--- trunk/dyn3d/fxhyp.f 2014/03/05 14:57:53 82 +++ trunk/dyn3d/fxhyp.f 2015/01/13 14:56:15 120 @@ -4,431 +4,390 @@ contains - SUBROUTINE fxhyp(xzoomdeg, grossism, dzooma, tau, rlonm025, xprimm025, & - rlonv, xprimv, rlonu, xprimu, rlonp025, xprimp025, champmin, champmax) + SUBROUTINE fxhyp(xprimm025, rlonv, xprimv, rlonu, xprimu, xprimp025) - ! From LMDZ4/libf/dyn3d/fxhyp.F, v 1.2 2005/06/03 09:11:32 fairhead - - ! Auteur : P. Le Van + ! From LMDZ4/libf/dyn3d/fxhyp.F, version 1.2, 2005/06/03 09:11:32 + ! Author: P. Le Van, from formulas by R. Sadourny ! Calcule les longitudes et dérivées dans la grille du GCM pour - ! une fonction f(x) à tangente hyperbolique. - - ! On doit avoir grossism \times dzoom < pi (radians), en longitude. - - USE dimens_m, ONLY: iim - USE paramet_m, ONLY: iip1 - - INTEGER nmax, nmax2 - PARAMETER (nmax = 30000, nmax2 = 2*nmax) - - LOGICAL scal180 - PARAMETER (scal180 = .TRUE.) - - ! scal180 = .TRUE. si on veut avoir le premier point scalaire pour - ! une grille reguliere (grossism = 1., tau=0., clon=0.) a -180. degres. - ! sinon scal180 = .FALSE. + ! une fonction f(x) à dérivée tangente hyperbolique. - ! ...... arguments d'entree ....... + ! On doit avoir grossismx \times dzoomx < pi (radians) - REAL xzoomdeg, dzooma, tau, grossism - ! grossism etant le grossissement (= 2 si 2 fois, = 3 si 3 fois, etc.) - ! dzooma etant la distance totale de la zone du zoom - ! tau la raideur de la transition de l'interieur a l'exterieur du zoom + ! Le premier point scalaire pour une grille regulière (grossismx = + ! 1., taux=0., clon=0.) est à - 180 degrés. - ! ...... arguments de sortie ...... + use coefpoly_m, only: coefpoly + USE dimens_m, ONLY: iim + use nr_util, only: pi_d, twopi_d, arth + use serre, only: clon, grossismx, dzoomx, taux - REAL rlonm025(iip1), xprimm025(iip1), rlonv(iip1), xprimv(iip1), & - rlonu(iip1), xprimu(iip1), rlonp025(iip1), xprimp025(iip1) + REAL, intent(out):: xprimm025(:), rlonv(:), xprimv(:) ! (iim + 1) + real, intent(out):: rlonu(:), xprimu(:), xprimp025(:) ! (iim + 1) - ! .... variables locales .... + ! Local: + DOUBLE PRECISION champmin, champmax + real rlonm025(iim + 1), rlonp025(iim + 1) + INTEGER, PARAMETER:: nmax = 30000, nmax2 = 2 * nmax REAL dzoom - DOUBLE PRECISION xlon(iip1), xprimm(iip1), xuv + DOUBLE PRECISION xlon(iim + 1), xprimm(iim + 1), xuv DOUBLE PRECISION xtild(0:nmax2) - DOUBLE PRECISION fhyp(0:nmax2), ffdx, beta, Xprimt(0:nmax2) - DOUBLE PRECISION Xf(0:nmax2), xxpr(0:nmax2) - DOUBLE PRECISION xvrai(iip1), xxprim(iip1) - DOUBLE PRECISION pi, depi, epsilon, xzoom, fa, fb + DOUBLE PRECISION fhyp(nmax:nmax2), ffdx, beta, Xprimt(0:nmax2) + DOUBLE PRECISION Xf(0:nmax2), xxpr(nmax2) + DOUBLE PRECISION xvrai(iim + 1), xxprim(iim + 1) + DOUBLE PRECISION my_eps, xzoom, fa, fb DOUBLE PRECISION Xf1, Xfi, a0, a1, a2, a3, xi2 INTEGER i, it, ik, iter, ii, idif, ii1, ii2 - DOUBLE PRECISION xi, xo1, xmoy, xlon2, fxm, Xprimin - DOUBLE PRECISION champmin, champmax, decalx + DOUBLE PRECISION xi, xo1, xmoy, fxm, Xprimin + DOUBLE PRECISION decalx INTEGER is2 - SAVE is2 - - DOUBLE PRECISION heavyside - pi = 2. * ASIN(1.) - depi = 2. * pi - epsilon = 1.e-3 - xzoom = xzoomdeg * pi/180. + !---------------------------------------------------------------------- - decalx = .75 - IF(grossism.EQ.1..AND.scal180) THEN - decalx = 1. - ENDIF + print *, "Call sequence information: fxhyp" - WRITE(6, *) 'FXHYP scal180, decalx', scal180, decalx + my_eps = 1e-3 + xzoom = clon * pi_d / 180. - IF(dzooma.LT.1.) THEN - dzoom = dzooma * depi - ELSEIF(dzooma.LT. 25.) THEN - WRITE(6, *) ' Le param. dzoomx pour fxhyp est trop petit ! L augmenter et relancer ! ' + IF (grossismx == 1.) THEN + decalx = 1. + else + decalx = 0.75 + END IF + + IF (dzoomx < 1.) THEN + dzoom = dzoomx * twopi_d + ELSE IF (dzoomx < 25.) THEN + print *, "dzoomx pour fxhyp est trop petit." STOP 1 ELSE - dzoom = dzooma * pi/180. - ENDIF + dzoom = dzoomx * pi_d / 180. + END IF - WRITE(6, *) ' xzoom(rad.), grossism, tau, dzoom (radians)' - WRITE(6, 24) xzoom, grossism, tau, dzoom + print *, 'dzoom (rad):', dzoom - DO i = 0, nmax2 - xtild(i) = - pi + FLOAT(i) * depi /nmax2 - ENDDO + xtild = arth(- pi_d, twopi_d / nmax2, nmax2 + 1) DO i = nmax, nmax2 + fa = taux * (dzoom / 2. - xtild(i)) + fb = xtild(i) * (pi_d - xtild(i)) - fa = tau* (dzoom/2. - xtild(i)) - fb = xtild(i) * (pi - xtild(i)) - - IF(200.* fb .LT. - fa) THEN - fhyp (i) = - 1. - ELSEIF(200. * fb .LT. fa) THEN - fhyp (i) = 1. + IF (200. * fb < - fa) THEN + fhyp(i) = - 1. + ELSE IF (200. * fb < fa) THEN + fhyp(i) = 1. ELSE - IF(ABS(fa).LT.1.e-13.AND.ABS(fb).LT.1.e-13) THEN - IF(200.*fb + fa.LT.1.e-10) THEN - fhyp (i) = - 1. - ELSEIF(200.*fb - fa.LT.1.e-10) THEN - fhyp (i) = 1. - ENDIF + IF (ABS(fa) < 1e-13.AND.ABS(fb) < 1e-13) THEN + IF (200. * fb + fa < 1e-10) THEN + fhyp(i) = - 1. + ELSE IF (200. * fb - fa < 1e-10) THEN + fhyp(i) = 1. + END IF ELSE - fhyp (i) = TANH (fa/fb) - ENDIF - ENDIF - IF (xtild(i).EQ. 0.) fhyp(i) = 1. - IF (xtild(i).EQ. pi) fhyp(i) = -1. - - ENDDO + fhyp(i) = TANH(fa / fb) + END IF + END IF + + IF (xtild(i) == 0.) fhyp(i) = 1. + IF (xtild(i) == pi_d) fhyp(i) = -1. + END DO - !c .... Calcul de beta .... + ! Calcul de beta ffdx = 0. - DO i = nmax +1, nmax2 - + DO i = nmax + 1, nmax2 xmoy = 0.5 * (xtild(i-1) + xtild(i)) - fa = tau* (dzoom/2. - xmoy) - fb = xmoy * (pi - xmoy) + fa = taux * (dzoom / 2. - xmoy) + fb = xmoy * (pi_d - xmoy) - IF(200.* fb .LT. - fa) THEN + IF (200. * fb < - fa) THEN fxm = - 1. - ELSEIF(200. * fb .LT. fa) THEN + ELSE IF (200. * fb < fa) THEN fxm = 1. ELSE - IF(ABS(fa).LT.1.e-13.AND.ABS(fb).LT.1.e-13) THEN - IF(200.*fb + fa.LT.1.e-10) THEN + IF (ABS(fa) < 1e-13.AND.ABS(fb) < 1e-13) THEN + IF (200. * fb + fa < 1e-10) THEN fxm = - 1. - ELSEIF(200.*fb - fa.LT.1.e-10) THEN + ELSE IF (200. * fb - fa < 1e-10) THEN fxm = 1. - ENDIF + END IF ELSE - fxm = TANH (fa/fb) - ENDIF - ENDIF + fxm = TANH(fa / fb) + END IF + END IF - IF (xmoy.EQ. 0.) fxm = 1. - IF (xmoy.EQ. pi) fxm = -1. + IF (xmoy == 0.) fxm = 1. + IF (xmoy == pi_d) fxm = -1. ffdx = ffdx + fxm * (xtild(i) - xtild(i-1)) + END DO - ENDDO - - beta = (grossism * ffdx - pi) / (ffdx - pi) + beta = (grossismx * ffdx - pi_d) / (ffdx - pi_d) - IF(2.*beta - grossism.LE. 0.) THEN - WRITE(6, *) ' ** Attention ! La valeur beta calculee dans la routine fxhyp est mauvaise ! ' - WRITE(6, *)'Modifier les valeurs de grossismx, tau ou dzoomx ', & - ' et relancer ! *** ' + IF (2. * beta - grossismx <= 0.) THEN + print *, 'Attention ! La valeur beta calculée dans fxhyp est mauvaise.' + print *, 'Modifier les valeurs de grossismx, taux ou dzoomx et relancer.' STOP 1 - ENDIF - - ! ..... calcul de Xprimt ..... + END IF + ! calcul de Xprimt DO i = nmax, nmax2 - Xprimt(i) = beta + (grossism - beta) * fhyp(i) - ENDDO + Xprimt(i) = beta + (grossismx - beta) * fhyp(i) + END DO - DO i = nmax+1, nmax2 + DO i = nmax + 1, nmax2 Xprimt(nmax2 - i) = Xprimt(i) - ENDDO + END DO + ! Calcul de Xf - ! ..... Calcul de Xf ........ - - Xf(0) = - pi - - DO i = nmax +1, nmax2 + Xf(0) = - pi_d + DO i = nmax + 1, nmax2 xmoy = 0.5 * (xtild(i-1) + xtild(i)) - fa = tau* (dzoom/2. - xmoy) - fb = xmoy * (pi - xmoy) + fa = taux * (dzoom / 2. - xmoy) + fb = xmoy * (pi_d - xmoy) - IF(200.* fb .LT. - fa) THEN + IF (200. * fb < - fa) THEN fxm = - 1. - ELSEIF(200. * fb .LT. fa) THEN + ELSE IF (200. * fb < fa) THEN fxm = 1. ELSE - fxm = TANH (fa/fb) - ENDIF + fxm = TANH(fa / fb) + END IF + + IF (xmoy == 0.) fxm = 1. + IF (xmoy == pi_d) fxm = -1. + xxpr(i) = beta + (grossismx - beta) * fxm + END DO - IF (xmoy.EQ. 0.) fxm = 1. - IF (xmoy.EQ. pi) fxm = -1. - xxpr(i) = beta + (grossism - beta) * fxm - - ENDDO - - DO i = nmax+1, nmax2 - xxpr(nmax2-i+1) = xxpr(i) - ENDDO + xxpr(:nmax) = xxpr(nmax2:nmax + 1:- 1) DO i=1, nmax2 Xf(i) = Xf(i-1) + xxpr(i) * (xtild(i) - xtild(i-1)) - ENDDO + END DO - ! ***************************************************************** + is2 = 0 + loop_ik: DO ik = 1, 4 + ! xuv = 0. si calcul aux points scalaires + ! xuv = 0.5 si calcul aux points U - ! ..... xuv = 0. si calcul aux pts scalaires ........ - ! ..... xuv = 0.5 si calcul aux pts U ........ - - WRITE(6, 18) - - DO ik = 1, 4 - - IF(ik.EQ.1) THEN + IF (ik == 1) THEN xuv = -0.25 - ELSE IF (ik.EQ.2) THEN + ELSE IF (ik == 2) THEN xuv = 0. - ELSE IF (ik.EQ.3) THEN + ELSE IF (ik == 3) THEN xuv = 0.50 - ELSE IF (ik.EQ.4) THEN + ELSE IF (ik == 4) THEN xuv = 0.25 - ENDIF + END IF xo1 = 0. - ii1=1 - ii2=iim - IF(ik.EQ.1.and.grossism.EQ.1.) THEN + IF (ik == 1 .and. grossismx == 1.) THEN ii1 = 2 - ii2 = iim+1 - ENDIF - DO i = ii1, ii2 - - xlon2 = - pi + (FLOAT(i) + xuv - decalx) * depi / FLOAT(iim) - - Xfi = xlon2 + ii2 = iim + 1 + else + ii1=1 + ii2=iim + END IF - DO it = nmax2, 0, -1 - IF(Xfi.GE.Xf(it)) GO TO 350 - end DO - - it = 0 + DO i = ii1, ii2 + Xfi = - pi_d + (REAL(i) + xuv - decalx) * twopi_d / REAL(iim) -350 CONTINUE + it = nmax2 + do while (xfi < xf(it) .and. it >= 1) + it = it - 1 + end do - ! ...... Calcul de Xf(xi) ...... + ! Calcul de Xf(xi) xi = xtild(it) - IF(it.EQ.nmax2) THEN + IF (it == nmax2) THEN it = nmax2 -1 - Xf(it+1) = pi - ENDIF - ! ..................................................................... - - ! Appel de la routine qui calcule les coefficients a0, a1, a2, a3 d'un - ! polynome de degre 3 qui passe par les points (Xf(it), xtild(it)) - ! et (Xf(it+1), xtild(it+1)) + Xf(it + 1) = pi_d + END IF - CALL coefpoly (Xf(it), Xf(it+1), Xprimt(it), Xprimt(it+1), & - xtild(it), xtild(it+1), a0, a1, a2, a3) + ! Appel de la routine qui calcule les coefficients a0, a1, + ! a2, a3 d'un polynome de degre 3 qui passe par les points + ! (Xf(it), xtild(it)) et (Xf(it + 1), xtild(it + 1)) + + CALL coefpoly(Xf(it), Xf(it + 1), Xprimt(it), Xprimt(it + 1), & + xtild(it), xtild(it + 1), a0, a1, a2, a3) Xf1 = Xf(it) - Xprimin = a1 + 2.* a2 * xi + 3.*a3 * xi *xi + Xprimin = a1 + 2. * a2 * xi + 3. * a3 * xi * xi - DO iter = 1, 300 - xi = xi - (Xf1 - Xfi)/ Xprimin + iter = 1 - IF(ABS(xi-xo1).LE.epsilon) GO TO 550 + do + xi = xi - (Xf1 - Xfi) / Xprimin + IF (ABS(xi - xo1) <= my_eps .or. iter == 300) exit xo1 = xi xi2 = xi * xi Xf1 = a0 + a1 * xi + a2 * xi2 + a3 * xi2 * xi - Xprimin = a1 + 2.* a2 * xi + 3.* a3 * xi2 + Xprimin = a1 + 2. * a2 * xi + 3. * a3 * xi2 end DO - WRITE(6, *) ' Pas de solution ***** ', i, xlon2, iter - STOP 6 -550 CONTINUE - xxprim(i) = depi/ (FLOAT(iim) * Xprimin) - xvrai(i) = xi + xzoom + if (ABS(xi - xo1) > my_eps) then + ! iter == 300 + print *, 'Pas de solution.' + print *, i, xfi + STOP 1 + end if + xxprim(i) = twopi_d / (REAL(iim) * Xprimin) + xvrai(i) = xi + xzoom end DO - IF(ik.EQ.1.and.grossism.EQ.1.) THEN - xvrai(1) = xvrai(iip1)-depi - xxprim(1) = xxprim(iip1) - ENDIF + IF (ik == 1 .and. grossismx == 1.) THEN + xvrai(1) = xvrai(iim + 1)-twopi_d + xxprim(1) = xxprim(iim + 1) + END IF + DO i = 1, iim xlon(i) = xvrai(i) xprimm(i) = xxprim(i) - ENDDO - DO i = 1, iim -1 - IF(xvrai(i+1).LT. xvrai(i)) THEN - WRITE(6, *) ' PBS. avec rlonu(', i+1, ') plus petit que rlonu(', i, & - ')' - STOP 7 - ENDIF - ENDDO + END DO - ! ... Reorganisation des longitudes pour les avoir entre - pi et pi .. - ! ........................................................................ + DO i = 1, iim -1 + IF (xvrai(i + 1) < xvrai(i)) THEN + print *, 'rlonu(', i + 1, ') < rlonu(', i, ')' + STOP 1 + END IF + END DO + + IF (.not. (MINval(xvrai(:iim)) >= - pi_d - 0.1 & + .and. MAXval(xvrai(:iim)) <= pi_d + 0.1)) THEN + print *, & + 'Réorganisation des longitudes pour les avoir entre - pi et pi' + + IF (xzoom <= 0.) THEN + IF (ik == 1) THEN + i = 1 + + do while (xvrai(i) < - pi_d .and. i < iim) + i = i + 1 + end do + + if (xvrai(i) < - pi_d) then + print *, 'Xvrai plus petit que - pi !' + STOP 1 + end if - champmin = 1.e12 - champmax = -1.e12 - DO i = 1, iim - champmin = MIN(champmin, xvrai(i)) - champmax = MAX(champmax, xvrai(i)) - ENDDO - - IF(.not. (champmin .GE.-pi-0.10.and.champmax.LE.pi+0.10)) THEN - WRITE(6, *) 'Reorganisation des longitudes pour avoir entre - pi', & - ' et pi ' - - IF(xzoom.LE.0.) THEN - IF(ik.EQ. 1) THEN - DO i = 1, iim - IF(xvrai(i).GE. - pi) GO TO 80 - ENDDO - WRITE(6, *) ' PBS. 1 ! Xvrai plus petit que - pi ! ' - STOP 8 -80 CONTINUE is2 = i - ENDIF + END IF - IF(is2.NE. 1) THEN + IF (is2 /= 1) THEN DO ii = is2, iim - xlon (ii-is2+1) = xvrai(ii) - xprimm(ii-is2+1) = xxprim(ii) - ENDDO + xlon(ii-is2 + 1) = xvrai(ii) + xprimm(ii-is2 + 1) = xxprim(ii) + END DO DO ii = 1, is2 -1 - xlon (ii+iim-is2+1) = xvrai(ii) + depi - xprimm(ii+iim-is2+1) = xxprim(ii) - ENDDO - ENDIF + xlon(ii + iim-is2 + 1) = xvrai(ii) + twopi_d + xprimm(ii + iim-is2 + 1) = xxprim(ii) + END DO + END IF ELSE - IF(ik.EQ.1) THEN - DO i = iim, 1, -1 - IF(xvrai(i).LE. pi) GO TO 90 - ENDDO - WRITE(6, *) ' PBS. 2 ! Xvrai plus grand que pi ! ' - STOP 9 -90 CONTINUE + IF (ik == 1) THEN + i = iim + + do while (xvrai(i) > pi_d .and. i > 1) + i = i - 1 + end do + + if (xvrai(i) > pi_d) then + print *, 'Xvrai plus grand que pi !' + STOP 1 + end if + is2 = i - ENDIF + END IF + idif = iim -is2 + DO ii = 1, is2 - xlon (ii+idif) = xvrai(ii) - xprimm(ii+idif) = xxprim(ii) - ENDDO + xlon(ii + idif) = xvrai(ii) + xprimm(ii + idif) = xxprim(ii) + END DO + DO ii = 1, idif - xlon (ii) = xvrai (ii+is2) - depi - xprimm(ii) = xxprim(ii+is2) - ENDDO - ENDIF - ENDIF - - ! ......... Fin de la reorganisation ............................ - - xlon (iip1) = xlon(1) + depi - xprimm(iip1) = xprimm (1) - - DO i = 1, iim+1 - xvrai(i) = xlon(i)*180./pi - ENDDO - - IF(ik.EQ.1) THEN - ! WRITE(6, *) ' XLON aux pts. V-0.25 apres (en deg.) ' - ! WRITE(6, 18) - ! WRITE(6, 68) xvrai - ! WRITE(6, *) ' XPRIM k ', ik - ! WRITE(6, 566) xprimm + xlon(ii) = xvrai(ii + is2) - twopi_d + xprimm(ii) = xxprim(ii + is2) + END DO + END IF + END IF + + xlon(iim + 1) = xlon(1) + twopi_d + xprimm(iim + 1) = xprimm(1) + + DO i = 1, iim + 1 + xvrai(i) = xlon(i) * 180. / pi_d + END DO - DO i = 1, iim +1 + IF (ik == 1) THEN + DO i = 1, iim + 1 rlonm025(i) = xlon(i) xprimm025(i) = xprimm(i) - ENDDO - ELSE IF(ik.EQ.2) THEN - ! WRITE(6, 18) - ! WRITE(6, *) ' XLON aux pts. V apres (en deg.) ' - ! WRITE(6, 68) xvrai - ! WRITE(6, *) ' XPRIM k ', ik - ! WRITE(6, 566) xprimm - - DO i = 1, iim + 1 - rlonv(i) = xlon(i) - xprimv(i) = xprimm(i) - ENDDO - - ELSE IF(ik.EQ.3) THEN - ! WRITE(6, 18) - ! WRITE(6, *) ' XLON aux pts. U apres (en deg.) ' - ! WRITE(6, 68) xvrai - ! WRITE(6, *) ' XPRIM ik ', ik - ! WRITE(6, 566) xprimm - + END DO + ELSE IF (ik == 2) THEN + rlonv = xlon + xprimv = xprimm + ELSE IF (ik == 3) THEN DO i = 1, iim + 1 rlonu(i) = xlon(i) xprimu(i) = xprimm(i) - ENDDO - - ELSE IF(ik.EQ.4) THEN - ! WRITE(6, 18) - ! WRITE(6, *) ' XLON aux pts. V+0.25 apres (en deg.) ' - ! WRITE(6, 68) xvrai - ! WRITE(6, *) ' XPRIM ik ', ik - ! WRITE(6, 566) xprimm - - DO i = 1, iim + 1 - rlonp025(i) = xlon(i) - xprimp025(i) = xprimm(i) - ENDDO - - ENDIF - - end DO + END DO + ELSE IF (ik == 4) THEN + rlonp025 = xlon + xprimp025 = xprimm + END IF + end DO loop_ik - WRITE(6, 18) + print * DO i = 1, iim - xlon(i) = rlonv(i+1) - rlonv(i) - ENDDO - champmin = 1.e12 - champmax = -1.e12 + xlon(i) = rlonv(i + 1) - rlonv(i) + END DO + champmin = 1e12 + champmax = -1e12 DO i = 1, iim champmin = MIN(champmin, xlon(i)) champmax = MAX(champmax, xlon(i)) - ENDDO - champmin = champmin * 180./pi - champmax = champmax * 180./pi - -18 FORMAT(/) -24 FORMAT(2x, 'Parametres xzoom, gross, tau, dzoom pour fxhyp ', 4f8.3) -68 FORMAT(1x, 7f9.2) -566 FORMAT(1x, 7f9.4) + END DO + champmin = champmin * 180. / pi_d + champmax = champmax * 180. / pi_d + + DO i = 1, iim + 1 + IF (rlonp025(i) < rlonv(i)) THEN + print *, ' Attention ! rlonp025 < rlonv', i + STOP 1 + END IF + + IF (rlonv(i) < rlonm025(i)) THEN + print *, ' Attention ! rlonm025 > rlonv', i + STOP 1 + END IF + + IF (rlonp025(i) > rlonu(i)) THEN + print *, 'rlonp025(', i, ') = ', rlonp025(i) + print *, "> rlonu(", i, ") = ", rlonu(i) + STOP 1 + END IF + END DO + + print *, ' Longitudes ' + print 3, champmin, champmax + +3 Format(1x, ' Au centre du zoom, la longueur de la maille est', & + ' d environ ', f0.2, ' degres ', /, & + ' alors que la maille en dehors de la zone du zoom est ', & + "d'environ ", f0.2, ' degres ') END SUBROUTINE fxhyp