--- trunk/dyn3d/fxhyp.f 2015/01/28 16:10:02 121 +++ trunk/Sources/dyn3d/fxhyp.f 2015/07/16 17:39:10 156 @@ -10,164 +10,145 @@ ! Author: P. Le Van, from formulas by R. Sadourny ! Calcule les longitudes et dérivées dans la grille du GCM pour - ! une fonction f(x) à dérivée tangente hyperbolique. + ! une fonction x_f(\tilde x) à dérivée tangente hyperbolique. - ! Il vaut mieux avoir : grossismx \times dzoom < pi + ! Il vaut mieux avoir : grossismx \times delta < pi ! Le premier point scalaire pour une grille regulière (grossismx = - ! 1., taux=0., clon=0.) est à - 180 degrés. + ! 1) avec clon = 0 est à - 180 degrés. USE dimens_m, ONLY: iim - use fxhyp_loop_ik_m, only: fxhyp_loop_ik, nmax - use nr_util, only: pi_d, twopi_d, arth - use serre, only: clon, grossismx, dzoomx, taux + use dynetat0_m, only: clon, grossismx, dzoomx, taux + use invert_zoom_x_m, only: invert_zoom_x, nmax + use nr_util, only: pi, pi_d, twopi, twopi_d, arth + use principal_cshift_m, only: principal_cshift + use tanh_cautious_m, only: tanh_cautious - REAL, intent(out):: xprimm025(:), rlonv(:), xprimv(:) ! (iim + 1) - real, intent(out):: rlonu(:), xprimu(:), xprimp025(:) ! (iim + 1) + REAL, intent(out):: xprimm025(:) ! (iim + 1) - ! Local: + REAL, intent(out):: rlonv(:) ! (iim + 1) + ! longitudes of points of the "scalar" and "v" grid, in rad + + REAL, intent(out):: xprimv(:) ! (iim + 1) + ! 2 pi / iim * (derivative of the longitudinal zoom function)(rlonv) + + real, intent(out):: rlonu(:) ! (iim + 1) + ! longitudes of points of the "u" grid, in rad + + real, intent(out):: xprimu(:) ! (iim + 1) + ! 2 pi / iim * (derivative of the longitudinal zoom function)(rlonu) - real rlonm025(iim + 1), rlonp025(iim + 1) - REAL dzoom - DOUBLE PRECISION xlon(iim) - DOUBLE PRECISION xtild(0:2 * nmax) - DOUBLE PRECISION fhyp(nmax:2 * nmax), ffdx, beta, Xprimt(0:2 * nmax) - DOUBLE PRECISION Xf(0:2 * nmax), xxpr(2 * nmax) - DOUBLE PRECISION xzoom, fa, fb - INTEGER i - DOUBLE PRECISION xmoy, fxm - DOUBLE PRECISION decalx + real, intent(out):: xprimp025(:) ! (iim + 1) + + ! Local: + real rlonm025(iim + 1), rlonp025(iim + 1), d_rlonv(iim) + REAL delta, h + DOUBLE PRECISION, dimension(0:nmax):: xtild, fhyp, G, Xf, ffdx + DOUBLE PRECISION beta + INTEGER i, is2 + DOUBLE PRECISION xmoy(nmax), fxm(nmax) !---------------------------------------------------------------------- print *, "Call sequence information: fxhyp" - xzoom = clon * pi_d / 180d0 + if (grossismx == 1.) then + h = twopi / iim - IF (grossismx == 1.) THEN - decalx = 1d0 + xprimm025(:iim) = h + xprimp025(:iim) = h + xprimv(:iim) = h + xprimu(:iim) = h + + rlonv(:iim) = arth(- pi + clon, h, iim) + rlonm025(:iim) = rlonv(:iim) - 0.25 * h + rlonp025(:iim) = rlonv(:iim) + 0.25 * h + rlonu(:iim) = rlonv(:iim) + 0.5 * h else - decalx = 0.75d0 - END IF + delta = dzoomx * twopi_d + xtild = arth(0d0, pi_d / nmax, nmax + 1) + forall (i = 1:nmax) xmoy(i) = 0.5d0 * (xtild(i-1) + xtild(i)) + + ! Compute fhyp: + fhyp(1:nmax - 1) = tanh_cautious(taux * (delta / 2d0 & + - xtild(1:nmax - 1)), xtild(1:nmax - 1) & + * (pi_d - xtild(1:nmax - 1))) + fhyp(0) = 1d0 + fhyp(nmax) = -1d0 + + fxm = tanh_cautious(taux * (delta / 2d0 - xmoy), xmoy * (pi_d - xmoy)) + + ! Compute \int_0 ^{\tilde x} F: + + ffdx(0) = 0d0 + + DO i = 1, nmax + ffdx(i) = ffdx(i - 1) + fxm(i) * (xtild(i) - xtild(i-1)) + END DO + + print *, "ffdx(nmax) = ", ffdx(nmax) + beta = (pi_d - grossismx * ffdx(nmax)) / (pi_d - ffdx(nmax)) + print *, "beta = ", beta + + IF (2d0 * beta - grossismx <= 0d0) THEN + print *, 'Bad choice of grossismx, taux, dzoomx.' + print *, 'Decrease dzoomx or grossismx.' + STOP 1 + END IF - dzoom = dzoomx * twopi_d - xtild = arth(- pi_d, pi_d / nmax, 2 * nmax + 1) + G = beta + (grossismx - beta) * fhyp - ! Compute fhyp: - DO i = nmax, 2 * nmax - fa = taux * (dzoom / 2. - xtild(i)) - fb = xtild(i) * (pi_d - xtild(i)) - - IF (200. * fb < - fa) THEN - fhyp(i) = - 1. - ELSE IF (200. * fb < fa) THEN - fhyp(i) = 1. + Xf(:nmax - 1) = beta * xtild(:nmax - 1) + (grossismx - beta) & + * ffdx(:nmax - 1) + Xf(nmax) = pi_d + + call invert_zoom_x(xf, xtild, G, rlonm025(:iim), xprimm025(:iim), & + xuv = - 0.25d0) + call invert_zoom_x(xf, xtild, G, rlonv(:iim), xprimv(:iim), xuv = 0d0) + call invert_zoom_x(xf, xtild, G, rlonu(:iim), xprimu(:iim), xuv = 0.5d0) + call invert_zoom_x(xf, xtild, G, rlonp025(:iim), xprimp025(:iim), & + xuv = 0.25d0) + end if + + is2 = 0 + + IF (MINval(rlonm025(:iim)) < - pi - 0.1 & + .or. MAXval(rlonm025(:iim)) > pi + 0.1) THEN + IF (clon <= 0.) THEN + is2 = 1 + + do while (rlonm025(is2) < - pi .and. is2 < iim) + is2 = is2 + 1 + end do + + if (rlonm025(is2) < - pi) then + print *, 'Rlonm025 plus petit que - pi !' + STOP 1 + end if ELSE - IF (ABS(fa) < 1e-13 .AND. ABS(fb) < 1e-13) THEN - IF (200. * fb + fa < 1e-10) THEN - fhyp(i) = - 1. - ELSE IF (200. * fb - fa < 1e-10) THEN - fhyp(i) = 1. - END IF - ELSE - fhyp(i) = TANH(fa / fb) - END IF - END IF + is2 = iim - IF (xtild(i) == 0.) fhyp(i) = 1. - IF (xtild(i) == pi_d) fhyp(i) = -1. - END DO - - ! Calcul de beta - - ffdx = 0. - - DO i = nmax + 1, 2 * nmax - xmoy = 0.5 * (xtild(i-1) + xtild(i)) - fa = taux * (dzoom / 2. - xmoy) - fb = xmoy * (pi_d - xmoy) - - IF (200. * fb < - fa) THEN - fxm = - 1. - ELSE IF (200. * fb < fa) THEN - fxm = 1. - ELSE - IF (ABS(fa) < 1e-13 .AND. ABS(fb) < 1e-13) THEN - IF (200. * fb + fa < 1e-10) THEN - fxm = - 1. - ELSE IF (200. * fb - fa < 1e-10) THEN - fxm = 1. - END IF - ELSE - fxm = TANH(fa / fb) - END IF + do while (rlonm025(is2) > pi .and. is2 > 1) + is2 = is2 - 1 + end do + + if (rlonm025(is2) > pi) then + print *, 'Rlonm025 plus grand que pi !' + STOP 1 + end if END IF - - IF (xmoy == 0.) fxm = 1. - IF (xmoy == pi_d) fxm = -1. - - ffdx = ffdx + fxm * (xtild(i) - xtild(i-1)) - END DO - - print *, "ffdx = ", ffdx - beta = (grossismx * ffdx - pi_d) / (ffdx - pi_d) - print *, "beta = ", beta - - IF (2. * beta - grossismx <= 0.) THEN - print *, 'Attention ! La valeur beta calculée dans fxhyp est mauvaise.' - print *, 'Modifier les valeurs de grossismx, taux ou dzoomx et relancer.' - STOP 1 END IF - ! calcul de Xprimt - Xprimt(nmax:2 * nmax) = beta + (grossismx - beta) * fhyp - xprimt(:nmax - 1) = xprimt(2 * nmax:nmax + 1:- 1) - - ! Calcul de Xf - - DO i = nmax + 1, 2 * nmax - xmoy = 0.5 * (xtild(i-1) + xtild(i)) - fa = taux * (dzoom / 2. - xmoy) - fb = xmoy * (pi_d - xmoy) - - IF (200. * fb < - fa) THEN - fxm = - 1. - ELSE IF (200. * fb < fa) THEN - fxm = 1. - ELSE - fxm = TANH(fa / fb) - END IF - - IF (xmoy == 0.) fxm = 1. - IF (xmoy == pi_d) fxm = -1. - xxpr(i) = beta + (grossismx - beta) * fxm - END DO - - xxpr(:nmax) = xxpr(2 * nmax:nmax + 1:- 1) - - Xf(0) = - pi_d - - DO i=1, 2 * nmax - 1 - Xf(i) = Xf(i-1) + xxpr(i) * (xtild(i) - xtild(i-1)) - END DO - - Xf(2 * nmax) = pi_d - - call fxhyp_loop_ik(1, decalx, xf, xtild, Xprimt, xzoom, rlonm025, & - xprimm025, xuv = - 0.25d0) - call fxhyp_loop_ik(2, decalx, xf, xtild, Xprimt, xzoom, rlonv, xprimv, & - xuv = 0d0) - call fxhyp_loop_ik(3, decalx, xf, xtild, Xprimt, xzoom, rlonu, xprimu, & - xuv = 0.5d0) - call fxhyp_loop_ik(4, decalx, xf, xtild, Xprimt, xzoom, rlonp025, & - xprimp025, xuv = 0.25d0) - - print * - - forall (i = 1: iim) xlon(i) = rlonv(i + 1) - rlonv(i) - print *, "Minimum longitude step:", MINval(xlon) * 180. / pi_d, "°" - print *, "Maximum longitude step:", MAXval(xlon) * 180. / pi_d, "°" + call principal_cshift(is2, rlonm025, xprimm025) + call principal_cshift(is2, rlonv, xprimv) + call principal_cshift(is2, rlonu, xprimu) + call principal_cshift(is2, rlonp025, xprimp025) + + forall (i = 1: iim) d_rlonv(i) = rlonv(i + 1) - rlonv(i) + print *, "Minimum longitude step:", MINval(d_rlonv) * 180. / pi, "degrees" + print *, "Maximum longitude step:", MAXval(d_rlonv) * 180. / pi, "degrees" + ! Check that rlonm025 <= rlonv <= rlonp025 <= rlonu: DO i = 1, iim + 1 IF (rlonp025(i) < rlonv(i)) THEN print *, 'rlonp025(', i, ') = ', rlonp025(i)