--- trunk/dyn3d/fxhyp_loop_ik.f 2015/01/28 16:10:02 121 +++ trunk/Sources/dyn3d/invert_zoom_x.f 2015/06/16 17:27:33 146 @@ -1,4 +1,4 @@ -module fxhyp_loop_ik_m +module invert_zoom_x_m implicit none @@ -6,170 +6,82 @@ contains - subroutine fxhyp_loop_ik(ik, decalx, xf, xtild, Xprimt, xzoom, xlon, & - xprimm, xuv) + subroutine invert_zoom_x(xf, xtild, G, xlon, xprimm, xuv) use coefpoly_m, only: coefpoly USE dimens_m, ONLY: iim - use nr_util, only: pi_d, twopi_d, twopi - use serre, only: grossismx + use dynetat0_m, only: clon + use nr_util, only: pi_d, twopi_d + use numer_rec_95, only: hunt - INTEGER, intent(in):: ik - DOUBLE PRECISION, intent(in):: decalx - DOUBLE PRECISION, intent(in):: Xf(0:), xtild(0:), Xprimt(0:) ! (0:2 * nmax) - DOUBLE PRECISION, intent(in):: xzoom - real, intent(out):: xlon(:), xprimm(:) ! (iim + 1) + DOUBLE PRECISION, intent(in):: Xf(0:), xtild(0:), G(0:) ! (0:nmax) + + real, intent(out):: xlon(:), xprimm(:) ! (iim) DOUBLE PRECISION, intent(in):: xuv + ! between - 0.25 and 0.5 ! 0. si calcul aux points scalaires - ! 0.5 si calcul aux points U + ! 0.5 si calcul aux points U ! Local: + DOUBLE PRECISION xo1, Xfi, abs_xfi, a0, a1, a2, a3, Xf1, Xprimin + integer i, it, iter + DOUBLE PRECISION, parameter:: my_eps = 1d-6 - DOUBLE PRECISION xo1, Xfi, xi, a0, a1, a2, a3, Xf1, Xprimin, xi2 - integer ii1, ii2, i, it, iter, idif, ii - DOUBLE PRECISION, parameter:: my_eps = 1e-3 - DOUBLE PRECISION xxprim(iim + 1), xvrai(iim + 1) - INTEGER:: is2 = 0 + DOUBLE PRECISION xxprim(iim), xvrai(iim) + ! intermediary variables because xlon and xprimm are simple precision !------------------------------------------------------------------ - xo1 = 0. - - IF (ik == 1 .and. grossismx == 1.) THEN - ii1 = 2 - ii2 = iim + 1 - else - ii1=1 - ii2=iim - END IF - - DO i = ii1, ii2 - Xfi = - pi_d + (i + xuv - decalx) * twopi_d / iim - - it = 2 * nmax - do while (xfi < xf(it) .and. it >= 1) - it = it - 1 - end do - - ! Calcul de Xf(xi) - - xi = xtild(it) - - IF (it == 2 * nmax) THEN - it = 2 * nmax -1 - END IF - - ! Appel de la routine qui calcule les coefficients a0, a1, - ! a2, a3 d'un polynome de degre 3 qui passe par les points - ! (Xf(it), xtild(it)) et (Xf(it + 1), xtild(it + 1)) - - CALL coefpoly(Xf(it), Xf(it + 1), Xprimt(it), Xprimt(it + 1), & - xtild(it), xtild(it + 1), a0, a1, a2, a3) + it = 0 ! initial guess + DO i = 1, iim + Xfi = - pi_d + (i + xuv - 0.75d0) * twopi_d / iim + ! - pi <= xfi < pi + abs_xfi = abs(xfi) + + call hunt(xf, abs_xfi, it, my_lbound = 0) + ! {0 <= it <= nmax - 1} + + ! Calcul de xvrai(i) et xxprim(i) + + CALL coefpoly(Xf(it), Xf(it + 1), G(it), G(it + 1), xtild(it), & + xtild(it + 1), a0, a1, a2, a3) + xvrai(i) = xtild(it) Xf1 = Xf(it) - Xprimin = a1 + 2. * a2 * xi + 3. * a3 * xi**2 - + Xprimin = G(it) + xo1 = xvrai(i) iter = 1 do - xi = xi - (Xf1 - Xfi) / Xprimin - IF (ABS(xi - xo1) <= my_eps .or. iter == 300) exit - xo1 = xi - xi2 = xi * xi - Xf1 = a0 + a1 * xi + a2 * xi2 + a3 * xi2 * xi - Xprimin = a1 + 2. * a2 * xi + 3. * a3 * xi2 + xvrai(i) = xvrai(i) - (Xf1 - abs_xfi) / Xprimin + IF (ABS(xvrai(i) - xo1) <= my_eps .or. iter == 300) exit + xo1 = xvrai(i) + Xf1 = a0 + xvrai(i) * (a1 + xvrai(i) * (a2 + xvrai(i) * a3)) + Xprimin = a1 + xvrai(i) * (2d0 * a2 + xvrai(i) * 3d0 * a3) end DO - if (ABS(xi - xo1) > my_eps) then + if (ABS(xvrai(i) - xo1) > my_eps) then ! iter == 300 print *, 'Pas de solution.' - print *, i, xfi + print *, i, abs_xfi STOP 1 end if - xxprim(i) = twopi_d / (REAL(iim) * Xprimin) - xvrai(i) = xi + xzoom + if (xfi < 0) xvrai(i) = - xvrai(i) + xxprim(i) = twopi_d / (iim * Xprimin) end DO - IF (ik == 1 .and. grossismx == 1.) THEN - xvrai(1) = xvrai(iim + 1)-twopi_d - xxprim(1) = xxprim(iim + 1) - END IF - - DO i = 1, iim - xlon(i) = xvrai(i) - xprimm(i) = xxprim(i) - END DO - DO i = 1, iim -1 IF (xvrai(i + 1) < xvrai(i)) THEN - print *, 'rlonu(', i + 1, ') < rlonu(', i, ')' + print *, 'xvrai(', i + 1, ') < xvrai(', i, ')' STOP 1 END IF END DO - IF (.not. (MINval(xvrai(:iim)) >= - pi_d - 1d-5 & - .and. MAXval(xvrai(:iim)) <= pi_d + 1d-5)) THEN - IF (xzoom <= 0.) THEN - IF (ik == 1) THEN - i = 1 - - do while (xvrai(i) < - pi_d .and. i < iim) - i = i + 1 - end do - - if (xvrai(i) < - pi_d) then - print *, 'Xvrai plus petit que - pi !' - STOP 1 - end if - - is2 = i - END IF - - IF (is2 /= 1) THEN - DO ii = is2, iim - xlon(ii-is2 + 1) = xvrai(ii) - xprimm(ii-is2 + 1) = xxprim(ii) - END DO - DO ii = 1, is2 -1 - xlon(ii + iim-is2 + 1) = xvrai(ii) + twopi_d - xprimm(ii + iim-is2 + 1) = xxprim(ii) - END DO - END IF - ELSE - IF (ik == 1) THEN - i = iim - - do while (xvrai(i) > pi_d .and. i > 1) - i = i - 1 - end do - - if (xvrai(i) > pi_d) then - print *, 'Xvrai plus grand que pi !' - STOP 1 - end if - - is2 = i - END IF - - idif = iim -is2 - - DO ii = 1, is2 - xlon(ii + idif) = xvrai(ii) - xprimm(ii + idif) = xxprim(ii) - END DO - - DO ii = 1, idif - xlon(ii) = xvrai(ii + is2) - twopi_d - xprimm(ii) = xxprim(ii + is2) - END DO - END IF - END IF - - xlon(iim + 1) = xlon(1) + twopi - xprimm(iim + 1) = xprimm(1) + xlon = xvrai + clon + xprimm = xxprim - end subroutine fxhyp_loop_ik + end subroutine invert_zoom_x -end module fxhyp_loop_ik_m +end module invert_zoom_x_m