--- trunk/libf/dyn3d/leapfrog.f90 2011/02/22 15:09:57 41 +++ trunk/libf/dyn3d/leapfrog.f90 2012/10/02 15:50:56 67 @@ -6,40 +6,45 @@ SUBROUTINE leapfrog(ucov, vcov, teta, ps, masse, phis, q, time_0) - ! From dyn3d/leapfrog.F, version 1.6, 2005/04/13 08:58:34 + ! From dyn3d/leapfrog.F, version 1.6, 2005/04/13 08:58:34 revision 616 ! Authors: P. Le Van, L. Fairhead, F. Hourdin ! Matsuno-leapfrog scheme. use addfi_m, only: addfi use bilan_dyn_m, only: bilan_dyn use caladvtrac_m, only: caladvtrac + use caldyn_m, only: caldyn USE calfis_m, ONLY: calfis - USE com_io_dyn, ONLY: histaveid USE comconst, ONLY: daysec, dtphys, dtvr USE comgeom, ONLY: aire_2d, apoln, apols - USE comvert, ONLY: ap, bp + USE disvert_m, ONLY: ap, bp USE conf_gcm_m, ONLY: day_step, iconser, iperiod, iphysiq, nday, offline, & - periodav + iflag_phys, ok_guide USE dimens_m, ONLY: iim, jjm, llm, nqmx + use dissip_m, only: dissip USE dynetat0_m, ONLY: day_ini use dynredem1_m, only: dynredem1 USE exner_hyb_m, ONLY: exner_hyb use filtreg_m, only: filtreg + use geopot_m, only: geopot USE guide_m, ONLY: guide use inidissip_m, only: idissip use integrd_m, only: integrd - USE logic, ONLY: iflag_phys, ok_guide - USE paramet_m, ONLY: ip1jmp1 + use nr_util, only: assert USE pressure_var, ONLY: p3d USE temps, ONLY: itau_dyn + use writedynav_m, only: writedynav ! Variables dynamiques: - REAL, intent(inout):: ucov(ip1jmp1, llm) ! vent covariant - REAL, intent(inout):: vcov((iim + 1) * jjm, llm) ! vent covariant - REAL, intent(inout):: teta(iim + 1, jjm + 1, llm) ! potential temperature - REAL, intent(inout):: ps(iim + 1, jjm + 1) ! pression au sol, en Pa - REAL masse(ip1jmp1, llm) ! masse d'air - REAL phis(ip1jmp1) ! geopotentiel au sol + REAL, intent(inout):: ucov(:, :, :) ! (iim + 1, jjm + 1, llm) vent covariant + REAL, intent(inout):: vcov(:, :, :) ! (iim + 1, jjm, llm) ! vent covariant + + REAL, intent(inout):: teta(:, :, :) ! (iim + 1, jjm + 1, llm) + ! potential temperature + + REAL, intent(inout):: ps(:, :) ! (iim + 1, jjm + 1) pression au sol, en Pa + REAL masse(:, :, :) ! (iim + 1, jjm + 1, llm) masse d'air + REAL phis(:, :) ! (iim + 1, jjm + 1) geopotentiel au sol REAL, intent(inout):: q(:, :, :, :) ! (iim + 1, jjm + 1, llm, nqmx) ! mass fractions of advected fields @@ -50,57 +55,58 @@ ! Variables dynamiques: - REAL pks(ip1jmp1) ! exner au sol + REAL pks((iim + 1) * (jjm + 1)) ! exner au sol REAL pk(iim + 1, jjm + 1, llm) ! exner au milieu des couches - REAL pkf(ip1jmp1, llm) ! exner filt.au milieu des couches - REAL phi(ip1jmp1, llm) ! geopotential - REAL w(ip1jmp1, llm) ! vitesse verticale + REAL pkf(iim + 1, jjm + 1, llm) ! exner filtré au milieu des couches + REAL phi(iim + 1, jjm + 1, llm) ! geopotential + REAL w((iim + 1) * (jjm + 1), llm) ! vitesse verticale + + ! Variables dynamiques intermediaire pour le transport + ! Flux de masse : + REAL pbaru((iim + 1) * (jjm + 1), llm), pbarv((iim + 1) * jjm, llm) - ! variables dynamiques intermediaire pour le transport - REAL pbaru(ip1jmp1, llm), pbarv((iim + 1) * jjm, llm) !flux de masse - - ! variables dynamiques au pas - 1 - REAL vcovm1((iim + 1) * jjm, llm), ucovm1(ip1jmp1, llm) + ! Variables dynamiques au pas - 1 + REAL vcovm1(iim + 1, jjm, llm), ucovm1(iim + 1, jjm + 1, llm) REAL tetam1(iim + 1, jjm + 1, llm), psm1(iim + 1, jjm + 1) - REAL massem1(ip1jmp1, llm) + REAL massem1(iim + 1, jjm + 1, llm) - ! tendances dynamiques - REAL dv((iim + 1) * jjm, llm), du(ip1jmp1, llm) - REAL dteta(ip1jmp1, llm), dq(ip1jmp1, llm, nqmx), dp(ip1jmp1) + ! Tendances dynamiques + REAL dv((iim + 1) * jjm, llm), dudyn((iim + 1) * (jjm + 1), llm) + REAL dteta(iim + 1, jjm + 1, llm), dq((iim + 1) * (jjm + 1), llm, nqmx) + real dp((iim + 1) * (jjm + 1)) - ! tendances de la dissipation - REAL dvdis((iim + 1) * jjm, llm), dudis(ip1jmp1, llm) + ! Tendances de la dissipation : + REAL dvdis(iim + 1, jjm, llm), dudis(iim + 1, jjm + 1, llm) REAL dtetadis(iim + 1, jjm + 1, llm) - ! tendances physiques - REAL dvfi((iim + 1) * jjm, llm), dufi(ip1jmp1, llm) - REAL dtetafi(ip1jmp1, llm), dqfi(ip1jmp1, llm, nqmx), dpfi(ip1jmp1) + ! Tendances physiques + REAL dvfi((iim + 1) * jjm, llm), dufi((iim + 1) * (jjm + 1), llm) + REAL dtetafi(iim + 1, jjm + 1, llm), dqfi((iim + 1) * (jjm + 1), llm, nqmx) + real dpfi((iim + 1) * (jjm + 1)) - ! variables pour le fichier histoire + ! Variables pour le fichier histoire INTEGER itau ! index of the time step of the dynamics, starts at 0 INTEGER itaufin REAL time ! time of day, as a fraction of day length - real finvmaold(ip1jmp1, llm) + real finvmaold(iim + 1, jjm + 1, llm) INTEGER l REAL rdayvrai, rdaym_ini ! Variables test conservation energie REAL ecin(iim + 1, jjm + 1, llm), ecin0(iim + 1, jjm + 1, llm) - ! Tendance de la temp. potentiel d (theta) / d t due a la - ! tansformation d'energie cinetique en energie thermique - ! cree par la dissipation - REAL dtetaecdt(iim + 1, jjm + 1, llm) - REAL vcont((iim + 1) * jjm, llm), ucont(ip1jmp1, llm) + + REAL vcont((iim + 1) * jjm, llm), ucont((iim + 1) * (jjm + 1), llm) logical leapf real dt !--------------------------------------------------- print *, "Call sequence information: leapfrog" + call assert(shape(ucov) == (/iim + 1, jjm + 1, llm/), "leapfrog") itaufin = nday * day_step - ! "day_step" is a multiple of "iperiod", therefore "itaufin" is one too + ! "day_step" is a multiple of "iperiod", therefore so is "itaufin". dq = 0. @@ -123,14 +129,14 @@ massem1 = masse psm1 = ps finvmaold = masse - CALL filtreg(finvmaold, jjm + 1, llm, - 2, 2, .TRUE., 1) + CALL filtreg(finvmaold, jjm + 1, llm, - 2, 2, .TRUE.) end if ! Calcul des tendances dynamiques: - CALL geopot(ip1jmp1, teta, pk, pks, phis, phi) + CALL geopot((iim + 1) * (jjm + 1), teta, pk, pks, phis, phi) CALL caldyn(itau, ucov, vcov, teta, ps, masse, pk, pkf, phis, phi, & - MOD(itau, iconser) == 0, du, dv, dteta, dp, w, pbaru, pbarv, & - time_0) + dudyn, dv, dteta, dp, w, pbaru, pbarv, time_0, & + conser=MOD(itau, iconser)==0) ! Calcul des tendances advection des traceurs (dont l'humidité) CALL caladvtrac(q, pbaru, pbarv, p3d, masse, dq, teta, pk) @@ -139,9 +145,10 @@ IF (offline) CALL fluxstokenc(pbaru, pbarv, masse, teta, phi, phis, & dtvr, itau) - ! integrations dynamique et traceurs: - CALL integrd(vcovm1, ucovm1, tetam1, psm1, massem1, dv, du, dteta, dp, & - vcov, ucov, teta, q(:, :, :, :2), ps, masse, finvmaold, dt, leapf) + ! Integrations dynamique et traceurs: + CALL integrd(vcovm1, ucovm1, tetam1, psm1, massem1, dv, dudyn, dteta, & + dp, vcov, ucov, teta, q(:, :, :, :2), ps, masse, finvmaold, dt, & + leapf) if (.not. leapf) then ! Matsuno backward @@ -149,14 +156,15 @@ CALL exner_hyb(ps, p3d, pks, pk, pkf) ! Calcul des tendances dynamiques: - CALL geopot(ip1jmp1, teta, pk, pks, phis, phi) + CALL geopot((iim + 1) * (jjm + 1), teta, pk, pks, phis, phi) CALL caldyn(itau + 1, ucov, vcov, teta, ps, masse, pk, pkf, phis, & - phi, .false., du, dv, dteta, dp, w, pbaru, pbarv, time_0) + phi, dudyn, dv, dteta, dp, w, pbaru, pbarv, time_0, & + conser=.false.) ! integrations dynamique et traceurs: - CALL integrd(vcovm1, ucovm1, tetam1, psm1, massem1, dv, du, dteta, & - dp, vcov, ucov, teta, q(:, :, :, :2), ps, masse, finvmaold, & - dtvr, leapf=.false.) + CALL integrd(vcovm1, ucovm1, tetam1, psm1, massem1, dv, dudyn, & + dteta, dp, vcov, ucov, teta, q(:, :, :, :2), ps, masse, & + finvmaold, dtvr, leapf=.false.) end if IF (MOD(itau + 1, iphysiq) == 0 .AND. iflag_phys /= 0) THEN @@ -171,8 +179,8 @@ IF (time > 1.) time = time - 1. CALL calfis(rdayvrai, time, ucov, vcov, teta, q, masse, ps, pk, & - phis, phi, du, dv, dteta, dq, w, dufi, dvfi, dtetafi, dqfi, & - dpfi, lafin=itau+1==itaufin) + phis, phi, dudyn, dv, dq, w, dufi, dvfi, dtetafi, dqfi, dpfi, & + lafin = itau + 1 == itaufin) ! ajout des tendances physiques: CALL addfi(nqmx, dtphys, ucov, vcov, teta, q, ps, dufi, dvfi, & @@ -183,24 +191,23 @@ CALL exner_hyb(ps, p3d, pks, pk, pkf) IF (MOD(itau + 1, idissip) == 0) THEN - ! dissipation horizontale et verticale des petites echelles: + ! Dissipation horizontale et verticale des petites échelles - ! calcul de l'energie cinetique avant dissipation + ! calcul de l'énergie cinétique avant dissipation call covcont(llm, ucov, vcov, ucont, vcont) call enercin(vcov, ucov, vcont, ucont, ecin0) ! dissipation CALL dissip(vcov, ucov, teta, p3d, dvdis, dudis, dtetadis) - ucov=ucov + dudis - vcov=vcov + dvdis + ucov = ucov + dudis + vcov = vcov + dvdis - ! On rajoute la tendance due à la transformation Ec -> E - ! thermique créée lors de la dissipation + ! On ajoute la tendance due à la transformation énergie + ! cinétique en énergie thermique par la dissipation call covcont(llm, ucov, vcov, ucont, vcont) call enercin(vcov, ucov, vcont, ucont, ecin) - dtetaecdt= (ecin0 - ecin) / pk - dtetadis=dtetadis + dtetaecdt - teta=teta + dtetadis + dtetadis = dtetadis + (ecin0 - ecin) / pk + teta = teta + dtetadis ! Calcul de la valeur moyenne aux pôles : forall (l = 1: llm) @@ -217,22 +224,21 @@ IF (MOD(itau + 1, iperiod) == 0) THEN ! Écriture du fichier histoire moyenne: - CALL writedynav(histaveid, nqmx, itau + 1, vcov, ucov, teta, pk, & - phi, q, masse, ps, phis) + CALL writedynav(vcov, ucov, teta, pk, phi, q, masse, ps, phis, & + time = itau + 1) call bilan_dyn(ps, masse, pk, pbaru, pbarv, teta, phi, ucov, vcov, & - q(:, :, :, 1), dt_app = dtvr * iperiod, & - dt_cum = dtvr * day_step * periodav) + q(:, :, :, 1)) ENDIF end do time_integration CALL dynredem1("restart.nc", vcov, ucov, teta, q, masse, ps, & - itau=itau_dyn+itaufin) + itau = itau_dyn + itaufin) ! Calcul des tendances dynamiques: - CALL geopot(ip1jmp1, teta, pk, pks, phis, phi) + CALL geopot((iim + 1) * (jjm + 1), teta, pk, pks, phis, phi) CALL caldyn(itaufin, ucov, vcov, teta, ps, masse, pk, pkf, phis, phi, & - MOD(itaufin, iconser) == 0, du, dv, dteta, dp, w, pbaru, pbarv, & - time_0) + dudyn, dv, dteta, dp, w, pbaru, pbarv, time_0, & + conser = MOD(itaufin, iconser) == 0) END SUBROUTINE leapfrog