * ffdx - pi_d) / (ffdx - pi_d) + print *, "ffdx(nmax) = ", ffdx(nmax) + beta = (pi_d - grossismx * ffdx(nmax)) / (pi_d - ffdx(nmax)) print *, "beta = ", beta - IF (2. * beta - grossismx <= 0.) THEN + IF (2d0 * beta - grossismx <= 0d0) THEN print *, 'Bad choice of grossismx, taux, dzoomx.' print *, 'Decrease dzoomx or grossismx.' STOP 1 END IF - ! calcul de Xprimt - Xprimt(nmax:2 * nmax) = beta + (grossismx - beta) * fhyp - xprimt(:nmax - 1) = xprimt(2 * nmax:nmax + 1:- 1) - - ! Calcul de Xf - - DO i = nmax + 1, 2 * nmax - xmoy = 0.5 * (xtild(i-1) + xtild(i)) - fa = taux * (dzoom / 2. - xmoy) - fb = xmoy * (pi_d - xmoy) - - IF (200. * fb < - fa) THEN - fxm = - 1. - ELSE IF (200. * fb < fa) THEN - fxm = 1. - ELSE - fxm = TANH(fa / fb) - END IF - - IF (xmoy == 0.) fxm = 1. - IF (xmoy == pi_d) fxm = -1. - xxpr(i) = beta + (grossismx - beta) * fxm - END DO - - xxpr(:nmax) = xxpr(2 * nmax:nmax + 1:- 1) - - Xf(0) = - pi_d - - DO i=1, 2 * nmax - 1 - Xf(i) = Xf(i-1) + xxpr(i) * (xtild(i) - xtild(i-1)) - END DO + G = beta + (grossismx - beta) * fhyp - Xf(2 * nmax) = pi_d + Xf(:nmax - 1) = beta * xtild(:nmax - 1) + (grossismx - beta) & + * ffdx(:nmax - 1) + Xf(nmax) = pi_d - call invert_zoom_x(xf, xtild, Xprimt, rlonm025(:iim), xprimm025(:iim), & + call invert_zoom_x(xf, xtild, G, rlonm025(:iim), xprimm025(:iim), & xuv = - 0.25d0) - call invert_zoom_x(xf, xtild, Xprimt, rlonv(:iim), xprimv(:iim), & - xuv = 0d0) - call invert_zoom_x(xf, xtild, Xprimt, rlonu(:iim), xprimu(:iim), & - xuv = 0.5d0) - call invert_zoom_x(xf, xtild, Xprimt, rlonp025(:iim), xprimp025(:iim), & + call invert_zoom_x(xf, xtild, G, rlonv(:iim), xprimv(:iim), xuv = 0d0) + call invert_zoom_x(xf, xtild, G, rlonu(:iim), xprimu(:iim), xuv = 0.5d0) + call invert_zoom_x(xf, xtild, G, rlonp025(:iim), xprimp025(:iim), & xuv = 0.25d0) end if test_grossismx