--- trunk/dyn3d/fxhyp.f 2015/02/05 15:19:37 124 +++ trunk/Sources/dyn3d/fxhyp.f 2015/05/26 17:46:03 139 @@ -18,148 +18,154 @@ ! 1., taux=0., clon=0.) est à - 180 degrés. USE dimens_m, ONLY: iim - use fxhyp_loop_ik_m, only: fxhyp_loop_ik, nmax - use nr_util, only: pi, pi_d, twopi_d, arth + use dynetat0_m, only: clon, grossismx, dzoomx, taux + use invert_zoom_x_m, only: invert_zoom_x, nmax + use nr_util, only: pi, pi_d, twopi, twopi_d, arth use principal_cshift_m, only: principal_cshift - use serre, only: clon, grossismx, dzoomx, taux REAL, intent(out):: xprimm025(:), rlonv(:), xprimv(:) ! (iim + 1) real, intent(out):: rlonu(:), xprimu(:), xprimp025(:) ! (iim + 1) ! Local: real rlonm025(iim + 1), rlonp025(iim + 1) - REAL dzoom + REAL dzoom, step real d_rlonv(iim) DOUBLE PRECISION xtild(0:2 * nmax) DOUBLE PRECISION fhyp(nmax:2 * nmax), ffdx, beta, Xprimt(0:2 * nmax) DOUBLE PRECISION Xf(0:2 * nmax), xxpr(2 * nmax) - DOUBLE PRECISION xzoom, fa, fb + DOUBLE PRECISION fa, fb INTEGER i, is2 DOUBLE PRECISION xmoy, fxm - DOUBLE PRECISION decalx !---------------------------------------------------------------------- print *, "Call sequence information: fxhyp" - dzoom = dzoomx * twopi_d - xtild = arth(- pi_d, pi_d / nmax, 2 * nmax + 1) + test_grossismx: if (grossismx == 1.) then + step = twopi / iim - ! Compute fhyp: - DO i = nmax, 2 * nmax - fa = taux * (dzoom / 2. - xtild(i)) - fb = xtild(i) * (pi_d - xtild(i)) - - IF (200. * fb < - fa) THEN - fhyp(i) = - 1. - ELSE IF (200. * fb < fa) THEN - fhyp(i) = 1. - ELSE - IF (ABS(fa) < 1e-13 .AND. ABS(fb) < 1e-13) THEN - IF (200. * fb + fa < 1e-10) THEN - fhyp(i) = - 1. - ELSE IF (200. * fb - fa < 1e-10) THEN - fhyp(i) = 1. - END IF + xprimm025(:iim) = step + xprimp025(:iim) = step + xprimv(:iim) = step + xprimu(:iim) = step + + rlonv(:iim) = arth(- pi + clon, step, iim) + rlonm025(:iim) = rlonv(:iim) - 0.25 * step + rlonp025(:iim) = rlonv(:iim) + 0.25 * step + rlonu(:iim) = rlonv(:iim) + 0.5 * step + else test_grossismx + dzoom = dzoomx * twopi_d + xtild = arth(- pi_d, pi_d / nmax, 2 * nmax + 1) + + ! Compute fhyp: + DO i = nmax, 2 * nmax + fa = taux * (dzoom / 2. - xtild(i)) + fb = xtild(i) * (pi_d - xtild(i)) + + IF (200. * fb < - fa) THEN + fhyp(i) = - 1. + ELSE IF (200. * fb < fa) THEN + fhyp(i) = 1. ELSE - fhyp(i) = TANH(fa / fb) + IF (ABS(fa) < 1e-13 .AND. ABS(fb) < 1e-13) THEN + IF (200. * fb + fa < 1e-10) THEN + fhyp(i) = - 1. + ELSE IF (200. * fb - fa < 1e-10) THEN + fhyp(i) = 1. + END IF + ELSE + fhyp(i) = TANH(fa / fb) + END IF END IF - END IF - IF (xtild(i) == 0.) fhyp(i) = 1. - IF (xtild(i) == pi_d) fhyp(i) = -1. - END DO - - ! Calcul de beta - - ffdx = 0. - - DO i = nmax + 1, 2 * nmax - xmoy = 0.5 * (xtild(i-1) + xtild(i)) - fa = taux * (dzoom / 2. - xmoy) - fb = xmoy * (pi_d - xmoy) - - IF (200. * fb < - fa) THEN - fxm = - 1. - ELSE IF (200. * fb < fa) THEN - fxm = 1. - ELSE - IF (ABS(fa) < 1e-13 .AND. ABS(fb) < 1e-13) THEN - IF (200. * fb + fa < 1e-10) THEN - fxm = - 1. - ELSE IF (200. * fb - fa < 1e-10) THEN - fxm = 1. - END IF + IF (xtild(i) == 0.) fhyp(i) = 1. + IF (xtild(i) == pi_d) fhyp(i) = -1. + END DO + + ! Calcul de beta + + ffdx = 0. + + DO i = nmax + 1, 2 * nmax + xmoy = 0.5 * (xtild(i-1) + xtild(i)) + fa = taux * (dzoom / 2. - xmoy) + fb = xmoy * (pi_d - xmoy) + + IF (200. * fb < - fa) THEN + fxm = - 1. + ELSE IF (200. * fb < fa) THEN + fxm = 1. ELSE - fxm = TANH(fa / fb) + IF (ABS(fa) < 1e-13 .AND. ABS(fb) < 1e-13) THEN + IF (200. * fb + fa < 1e-10) THEN + fxm = - 1. + ELSE IF (200. * fb - fa < 1e-10) THEN + fxm = 1. + END IF + ELSE + fxm = TANH(fa / fb) + END IF END IF - END IF - IF (xmoy == 0.) fxm = 1. - IF (xmoy == pi_d) fxm = -1. + IF (xmoy == 0.) fxm = 1. + IF (xmoy == pi_d) fxm = -1. - ffdx = ffdx + fxm * (xtild(i) - xtild(i-1)) - END DO - - print *, "ffdx = ", ffdx - beta = (grossismx * ffdx - pi_d) / (ffdx - pi_d) - print *, "beta = ", beta - - IF (2. * beta - grossismx <= 0.) THEN - print *, 'Bad choice of grossismx, taux, dzoomx.' - print *, 'Decrease dzoomx or grossismx.' - STOP 1 - END IF + ffdx = ffdx + fxm * (xtild(i) - xtild(i-1)) + END DO - ! calcul de Xprimt - Xprimt(nmax:2 * nmax) = beta + (grossismx - beta) * fhyp - xprimt(:nmax - 1) = xprimt(2 * nmax:nmax + 1:- 1) - - ! Calcul de Xf - - DO i = nmax + 1, 2 * nmax - xmoy = 0.5 * (xtild(i-1) + xtild(i)) - fa = taux * (dzoom / 2. - xmoy) - fb = xmoy * (pi_d - xmoy) - - IF (200. * fb < - fa) THEN - fxm = - 1. - ELSE IF (200. * fb < fa) THEN - fxm = 1. - ELSE - fxm = TANH(fa / fb) + print *, "ffdx = ", ffdx + beta = (grossismx * ffdx - pi_d) / (ffdx - pi_d) + print *, "beta = ", beta + + IF (2. * beta - grossismx <= 0.) THEN + print *, 'Bad choice of grossismx, taux, dzoomx.' + print *, 'Decrease dzoomx or grossismx.' + STOP 1 END IF - IF (xmoy == 0.) fxm = 1. - IF (xmoy == pi_d) fxm = -1. - xxpr(i) = beta + (grossismx - beta) * fxm - END DO - - xxpr(:nmax) = xxpr(2 * nmax:nmax + 1:- 1) - - Xf(0) = - pi_d - - DO i=1, 2 * nmax - 1 - Xf(i) = Xf(i-1) + xxpr(i) * (xtild(i) - xtild(i-1)) - END DO - - Xf(2 * nmax) = pi_d - - IF (grossismx == 1.) THEN - decalx = 1d0 - else - decalx = 0.75d0 - END IF + ! calcul de Xprimt + Xprimt(nmax:2 * nmax) = beta + (grossismx - beta) * fhyp + xprimt(:nmax - 1) = xprimt(2 * nmax:nmax + 1:- 1) + + ! Calcul de Xf + + DO i = nmax + 1, 2 * nmax + xmoy = 0.5 * (xtild(i-1) + xtild(i)) + fa = taux * (dzoom / 2. - xmoy) + fb = xmoy * (pi_d - xmoy) + + IF (200. * fb < - fa) THEN + fxm = - 1. + ELSE IF (200. * fb < fa) THEN + fxm = 1. + ELSE + fxm = TANH(fa / fb) + END IF - xzoom = clon * pi_d / 180d0 - call fxhyp_loop_ik(1, decalx, xf, xtild, Xprimt, xzoom, rlonm025(:iim), & - xprimm025(:iim), xuv = - 0.25d0) - call fxhyp_loop_ik(2, decalx, xf, xtild, Xprimt, xzoom, rlonv(:iim), & - xprimv(:iim), xuv = 0d0) - call fxhyp_loop_ik(3, decalx, xf, xtild, Xprimt, xzoom, rlonu(:iim), & - xprimu(:iim), xuv = 0.5d0) - call fxhyp_loop_ik(4, decalx, xf, xtild, Xprimt, xzoom, rlonp025(:iim), & - xprimp025(:iim), xuv = 0.25d0) + IF (xmoy == 0.) fxm = 1. + IF (xmoy == pi_d) fxm = -1. + xxpr(i) = beta + (grossismx - beta) * fxm + END DO + + xxpr(:nmax) = xxpr(2 * nmax:nmax + 1:- 1) + + Xf(0) = - pi_d + + DO i=1, 2 * nmax - 1 + Xf(i) = Xf(i-1) + xxpr(i) * (xtild(i) - xtild(i-1)) + END DO + + Xf(2 * nmax) = pi_d + + call invert_zoom_x(xf, xtild, Xprimt, rlonm025(:iim), xprimm025(:iim), & + xuv = - 0.25d0) + call invert_zoom_x(xf, xtild, Xprimt, rlonv(:iim), xprimv(:iim), & + xuv = 0d0) + call invert_zoom_x(xf, xtild, Xprimt, rlonu(:iim), xprimu(:iim), & + xuv = 0.5d0) + call invert_zoom_x(xf, xtild, Xprimt, rlonp025(:iim), xprimp025(:iim), & + xuv = 0.25d0) + end if test_grossismx is2 = 0 @@ -199,6 +205,7 @@ print *, "Minimum longitude step:", MINval(d_rlonv) * 180. / pi, "degrees" print *, "Maximum longitude step:", MAXval(d_rlonv) * 180. / pi, "degrees" + ! Check that rlonm025 <= rlonv <= rlonp025 <= rlonu: DO i = 1, iim + 1 IF (rlonp025(i) < rlonv(i)) THEN print *, 'rlonp025(', i, ') = ', rlonp025(i)