--- trunk/libf/dyn3d/leapfrog.f90 2010/04/06 17:52:58 32 +++ trunk/libf/dyn3d/leapfrog.f90 2012/04/20 14:58:43 61 @@ -8,266 +8,237 @@ ! From dyn3d/leapfrog.F, version 1.6, 2005/04/13 08:58:34 ! Authors: P. Le Van, L. Fairhead, F. Hourdin - ! schema matsuno + leapfrog + ! Matsuno-leapfrog scheme. + use addfi_m, only: addfi + use bilan_dyn_m, only: bilan_dyn + use caladvtrac_m, only: caladvtrac + use caldyn_m, only: caldyn USE calfis_m, ONLY: calfis - USE com_io_dyn, ONLY: histaveid USE comconst, ONLY: daysec, dtphys, dtvr USE comgeom, ONLY: aire_2d, apoln, apols USE comvert, ONLY: ap, bp USE conf_gcm_m, ONLY: day_step, iconser, iperiod, iphysiq, nday, offline, & - periodav + iflag_phys, ok_guide USE dimens_m, ONLY: iim, jjm, llm, nqmx + use dissip_m, only: dissip USE dynetat0_m, ONLY: day_ini use dynredem1_m, only: dynredem1 USE exner_hyb_m, ONLY: exner_hyb use filtreg_m, only: filtreg + use geopot_m, only: geopot USE guide_m, ONLY: guide use inidissip_m, only: idissip use integrd_m, only: integrd - USE logic, ONLY: iflag_phys, ok_guide - USE paramet_m, ONLY: ip1jmp1 - USE pression_m, ONLY: pression + use nr_util, only: assert USE pressure_var, ONLY: p3d USE temps, ONLY: itau_dyn + use writedynav_m, only: writedynav ! Variables dynamiques: - REAL, intent(inout):: vcov((iim + 1) * jjm, llm) ! vent covariant - REAL, intent(inout):: ucov(ip1jmp1, llm) ! vent covariant - REAL, intent(inout):: teta(iim + 1, jjm + 1, llm) ! potential temperature - REAL ps(iim + 1, jjm + 1) ! pression au sol, en Pa - - REAL masse(ip1jmp1, llm) ! masse d'air - REAL phis(ip1jmp1) ! geopotentiel au sol - REAL q(ip1jmp1, llm, nqmx) ! mass fractions of advected fields + REAL, intent(inout):: ucov(:, :, :) ! (iim + 1, jjm + 1, llm) vent covariant + REAL, intent(inout):: vcov(:, :, :) ! (iim + 1, jjm, llm) ! vent covariant + + REAL, intent(inout):: teta(:, :, :) ! (iim + 1, jjm + 1, llm) + ! potential temperature + + REAL, intent(inout):: ps(:, :) ! (iim + 1, jjm + 1) pression au sol, en Pa + REAL masse((iim + 1) * (jjm + 1), llm) ! masse d'air + REAL phis((iim + 1) * (jjm + 1)) ! geopotentiel au sol + + REAL, intent(inout):: q(:, :, :, :) ! (iim + 1, jjm + 1, llm, nqmx) + ! mass fractions of advected fields + REAL, intent(in):: time_0 ! Variables local to the procedure: ! Variables dynamiques: - REAL pks(ip1jmp1) ! exner au sol + REAL pks((iim + 1) * (jjm + 1)) ! exner au sol REAL pk(iim + 1, jjm + 1, llm) ! exner au milieu des couches - REAL pkf(ip1jmp1, llm) ! exner filt.au milieu des couches - REAL phi(ip1jmp1, llm) ! geopotential - REAL w(ip1jmp1, llm) ! vitesse verticale + REAL pkf((iim + 1) * (jjm + 1), llm) ! exner filt.au milieu des couches + REAL phi(iim + 1, jjm + 1, llm) ! geopotential + REAL w((iim + 1) * (jjm + 1), llm) ! vitesse verticale + + ! Variables dynamiques intermediaire pour le transport + ! Flux de masse : + REAL pbaru((iim + 1) * (jjm + 1), llm), pbarv((iim + 1) * jjm, llm) - ! variables dynamiques intermediaire pour le transport - REAL pbaru(ip1jmp1, llm), pbarv((iim + 1) * jjm, llm) !flux de masse - - ! variables dynamiques au pas - 1 - REAL vcovm1((iim + 1) * jjm, llm), ucovm1(ip1jmp1, llm) + ! Variables dynamiques au pas - 1 + REAL vcovm1(iim + 1, jjm, llm), ucovm1(iim + 1, jjm + 1, llm) REAL tetam1(iim + 1, jjm + 1, llm), psm1(iim + 1, jjm + 1) - REAL massem1(ip1jmp1, llm) + REAL massem1((iim + 1) * (jjm + 1), llm) - ! tendances dynamiques - REAL dv((iim + 1) * jjm, llm), du(ip1jmp1, llm) - REAL dteta(ip1jmp1, llm), dq(ip1jmp1, llm, nqmx), dp(ip1jmp1) + ! Tendances dynamiques + REAL dv((iim + 1) * jjm, llm), dudyn((iim + 1) * (jjm + 1), llm) + REAL dteta(iim + 1, jjm + 1, llm), dq((iim + 1) * (jjm + 1), llm, nqmx) + real dp((iim + 1) * (jjm + 1)) - ! tendances de la dissipation - REAL dvdis((iim + 1) * jjm, llm), dudis(ip1jmp1, llm) + ! Tendances de la dissipation : + REAL dvdis(iim + 1, jjm, llm), dudis(iim + 1, jjm + 1, llm) REAL dtetadis(iim + 1, jjm + 1, llm) - ! tendances physiques - REAL dvfi((iim + 1) * jjm, llm), dufi(ip1jmp1, llm) - REAL dtetafi(ip1jmp1, llm), dqfi(ip1jmp1, llm, nqmx), dpfi(ip1jmp1) + ! Tendances physiques + REAL dvfi((iim + 1) * jjm, llm), dufi((iim + 1) * (jjm + 1), llm) + REAL dtetafi(iim + 1, jjm + 1, llm), dqfi((iim + 1) * (jjm + 1), llm, nqmx) + real dpfi((iim + 1) * (jjm + 1)) - ! variables pour le fichier histoire + ! Variables pour le fichier histoire INTEGER itau ! index of the time step of the dynamics, starts at 0 INTEGER itaufin - INTEGER iday ! jour julien REAL time ! time of day, as a fraction of day length - real finvmaold(ip1jmp1, llm) - LOGICAL:: lafin=.false. - INTEGER i, j, l - + real finvmaold((iim + 1) * (jjm + 1), llm) + INTEGER l REAL rdayvrai, rdaym_ini ! Variables test conservation energie REAL ecin(iim + 1, jjm + 1, llm), ecin0(iim + 1, jjm + 1, llm) - ! Tendance de la temp. potentiel d (theta) / d t due a la - ! tansformation d'energie cinetique en energie thermique - ! cree par la dissipation - REAL dtetaecdt(iim + 1, jjm + 1, llm) - REAL vcont((iim + 1) * jjm, llm), ucont(ip1jmp1, llm) + + REAL vcont((iim + 1) * jjm, llm), ucont((iim + 1) * (jjm + 1), llm) + logical leapf + real dt !--------------------------------------------------- print *, "Call sequence information: leapfrog" + call assert(shape(ucov) == (/iim + 1, jjm + 1, llm/), "leapfrog") itaufin = nday * day_step ! "day_step" is a multiple of "iperiod", therefore "itaufin" is one too - itau = 0 - iday = day_ini - time = time_0 dq = 0. + ! On initialise la pression et la fonction d'Exner : - CALL pression(ip1jmp1, ap, bp, ps, p3d) + forall (l = 1: llm + 1) p3d(:, :, l) = ap(l) + bp(l) * ps CALL exner_hyb(ps, p3d, pks, pk, pkf) - ! Début de l'integration temporelle : - period_loop:do i = 1, itaufin / iperiod - ! {"itau" is a multiple of "iperiod"} - - ! 1. Matsuno forward: - - if (ok_guide .and. (itaufin - itau - 1) * dtvr > 21600.) & - call guide(itau, ucov, vcov, teta, q, masse, ps) - vcovm1 = vcov - ucovm1 = ucov - tetam1 = teta - massem1 = masse - psm1 = ps - finvmaold = masse - CALL filtreg(finvmaold, jjm + 1, llm, - 2, 2, .TRUE., 1) + time_integration: do itau = 0, itaufin - 1 + leapf = mod(itau, iperiod) /= 0 + if (leapf) then + dt = 2 * dtvr + else + ! Matsuno + dt = dtvr + if (ok_guide .and. (itaufin - itau - 1) * dtvr > 21600.) & + call guide(itau, ucov, vcov, teta, q, masse, ps) + vcovm1 = vcov + ucovm1 = ucov + tetam1 = teta + massem1 = masse + psm1 = ps + finvmaold = masse + CALL filtreg(finvmaold, jjm + 1, llm, - 2, 2, .TRUE., 1) + end if ! Calcul des tendances dynamiques: - CALL geopot(ip1jmp1, teta, pk, pks, phis, phi) + CALL geopot((iim + 1) * (jjm + 1), teta, pk, pks, phis, phi) CALL caldyn(itau, ucov, vcov, teta, ps, masse, pk, pkf, phis, phi, & - MOD(itau, iconser) == 0, du, dv, dteta, dp, w, pbaru, pbarv, & - time + iday - day_ini) + dudyn, dv, dteta, dp, w, pbaru, pbarv, time_0, & + conser=MOD(itau, iconser)==0) ! Calcul des tendances advection des traceurs (dont l'humidité) CALL caladvtrac(q, pbaru, pbarv, p3d, masse, dq, teta, pk) + ! Stokage du flux de masse pour traceurs offline: IF (offline) CALL fluxstokenc(pbaru, pbarv, masse, teta, phi, phis, & dtvr, itau) - ! integrations dynamique et traceurs: - CALL integrd(2, vcovm1, ucovm1, tetam1, psm1, massem1, dv, du, dteta, & - dp, vcov, ucov, teta, q, ps, masse, finvmaold, .false., & - dtvr) + ! Integrations dynamique et traceurs: + CALL integrd(vcovm1, ucovm1, tetam1, psm1, massem1, dv, dudyn, dteta, & + dp, vcov, ucov, teta, q(:, :, :, :2), ps, masse, finvmaold, dt, & + leapf) + + if (.not. leapf) then + ! Matsuno backward + forall (l = 1: llm + 1) p3d(:, :, l) = ap(l) + bp(l) * ps + CALL exner_hyb(ps, p3d, pks, pk, pkf) - CALL pression(ip1jmp1, ap, bp, ps, p3d) - CALL exner_hyb(ps, p3d, pks, pk, pkf) + ! Calcul des tendances dynamiques: + CALL geopot((iim + 1) * (jjm + 1), teta, pk, pks, phis, phi) + CALL caldyn(itau + 1, ucov, vcov, teta, ps, masse, pk, pkf, phis, & + phi, dudyn, dv, dteta, dp, w, pbaru, pbarv, time_0, & + conser=.false.) - ! 2. Matsuno backward: + ! integrations dynamique et traceurs: + CALL integrd(vcovm1, ucovm1, tetam1, psm1, massem1, dv, dudyn, & + dteta, dp, vcov, ucov, teta, q(:, :, :, :2), ps, masse, & + finvmaold, dtvr, leapf=.false.) + end if - itau = itau + 1 - iday = day_ini + itau / day_step - time = REAL(itau - (iday - day_ini) * day_step) / day_step + time_0 - IF (time > 1.) THEN - time = time - 1. - iday = iday + 1 - ENDIF + IF (MOD(itau + 1, iphysiq) == 0 .AND. iflag_phys /= 0) THEN + ! calcul des tendances physiques: - ! Calcul des tendances dynamiques: - CALL geopot(ip1jmp1, teta, pk, pks, phis, phi) - CALL caldyn(itau, ucov, vcov, teta, ps, masse, pk, pkf, phis, phi, & - .false., du, dv, dteta, dp, w, pbaru, pbarv, time + iday - day_ini) + forall (l = 1: llm + 1) p3d(:, :, l) = ap(l) + bp(l) * ps + CALL exner_hyb(ps, p3d, pks, pk, pkf) - ! integrations dynamique et traceurs: - CALL integrd(2, vcovm1, ucovm1, tetam1, psm1, massem1, dv, du, dteta, & - dp, vcov, ucov, teta, q, ps, masse, finvmaold, .false., & - dtvr) + rdaym_ini = itau * dtvr / daysec + rdayvrai = rdaym_ini + day_ini + time = REAL(mod(itau, day_step)) / day_step + time_0 + IF (time > 1.) time = time - 1. + + CALL calfis(rdayvrai, time, ucov, vcov, teta, q, masse, ps, pk, & + phis, phi, dudyn, dv, dq, w, dufi, dvfi, dtetafi, dqfi, dpfi, & + lafin=itau+1==itaufin) + + ! ajout des tendances physiques: + CALL addfi(nqmx, dtphys, ucov, vcov, teta, q, ps, dufi, dvfi, & + dtetafi, dqfi, dpfi) + ENDIF - CALL pression(ip1jmp1, ap, bp, ps, p3d) + forall (l = 1: llm + 1) p3d(:, :, l) = ap(l) + bp(l) * ps CALL exner_hyb(ps, p3d, pks, pk, pkf) - ! 3. Leapfrog: - - leapfrog_loop: do j = 1, iperiod - 1 - ! Calcul des tendances dynamiques: - CALL geopot(ip1jmp1, teta, pk, pks, phis, phi) - CALL caldyn(itau, ucov, vcov, teta, ps, masse, pk, pkf, phis, phi, & - .false., du, dv, dteta, dp, w, pbaru, pbarv, & - time + iday - day_ini) - - ! Calcul des tendances advection des traceurs (dont l'humidité) - CALL caladvtrac(q, pbaru, pbarv, p3d, masse, dq, teta, pk) - ! Stokage du flux de masse pour traceurs off-line: - IF (offline) CALL fluxstokenc(pbaru, pbarv, masse, teta, phi, phis, & - dtvr, itau) + IF (MOD(itau + 1, idissip) == 0) THEN + ! Dissipation horizontale et verticale des petites échelles - ! integrations dynamique et traceurs: - CALL integrd(2, vcovm1, ucovm1, tetam1, psm1, massem1, dv, du, & - dteta, dp, vcov, ucov, teta, q, ps, masse, & - finvmaold, .true., 2 * dtvr) - - IF (MOD(itau + 1, iphysiq) == 0 .AND. iflag_phys /= 0) THEN - ! calcul des tendances physiques: - IF (itau + 1 == itaufin) lafin = .TRUE. - - CALL pression(ip1jmp1, ap, bp, ps, p3d) - CALL exner_hyb(ps, p3d, pks, pk, pkf) - - rdaym_ini = itau * dtvr / daysec - rdayvrai = rdaym_ini + day_ini - - CALL calfis(nqmx, lafin, rdayvrai, time, ucov, vcov, teta, q, & - masse, ps, pk, phis, phi, du, dv, dteta, dq, w, & - dufi, dvfi, dtetafi, dqfi, dpfi) - - ! ajout des tendances physiques: - CALL addfi(nqmx, dtphys, ucov, vcov, teta, q, ps, dufi, dvfi, & - dtetafi, dqfi, dpfi) - ENDIF - - CALL pression(ip1jmp1, ap, bp, ps, p3d) - CALL exner_hyb(ps, p3d, pks, pk, pkf) - - IF (MOD(itau + 1, idissip) == 0) THEN - ! dissipation horizontale et verticale des petites echelles: - - ! calcul de l'energie cinetique avant dissipation - call covcont(llm, ucov, vcov, ucont, vcont) - call enercin(vcov, ucov, vcont, ucont, ecin0) - - ! dissipation - CALL dissip(vcov, ucov, teta, p3d, dvdis, dudis, dtetadis) - ucov=ucov + dudis - vcov=vcov + dvdis - - ! On rajoute la tendance due à la transformation Ec -> E - ! thermique créée lors de la dissipation - call covcont(llm, ucov, vcov, ucont, vcont) - call enercin(vcov, ucov, vcont, ucont, ecin) - dtetaecdt= (ecin0 - ecin) / pk - dtetadis=dtetadis + dtetaecdt - teta=teta + dtetadis - - ! Calcul de la valeur moyenne aux pôles : - forall (l = 1: llm) - teta(:, 1, l) = SUM(aire_2d(:iim, 1) * teta(:iim, 1, l)) & - / apoln - teta(:, jjm + 1, l) = SUM(aire_2d(:iim, jjm+1) & - * teta(:iim, jjm + 1, l)) / apols - END forall - - ps(:, 1) = SUM(aire_2d(:iim, 1) * ps(:iim, 1)) / apoln - ps(:, jjm + 1) = SUM(aire_2d(:iim, jjm+1) * ps(:iim, jjm + 1)) & - / apols - END IF - - itau = itau + 1 - iday = day_ini + itau / day_step - time = REAL(itau - (iday - day_ini) * day_step) / day_step + time_0 - IF (time > 1.) THEN - time = time - 1. - iday = iday + 1 - ENDIF - - IF (MOD(itau, iperiod) == 0) THEN - ! ecriture du fichier histoire moyenne: - CALL writedynav(histaveid, nqmx, itau, vcov, & - ucov, teta, pk, phi, q, masse, ps, phis) - call bilan_dyn(2, dtvr * iperiod, dtvr * day_step * periodav, & - ps, masse, pk, pbaru, pbarv, teta, phi, ucov, vcov, q) - ENDIF - end do leapfrog_loop - end do period_loop + ! calcul de l'énergie cinétique avant dissipation + call covcont(llm, ucov, vcov, ucont, vcont) + call enercin(vcov, ucov, vcont, ucont, ecin0) + + ! dissipation + CALL dissip(vcov, ucov, teta, p3d, dvdis, dudis, dtetadis) + ucov = ucov + dudis + vcov = vcov + dvdis + + ! On ajoute la tendance due à la transformation énergie + ! cinétique en énergie thermique par la dissipation + call covcont(llm, ucov, vcov, ucont, vcont) + call enercin(vcov, ucov, vcont, ucont, ecin) + dtetadis = dtetadis + (ecin0 - ecin) / pk + teta = teta + dtetadis + + ! Calcul de la valeur moyenne aux pôles : + forall (l = 1: llm) + teta(:, 1, l) = SUM(aire_2d(:iim, 1) * teta(:iim, 1, l)) & + / apoln + teta(:, jjm + 1, l) = SUM(aire_2d(:iim, jjm+1) & + * teta(:iim, jjm + 1, l)) / apols + END forall + + ps(:, 1) = SUM(aire_2d(:iim, 1) * ps(:iim, 1)) / apoln + ps(:, jjm + 1) = SUM(aire_2d(:iim, jjm+1) * ps(:iim, jjm + 1)) & + / apols + END IF + + IF (MOD(itau + 1, iperiod) == 0) THEN + ! Écriture du fichier histoire moyenne: + CALL writedynav(vcov, ucov, teta, pk, phi, q, masse, ps, phis, & + time = itau + 1) + call bilan_dyn(ps, masse, pk, pbaru, pbarv, teta, phi, ucov, vcov, & + q(:, :, :, 1)) + ENDIF + end do time_integration - ! {itau == itaufin} CALL dynredem1("restart.nc", vcov, ucov, teta, q, masse, ps, & itau=itau_dyn+itaufin) ! Calcul des tendances dynamiques: - CALL geopot(ip1jmp1, teta, pk, pks, phis, phi) + CALL geopot((iim + 1) * (jjm + 1), teta, pk, pks, phis, phi) CALL caldyn(itaufin, ucov, vcov, teta, ps, masse, pk, pkf, phis, phi, & - MOD(itaufin, iconser) == 0, du, dv, dteta, dp, w, pbaru, pbarv, & - time + iday - day_ini) + dudyn, dv, dteta, dp, w, pbaru, pbarv, time_0, & + conser=MOD(itaufin, iconser)==0) END SUBROUTINE leapfrog