/[lmdze]/trunk/Sources/dyn3d/ppm3d.f
ViewVC logotype

Contents of /trunk/Sources/dyn3d/ppm3d.f

Parent Directory Parent Directory | Revision Log Revision Log


Revision 76 - (show annotations)
Fri Nov 15 18:45:49 2013 UTC (10 years, 6 months ago) by guez
Original Path: trunk/dyn3d/ppm3d.f
File size: 52639 byte(s)
Moved everything out of libf.
1 !
2 ! $Header: /home/cvsroot/LMDZ4/libf/dyn3d/ppm3d.F,v 1.1.1.1 2004/05/19 12:53:07 lmdzadmin Exp $
3 !
4
5 cFrom lin@explorer.gsfc.nasa.gov Wed Apr 15 17:44:44 1998
6 cDate: Wed, 15 Apr 1998 11:37:03 -0400
7 cFrom: lin@explorer.gsfc.nasa.gov
8 cTo: Frederic.Hourdin@lmd.jussieu.fr
9 cSubject: 3D transport module of the GSFC CTM and GEOS GCM
10
11
12 cThis code is sent to you by S-J Lin, DAO, NASA-GSFC
13
14 cNote: this version is intended for machines like CRAY
15 C-90. No multitasking directives implemented.
16
17
18 C ********************************************************************
19 C
20 C TransPort Core for Goddard Chemistry Transport Model (G-CTM), Goddard
21 C Earth Observing System General Circulation Model (GEOS-GCM), and Data
22 C Assimilation System (GEOS-DAS).
23 C
24 C ********************************************************************
25 C
26 C Purpose: given horizontal winds on a hybrid sigma-p surfaces,
27 C one call to tpcore updates the 3-D mixing ratio
28 C fields one time step (NDT). [vertical mass flux is computed
29 C internally consistent with the discretized hydrostatic mass
30 C continuity equation of the C-Grid GEOS-GCM (for IGD=1)].
31 C
32 C Schemes: Multi-dimensional Flux Form Semi-Lagrangian (FFSL) scheme based
33 C on the van Leer or PPM.
34 C (see Lin and Rood 1996).
35 C Version 4.5
36 C Last modified: Dec. 5, 1996
37 C Major changes from version 4.0: a more general vertical hybrid sigma-
38 C pressure coordinate.
39 C Subroutines modified: xtp, ytp, fzppm, qckxyz
40 C Subroutines deleted: vanz
41 C
42 C Author: Shian-Jiann Lin
43 C mail address:
44 C Shian-Jiann Lin*
45 C Code 910.3, NASA/GSFC, Greenbelt, MD 20771
46 C Phone: 301-286-9540
47 C E-mail: lin@dao.gsfc.nasa.gov
48 C
49 C *affiliation:
50 C Joint Center for Earth Systems Technology
51 C The University of Maryland Baltimore County
52 C NASA - Goddard Space Flight Center
53 C References:
54 C
55 C 1. Lin, S.-J., and R. B. Rood, 1996: Multidimensional flux form semi-
56 C Lagrangian transport schemes. Mon. Wea. Rev., 124, 2046-2070.
57 C
58 C 2. Lin, S.-J., W. C. Chao, Y. C. Sud, and G. K. Walker, 1994: A class of
59 C the van Leer-type transport schemes and its applications to the moist-
60 C ure transport in a General Circulation Model. Mon. Wea. Rev., 122,
61 C 1575-1593.
62 C
63 C ****6***0*********0*********0*********0*********0*********0**********72
64 C
65 subroutine ppm3d(IGD,Q,PS1,PS2,U,V,W,NDT,IORD,JORD,KORD,NC,IMR,
66 & JNP,j1,NLAY,AP,BP,PT,AE,fill,dum,Umax)
67
68 c implicit none
69
70 c rajout de déclarations
71 c integer Jmax,kmax,ndt0,nstep,k,j,i,ic,l,js,jn,imh,iad,jad,krd
72 c integer iu,iiu,j2,jmr,js0,jt
73 c real dtdy,dtdy5,rcap,iml,jn0,imjm,pi,dl,dp
74 c real dt,cr1,maxdt,ztc,d5,sum1,sum2,ru
75 C
76 C ********************************************************************
77 C
78 C =============
79 C INPUT:
80 C =============
81 C
82 C Q(IMR,JNP,NLAY,NC): mixing ratios at current time (t)
83 C NC: total number of constituents
84 C IMR: first dimension (E-W); number of Grid intervals in E-W is IMR
85 C JNP: 2nd dimension (N-S); number of Grid intervals in N-S is JNP-1
86 C NLAY: 3rd dimension (number of layers); vertical index increases from 1 at
87 C the model top to NLAY near the surface (see fig. below).
88 C It is assumed that 6 <= NLAY <= JNP (for dynamic memory allocation)
89 C
90 C PS1(IMR,JNP): surface pressure at current time (t)
91 C PS2(IMR,JNP): surface pressure at mid-time-level (t+NDT/2)
92 C PS2 is replaced by the predicted PS (at t+NDT) on output.
93 C Note: surface pressure can have any unit or can be multiplied by any
94 C const.
95 C
96 C The pressure at layer edges are defined as follows:
97 C
98 C p(i,j,k) = AP(k)*PT + BP(k)*PS(i,j) (1)
99 C
100 C Where PT is a constant having the same unit as PS.
101 C AP and BP are unitless constants given at layer edges
102 C defining the vertical coordinate.
103 C BP(1) = 0., BP(NLAY+1) = 1.
104 C The pressure at the model top is PTOP = AP(1)*PT
105 C
106 C For pure sigma system set AP(k) = 1 for all k, PT = PTOP,
107 C BP(k) = sige(k) (sigma at edges), PS = Psfc - PTOP.
108 C
109 C Note: the sigma-P coordinate is a subset of Eq. 1, which in turn
110 C is a subset of the following even more general sigma-P-thelta coord.
111 C currently under development.
112 C p(i,j,k) = (AP(k)*PT + BP(k)*PS(i,j))/(D(k)-C(k)*TE**(-1/kapa))
113 C
114 C /////////////////////////////////
115 C / \ ------------- PTOP -------------- AP(1), BP(1)
116 C |
117 C delp(1) | ........... Q(i,j,1) ............
118 C |
119 C W(1) \ / --------------------------------- AP(2), BP(2)
120 C
121 C
122 C
123 C W(k-1) / \ --------------------------------- AP(k), BP(k)
124 C |
125 C delp(K) | ........... Q(i,j,k) ............
126 C |
127 C W(k) \ / --------------------------------- AP(k+1), BP(k+1)
128 C
129 C
130 C
131 C / \ --------------------------------- AP(NLAY), BP(NLAY)
132 C |
133 C delp(NLAY) | ........... Q(i,j,NLAY) .........
134 C |
135 C W(NLAY)=0 \ / ------------- surface ----------- AP(NLAY+1), BP(NLAY+1)
136 C //////////////////////////////////
137 C
138 C U(IMR,JNP,NLAY) & V(IMR,JNP,NLAY):winds (m/s) at mid-time-level (t+NDT/2)
139 C U and V may need to be polar filtered in advance in some cases.
140 C
141 C IGD: grid type on which winds are defined.
142 C IGD = 0: A-Grid [all variables defined at the same point from south
143 C pole (j=1) to north pole (j=JNP) ]
144 C
145 C IGD = 1 GEOS-GCM C-Grid
146 C [North]
147 C
148 C V(i,j)
149 C |
150 C |
151 C |
152 C U(i-1,j)---Q(i,j)---U(i,j) [EAST]
153 C |
154 C |
155 C |
156 C V(i,j-1)
157 C
158 C U(i, 1) is defined at South Pole.
159 C V(i, 1) is half grid north of the South Pole.
160 C V(i,JMR) is half grid south of the North Pole.
161 C
162 C V must be defined at j=1 and j=JMR if IGD=1
163 C V at JNP need not be given.
164 C
165 C NDT: time step in seconds (need not be constant during the course of
166 C the integration). Suggested value: 30 min. for 4x5, 15 min. for 2x2.5
167 C (Lat-Lon) resolution. Smaller values are recommanded if the model
168 C has a well-resolved stratosphere.
169 C
170 C J1 defines the size of the polar cap:
171 C South polar cap edge is located at -90 + (j1-1.5)*180/(JNP-1) deg.
172 C North polar cap edge is located at 90 - (j1-1.5)*180/(JNP-1) deg.
173 C There are currently only two choices (j1=2 or 3).
174 C IMR must be an even integer if j1 = 2. Recommended value: J1=3.
175 C
176 C IORD, JORD, and KORD are integers controlling various options in E-W, N-S,
177 C and vertical transport, respectively. Recommended values for positive
178 C definite scalars: IORD=JORD=3, KORD=5. Use KORD=3 for non-
179 C positive definite scalars or when linear correlation between constituents
180 C is to be maintained.
181 C
182 C _ORD=
183 C 1: 1st order upstream scheme (too diffusive, not a useful option; it
184 C can be used for debugging purposes; this is THE only known "linear"
185 C monotonic advection scheme.).
186 C 2: 2nd order van Leer (full monotonicity constraint;
187 C see Lin et al 1994, MWR)
188 C 3: monotonic PPM* (slightly improved PPM of Collela & Woodward 1984)
189 C 4: semi-monotonic PPM (same as 3, but overshoots are allowed)
190 C 5: positive-definite PPM (constraint on the subgrid distribution is
191 C only strong enough to prevent generation of negative values;
192 C both overshoots & undershoots are possible).
193 C 6: un-constrained PPM (nearly diffusion free; slightly faster but
194 C positivity not quaranteed. Use this option only when the fields
195 C and winds are very smooth).
196 C
197 C *PPM: Piece-wise Parabolic Method
198 C
199 C Note that KORD <=2 options are no longer supported. DO not use option 4 or 5.
200 C for non-positive definite scalars (such as Ertel Potential Vorticity).
201 C
202 C The implicit numerical diffusion decreases as _ORD increases.
203 C The last two options (ORDER=5, 6) should only be used when there is
204 C significant explicit diffusion (such as a turbulence parameterization). You
205 C might get dispersive results otherwise.
206 C No filter of any kind is applied to the constituent fields here.
207 C
208 C AE: Radius of the sphere (meters).
209 C Recommended value for the planet earth: 6.371E6
210 C
211 C fill(logical): flag to do filling for negatives (see note below).
212 C
213 C Umax: Estimate (upper limit) of the maximum U-wind speed (m/s).
214 C (220 m/s is a good value for troposphere model; 280 m/s otherwise)
215 C
216 C =============
217 C Output
218 C =============
219 C
220 C Q: mixing ratios at future time (t+NDT) (original values are over-written)
221 C W(NLAY): large-scale vertical mass flux as diagnosed from the hydrostatic
222 C relationship. W will have the same unit as PS1 and PS2 (eg, mb).
223 C W must be divided by NDT to get the correct mass-flux unit.
224 C The vertical Courant number C = W/delp_UPWIND, where delp_UPWIND
225 C is the pressure thickness in the "upwind" direction. For example,
226 C C(k) = W(k)/delp(k) if W(k) > 0;
227 C C(k) = W(k)/delp(k+1) if W(k) < 0.
228 C ( W > 0 is downward, ie, toward surface)
229 C PS2: predicted PS at t+NDT (original values are over-written)
230 C
231 C ********************************************************************
232 C NOTES:
233 C This forward-in-time upstream-biased transport scheme reduces to
234 C the 2nd order center-in-time center-in-space mass continuity eqn.
235 C if Q = 1 (constant fields will remain constant). This also ensures
236 C that the computed vertical velocity to be identical to GEOS-1 GCM
237 C for on-line transport.
238 C
239 C A larger polar cap is used if j1=3 (recommended for C-Grid winds or when
240 C winds are noisy near poles).
241 C
242 C Flux-Form Semi-Lagrangian transport in the East-West direction is used
243 C when and where Courant number is greater than one.
244 C
245 C The user needs to change the parameter Jmax or Kmax if the resolution
246 C is greater than 0.5 deg in N-S or 150 layers in the vertical direction.
247 C (this TransPort Core is otherwise resolution independent and can be used
248 C as a library routine).
249 C
250 C PPM is 4th order accurate when grid spacing is uniform (x & y); 3rd
251 C order accurate for non-uniform grid (vertical sigma coord.).
252 C
253 C Time step is limitted only by transport in the meridional direction.
254 C (the FFSL scheme is not implemented in the meridional direction).
255 C
256 C Since only 1-D limiters are applied, negative values could
257 C potentially be generated when large time step is used and when the
258 C initial fields contain discontinuities.
259 C This does not necessarily imply the integration is unstable.
260 C These negatives are typically very small. A filling algorithm is
261 C activated if the user set "fill" to be true.
262 C
263 C The van Leer scheme used here is nearly as accurate as the original PPM
264 C due to the use of a 4th order accurate reference slope. The PPM imple-
265 C mented here is an improvement over the original and is also based on
266 C the 4th order reference slope.
267 C
268 C ****6***0*********0*********0*********0*********0*********0**********72
269 C
270 C User modifiable parameters
271 C
272 parameter (Jmax = 361, kmax = 150)
273 C
274 C ****6***0*********0*********0*********0*********0*********0**********72
275 C
276 C Input-Output arrays
277 C
278
279 real Q(IMR,JNP,NLAY,NC),PS1(IMR,JNP),PS2(IMR,JNP),
280 & U(IMR,JNP,NLAY),V(IMR,JNP,NLAY),AP(NLAY+1),
281 & BP(NLAY+1),W(IMR,JNP,NLAY),NDT,val(NLAY),Umax
282 integer IGD,IORD,JORD,KORD,NC,IMR,JNP,j1,NLAY,AE
283 integer IMRD2
284 real PT
285 logical cross, fill, dum
286 C
287 C Local dynamic arrays
288 C
289 real CRX(IMR,JNP),CRY(IMR,JNP),xmass(IMR,JNP),ymass(IMR,JNP),
290 & fx1(IMR+1),DPI(IMR,JNP,NLAY),delp1(IMR,JNP,NLAY),
291 & WK1(IMR,JNP,NLAY),PU(IMR,JNP),PV(IMR,JNP),DC2(IMR,JNP),
292 & delp2(IMR,JNP,NLAY),DQ(IMR,JNP,NLAY,NC),VA(IMR,JNP),
293 & UA(IMR,JNP),qtmp(-IMR:2*IMR)
294 C
295 C Local static arrays
296 C
297 real DTDX(Jmax), DTDX5(Jmax), acosp(Jmax),
298 & cosp(Jmax), cose(Jmax), DAP(kmax),DBK(Kmax)
299 data NDT0, NSTEP /0, 0/
300 data cross /.true./
301 SAVE DTDY, DTDY5, RCAP, JS0, JN0, IML,
302 & DTDX, DTDX5, ACOSP, COSP, COSE, DAP,DBK
303 C
304
305 JMR = JNP -1
306 IMJM = IMR*JNP
307 j2 = JNP - j1 + 1
308 NSTEP = NSTEP + 1
309 C
310 C *********** Initialization **********************
311 if(NSTEP.eq.1) then
312 c
313 write(6,*) '------------------------------------ '
314 write(6,*) 'NASA/GSFC Transport Core Version 4.5'
315 write(6,*) '------------------------------------ '
316 c
317 WRITE(6,*) 'IMR=',IMR,' JNP=',JNP,' NLAY=',NLAY,' j1=',j1
318 WRITE(6,*) 'NC=',NC,IORD,JORD,KORD,NDT
319 C
320 C controles sur les parametres
321 if(NLAY.LT.6) then
322 write(6,*) 'NLAY must be >= 6'
323 stop
324 endif
325 if (JNP.LT.NLAY) then
326 write(6,*) 'JNP must be >= NLAY'
327 stop
328 endif
329 IMRD2=mod(IMR,2)
330 if (j1.eq.2.and.IMRD2.NE.0) then
331 write(6,*) 'if j1=2 IMR must be an even integer'
332 stop
333 endif
334
335 C
336 if(Jmax.lt.JNP .or. Kmax.lt.NLAY) then
337 write(6,*) 'Jmax or Kmax is too small'
338 stop
339 endif
340 C
341 DO k=1,NLAY
342 DAP(k) = (AP(k+1) - AP(k))*PT
343 DBK(k) = BP(k+1) - BP(k)
344 ENDDO
345 C
346 PI = 4. * ATAN(1.)
347 DL = 2.*PI / float(IMR)
348 DP = PI / float(JMR)
349 C
350 if(IGD.eq.0) then
351 C Compute analytic cosine at cell edges
352 call cosa(cosp,cose,JNP,PI,DP)
353 else
354 C Define cosine consistent with GEOS-GCM (using dycore2.0 or later)
355 call cosc(cosp,cose,JNP,PI,DP)
356 endif
357 C
358 do 15 J=2,JMR
359 15 acosp(j) = 1. / cosp(j)
360 C
361 C Inverse of the Scaled polar cap area.
362 C
363 RCAP = DP / (IMR*(1.-COS((j1-1.5)*DP)))
364 acosp(1) = RCAP
365 acosp(JNP) = RCAP
366 endif
367 C
368 if(NDT0 .ne. NDT) then
369 DT = NDT
370 NDT0 = NDT
371
372 if(Umax .lt. 180.) then
373 write(6,*) 'Umax may be too small!'
374 endif
375 CR1 = abs(Umax*DT)/(DL*AE)
376 MaxDT = DP*AE / abs(Umax) + 0.5
377 write(6,*)'Largest time step for max(V)=',Umax,' is ',MaxDT
378 if(MaxDT .lt. abs(NDT)) then
379 write(6,*) 'Warning!!! NDT maybe too large!'
380 endif
381 C
382 if(CR1.ge.0.95) then
383 JS0 = 0
384 JN0 = 0
385 IML = IMR-2
386 ZTC = 0.
387 else
388 ZTC = acos(CR1) * (180./PI)
389 C
390 JS0 = float(JMR)*(90.-ZTC)/180. + 2
391 JS0 = max(JS0, J1+1)
392 IML = min(6*JS0/(J1-1)+2, 4*IMR/5)
393 JN0 = JNP-JS0+1
394 endif
395 C
396 C
397 do J=2,JMR
398 DTDX(j) = DT / ( DL*AE*COSP(J) )
399
400 DTDX5(j) = 0.5*DTDX(j)
401 enddo
402 C
403
404 DTDY = DT /(AE*DP)
405 DTDY5 = 0.5*DTDY
406 C
407 endif
408 C
409 C *********** End Initialization **********************
410 C
411 C delp = pressure thickness: the psudo-density in a hydrostatic system.
412 do k=1,NLAY
413 do j=1,JNP
414 do i=1,IMR
415 delp1(i,j,k)=DAP(k)+DBK(k)*PS1(i,j)
416 delp2(i,j,k)=DAP(k)+DBK(k)*PS2(i,j)
417 enddo
418 enddo
419 enddo
420
421 C
422 if(j1.ne.2) then
423 DO 40 IC=1,NC
424 DO 40 L=1,NLAY
425 DO 40 I=1,IMR
426 Q(I, 2,L,IC) = Q(I, 1,L,IC)
427 40 Q(I,JMR,L,IC) = Q(I,JNP,L,IC)
428 endif
429 C
430 C Compute "tracer density"
431 DO 550 IC=1,NC
432 DO 44 k=1,NLAY
433 DO 44 j=1,JNP
434 DO 44 i=1,IMR
435 44 DQ(i,j,k,IC) = Q(i,j,k,IC)*delp1(i,j,k)
436 550 continue
437 C
438 do 1500 k=1,NLAY
439 C
440 if(IGD.eq.0) then
441 C Convert winds on A-Grid to Courant number on C-Grid.
442 call A2C(U(1,1,k),V(1,1,k),IMR,JMR,j1,j2,CRX,CRY,dtdx5,DTDY5)
443 else
444 C Convert winds on C-grid to Courant number
445 do 45 j=j1,j2
446 do 45 i=2,IMR
447 45 CRX(i,J) = dtdx(j)*U(i-1,j,k)
448
449 C
450 do 50 j=j1,j2
451 50 CRX(1,J) = dtdx(j)*U(IMR,j,k)
452 C
453 do 55 i=1,IMR*JMR
454 55 CRY(i,2) = DTDY*V(i,1,k)
455 endif
456 C
457 C Determine JS and JN
458 JS = j1
459 JN = j2
460 C
461 do j=JS0,j1+1,-1
462 do i=1,IMR
463 if(abs(CRX(i,j)).GT.1.) then
464 JS = j
465 go to 2222
466 endif
467 enddo
468 enddo
469 C
470 2222 continue
471 do j=JN0,j2-1
472 do i=1,IMR
473 if(abs(CRX(i,j)).GT.1.) then
474 JN = j
475 go to 2233
476 endif
477 enddo
478 enddo
479 2233 continue
480 C
481 if(j1.ne.2) then ! Enlarged polar cap.
482 do i=1,IMR
483 DPI(i, 2,k) = 0.
484 DPI(i,JMR,k) = 0.
485 enddo
486 endif
487 C
488 C ******* Compute horizontal mass fluxes ************
489 C
490 C N-S component
491 do j=j1,j2+1
492 D5 = 0.5 * COSE(j)
493 do i=1,IMR
494 ymass(i,j) = CRY(i,j)*D5*(delp2(i,j,k) + delp2(i,j-1,k))
495 enddo
496 enddo
497 C
498 do 95 j=j1,j2
499 DO 95 i=1,IMR
500 95 DPI(i,j,k) = (ymass(i,j) - ymass(i,j+1)) * acosp(j)
501 C
502 C Poles
503 sum1 = ymass(IMR,j1 )
504 sum2 = ymass(IMR,J2+1)
505 do i=1,IMR-1
506 sum1 = sum1 + ymass(i,j1 )
507 sum2 = sum2 + ymass(i,J2+1)
508 enddo
509 C
510 sum1 = - sum1 * RCAP
511 sum2 = sum2 * RCAP
512 do i=1,IMR
513 DPI(i, 1,k) = sum1
514 DPI(i,JNP,k) = sum2
515 enddo
516 C
517 C E-W component
518 C
519 do j=j1,j2
520 do i=2,IMR
521 PU(i,j) = 0.5 * (delp2(i,j,k) + delp2(i-1,j,k))
522 enddo
523 enddo
524 C
525 do j=j1,j2
526 PU(1,j) = 0.5 * (delp2(1,j,k) + delp2(IMR,j,k))
527 enddo
528 C
529 do 110 j=j1,j2
530 DO 110 i=1,IMR
531 110 xmass(i,j) = PU(i,j)*CRX(i,j)
532 C
533 DO 120 j=j1,j2
534 DO 120 i=1,IMR-1
535 120 DPI(i,j,k) = DPI(i,j,k) + xmass(i,j) - xmass(i+1,j)
536 C
537 DO 130 j=j1,j2
538 130 DPI(IMR,j,k) = DPI(IMR,j,k) + xmass(IMR,j) - xmass(1,j)
539 C
540 DO j=j1,j2
541 do i=1,IMR-1
542 UA(i,j) = 0.5 * (CRX(i,j)+CRX(i+1,j))
543 enddo
544 enddo
545 C
546 DO j=j1,j2
547 UA(imr,j) = 0.5 * (CRX(imr,j)+CRX(1,j))
548 enddo
549 ccccccccccccccccccccccccccccccccccccccccccccccccccccccc
550 c Rajouts pour LMDZ.3.3
551 ccccccccccccccccccccccccccccccccccccccccccccccccccccccc
552 do i=1,IMR
553 do j=1,JNP
554 VA(i,j)=0.
555 enddo
556 enddo
557
558 do i=1,imr*(JMR-1)
559 VA(i,2) = 0.5*(CRY(i,2)+CRY(i,3))
560 enddo
561 C
562 if(j1.eq.2) then
563 IMH = IMR/2
564 do i=1,IMH
565 VA(i, 1) = 0.5*(CRY(i,2)-CRY(i+IMH,2))
566 VA(i+IMH, 1) = -VA(i,1)
567 VA(i, JNP) = 0.5*(CRY(i,JNP)-CRY(i+IMH,JMR))
568 VA(i+IMH,JNP) = -VA(i,JNP)
569 enddo
570 VA(IMR,1)=VA(1,1)
571 VA(IMR,JNP)=VA(1,JNP)
572 endif
573 C
574 C ****6***0*********0*********0*********0*********0*********0**********72
575 do 1000 IC=1,NC
576 C
577 do i=1,IMJM
578 wk1(i,1,1) = 0.
579 wk1(i,1,2) = 0.
580 enddo
581 C
582 C E-W advective cross term
583 do 250 j=J1,J2
584 if(J.GT.JS .and. J.LT.JN) GO TO 250
585 C
586 do i=1,IMR
587 qtmp(i) = q(i,j,k,IC)
588 enddo
589 C
590 do i=-IML,0
591 qtmp(i) = q(IMR+i,j,k,IC)
592 qtmp(IMR+1-i) = q(1-i,j,k,IC)
593 enddo
594 C
595 DO 230 i=1,IMR
596 iu = UA(i,j)
597 ru = UA(i,j) - iu
598 iiu = i-iu
599 if(UA(i,j).GE.0.) then
600 wk1(i,j,1) = qtmp(iiu)+ru*(qtmp(iiu-1)-qtmp(iiu))
601 else
602 wk1(i,j,1) = qtmp(iiu)+ru*(qtmp(iiu)-qtmp(iiu+1))
603 endif
604 wk1(i,j,1) = wk1(i,j,1) - qtmp(i)
605 230 continue
606 250 continue
607 C
608 if(JN.ne.0) then
609 do j=JS+1,JN-1
610 C
611 do i=1,IMR
612 qtmp(i) = q(i,j,k,IC)
613 enddo
614 C
615 qtmp(0) = q(IMR,J,k,IC)
616 qtmp(IMR+1) = q( 1,J,k,IC)
617 C
618 do i=1,imr
619 iu = i - UA(i,j)
620 wk1(i,j,1) = UA(i,j)*(qtmp(iu) - qtmp(iu+1))
621 enddo
622 enddo
623 endif
624 C ****6***0*********0*********0*********0*********0*********0**********72
625 C Contribution from the N-S advection
626 do i=1,imr*(j2-j1+1)
627 JT = float(J1) - VA(i,j1)
628 wk1(i,j1,2) = VA(i,j1) * (q(i,jt,k,IC) - q(i,jt+1,k,IC))
629 enddo
630 C
631 do i=1,IMJM
632 wk1(i,1,1) = q(i,1,k,IC) + 0.5*wk1(i,1,1)
633 wk1(i,1,2) = q(i,1,k,IC) + 0.5*wk1(i,1,2)
634 enddo
635 C
636 if(cross) then
637 C Add cross terms in the vertical direction.
638 if(IORD .GE. 2) then
639 iad = 2
640 else
641 iad = 1
642 endif
643 C
644 if(JORD .GE. 2) then
645 jad = 2
646 else
647 jad = 1
648 endif
649 call xadv(IMR,JNP,j1,j2,wk1(1,1,2),UA,JS,JN,IML,DC2,iad)
650 call yadv(IMR,JNP,j1,j2,wk1(1,1,1),VA,PV,W,jad)
651 do j=1,JNP
652 do i=1,IMR
653 q(i,j,k,IC) = q(i,j,k,IC) + DC2(i,j) + PV(i,j)
654 enddo
655 enddo
656 endif
657 C
658 call xtp(IMR,JNP,IML,j1,j2,JN,JS,PU,DQ(1,1,k,IC),wk1(1,1,2)
659 & ,CRX,fx1,xmass,IORD)
660
661 call ytp(IMR,JNP,j1,j2,acosp,RCAP,DQ(1,1,k,IC),wk1(1,1,1),CRY,
662 & DC2,ymass,WK1(1,1,3),wk1(1,1,4),WK1(1,1,5),WK1(1,1,6),JORD)
663 C
664 1000 continue
665 1500 continue
666 C
667 C ******* Compute vertical mass flux (same unit as PS) ***********
668 C
669 C 1st step: compute total column mass CONVERGENCE.
670 C
671 do 320 j=1,JNP
672 do 320 i=1,IMR
673 320 CRY(i,j) = DPI(i,j,1)
674 C
675 do 330 k=2,NLAY
676 do 330 j=1,JNP
677 do 330 i=1,IMR
678 CRY(i,j) = CRY(i,j) + DPI(i,j,k)
679 330 continue
680 C
681 do 360 j=1,JNP
682 do 360 i=1,IMR
683 C
684 C 2nd step: compute PS2 (PS at n+1) using the hydrostatic assumption.
685 C Changes (increases) to surface pressure = total column mass convergence
686 C
687 PS2(i,j) = PS1(i,j) + CRY(i,j)
688 C
689 C 3rd step: compute vertical mass flux from mass conservation principle.
690 C
691 W(i,j,1) = DPI(i,j,1) - DBK(1)*CRY(i,j)
692 W(i,j,NLAY) = 0.
693 360 continue
694 C
695 do 370 k=2,NLAY-1
696 do 370 j=1,JNP
697 do 370 i=1,IMR
698 W(i,j,k) = W(i,j,k-1) + DPI(i,j,k) - DBK(k)*CRY(i,j)
699 370 continue
700 C
701 DO 380 k=1,NLAY
702 DO 380 j=1,JNP
703 DO 380 i=1,IMR
704 delp2(i,j,k) = DAP(k) + DBK(k)*PS2(i,j)
705 380 continue
706 C
707 KRD = max(3, KORD)
708 do 4000 IC=1,NC
709 C
710 C****6***0*********0*********0*********0*********0*********0**********72
711
712 call FZPPM(IMR,JNP,NLAY,j1,DQ(1,1,1,IC),W,Q(1,1,1,IC),WK1,DPI,
713 & DC2,CRX,CRY,PU,PV,xmass,ymass,delp1,KRD)
714 C
715
716 if(fill) call qckxyz(DQ(1,1,1,IC),DC2,IMR,JNP,NLAY,j1,j2,
717 & cosp,acosp,.false.,IC,NSTEP)
718 C
719 C Recover tracer mixing ratio from "density" using predicted
720 C "air density" (pressure thickness) at time-level n+1
721 C
722 DO k=1,NLAY
723 DO j=1,JNP
724 DO i=1,IMR
725 Q(i,j,k,IC) = DQ(i,j,k,IC) / delp2(i,j,k)
726 enddo
727 enddo
728 enddo
729 C
730 if(j1.ne.2) then
731 DO 400 k=1,NLAY
732 DO 400 I=1,IMR
733 c j=1 c'est le pôle Sud, j=JNP c'est le pôle Nord
734 Q(I, 2,k,IC) = Q(I, 1,k,IC)
735 Q(I,JMR,k,IC) = Q(I,JMP,k,IC)
736 400 CONTINUE
737 endif
738 4000 continue
739 C
740 if(j1.ne.2) then
741 DO 5000 k=1,NLAY
742 DO 5000 i=1,IMR
743 W(i, 2,k) = W(i, 1,k)
744 W(i,JMR,k) = W(i,JNP,k)
745 5000 continue
746 endif
747 C
748 RETURN
749 END
750 C
751 C****6***0*********0*********0*********0*********0*********0**********72
752 subroutine FZPPM(IMR,JNP,NLAY,j1,DQ,WZ,P,DC,DQDT,AR,AL,A6,
753 & flux,wk1,wk2,wz2,delp,KORD)
754 parameter ( kmax = 150 )
755 parameter ( R23 = 2./3., R3 = 1./3.)
756 real WZ(IMR,JNP,NLAY),P(IMR,JNP,NLAY),DC(IMR,JNP,NLAY),
757 & wk1(IMR,*),delp(IMR,JNP,NLAY),DQ(IMR,JNP,NLAY),
758 & DQDT(IMR,JNP,NLAY)
759 C Assuming JNP >= NLAY
760 real AR(IMR,*),AL(IMR,*),A6(IMR,*),flux(IMR,*),wk2(IMR,*),
761 & wz2(IMR,*)
762 C
763 JMR = JNP - 1
764 IMJM = IMR*JNP
765 NLAYM1 = NLAY - 1
766 C
767 LMT = KORD - 3
768 C
769 C ****6***0*********0*********0*********0*********0*********0**********72
770 C Compute DC for PPM
771 C ****6***0*********0*********0*********0*********0*********0**********72
772 C
773 do 1000 k=1,NLAYM1
774 do 1000 i=1,IMJM
775 DQDT(i,1,k) = P(i,1,k+1) - P(i,1,k)
776 1000 continue
777 C
778 DO 1220 k=2,NLAYM1
779 DO 1220 I=1,IMJM
780 c0 = delp(i,1,k) / (delp(i,1,k-1)+delp(i,1,k)+delp(i,1,k+1))
781 c1 = (delp(i,1,k-1)+0.5*delp(i,1,k))/(delp(i,1,k+1)+delp(i,1,k))
782 c2 = (delp(i,1,k+1)+0.5*delp(i,1,k))/(delp(i,1,k-1)+delp(i,1,k))
783 tmp = c0*(c1*DQDT(i,1,k) + c2*DQDT(i,1,k-1))
784 Qmax = max(P(i,1,k-1),P(i,1,k),P(i,1,k+1)) - P(i,1,k)
785 Qmin = P(i,1,k) - min(P(i,1,k-1),P(i,1,k),P(i,1,k+1))
786 DC(i,1,k) = sign(min(abs(tmp),Qmax,Qmin), tmp)
787 1220 CONTINUE
788
789 C
790 C ****6***0*********0*********0*********0*********0*********0**********72
791 C Loop over latitudes (to save memory)
792 C ****6***0*********0*********0*********0*********0*********0**********72
793 C
794 DO 2000 j=1,JNP
795 if((j.eq.2 .or. j.eq.JMR) .and. j1.ne.2) goto 2000
796 C
797 DO k=1,NLAY
798 DO i=1,IMR
799 wz2(i,k) = WZ(i,j,k)
800 wk1(i,k) = P(i,j,k)
801 wk2(i,k) = delp(i,j,k)
802 flux(i,k) = DC(i,j,k) !this flux is actually the monotone slope
803 enddo
804 enddo
805 C
806 C****6***0*********0*********0*********0*********0*********0**********72
807 C Compute first guesses at cell interfaces
808 C First guesses are required to be continuous.
809 C ****6***0*********0*********0*********0*********0*********0**********72
810 C
811 C three-cell parabolic subgrid distribution at model top
812 C two-cell parabolic with zero gradient subgrid distribution
813 C at the surface.
814 C
815 C First guess top edge value
816 DO 10 i=1,IMR
817 C three-cell PPM
818 C Compute a,b, and c of q = aP**2 + bP + c using cell averages and delp
819 a = 3.*( DQDT(i,j,2) - DQDT(i,j,1)*(wk2(i,2)+wk2(i,3))/
820 & (wk2(i,1)+wk2(i,2)) ) /
821 & ( (wk2(i,2)+wk2(i,3))*(wk2(i,1)+wk2(i,2)+wk2(i,3)) )
822 b = 2.*DQDT(i,j,1)/(wk2(i,1)+wk2(i,2)) -
823 & R23*a*(2.*wk2(i,1)+wk2(i,2))
824 AL(i,1) = wk1(i,1) - wk2(i,1)*(R3*a*wk2(i,1) + 0.5*b)
825 AL(i,2) = wk2(i,1)*(a*wk2(i,1) + b) + AL(i,1)
826 C
827 C Check if change sign
828 if(wk1(i,1)*AL(i,1).le.0.) then
829 AL(i,1) = 0.
830 flux(i,1) = 0.
831 else
832 flux(i,1) = wk1(i,1) - AL(i,1)
833 endif
834 10 continue
835 C
836 C Bottom
837 DO 15 i=1,IMR
838 C 2-cell PPM with zero gradient right at the surface
839 C
840 fct = DQDT(i,j,NLAYM1)*wk2(i,NLAY)**2 /
841 & ( (wk2(i,NLAY)+wk2(i,NLAYM1))*(2.*wk2(i,NLAY)+wk2(i,NLAYM1)))
842 AR(i,NLAY) = wk1(i,NLAY) + fct
843 AL(i,NLAY) = wk1(i,NLAY) - (fct+fct)
844 if(wk1(i,NLAY)*AR(i,NLAY).le.0.) AR(i,NLAY) = 0.
845 flux(i,NLAY) = AR(i,NLAY) - wk1(i,NLAY)
846 15 continue
847
848 C
849 C****6***0*********0*********0*********0*********0*********0**********72
850 C 4th order interpolation in the interior.
851 C****6***0*********0*********0*********0*********0*********0**********72
852 C
853 DO 14 k=3,NLAYM1
854 DO 12 i=1,IMR
855 c1 = DQDT(i,j,k-1)*wk2(i,k-1) / (wk2(i,k-1)+wk2(i,k))
856 c2 = 2. / (wk2(i,k-2)+wk2(i,k-1)+wk2(i,k)+wk2(i,k+1))
857 A1 = (wk2(i,k-2)+wk2(i,k-1)) / (2.*wk2(i,k-1)+wk2(i,k))
858 A2 = (wk2(i,k )+wk2(i,k+1)) / (2.*wk2(i,k)+wk2(i,k-1))
859 AL(i,k) = wk1(i,k-1) + c1 + c2 *
860 & ( wk2(i,k )*(c1*(A1 - A2)+A2*flux(i,k-1)) -
861 & wk2(i,k-1)*A1*flux(i,k) )
862 12 CONTINUE
863 14 continue
864 C
865 do 20 i=1,IMR*NLAYM1
866 AR(i,1) = AL(i,2)
867 20 continue
868 C
869 do 30 i=1,IMR*NLAY
870 A6(i,1) = 3.*(wk1(i,1)+wk1(i,1) - (AL(i,1)+AR(i,1)))
871 30 continue
872 C
873 C****6***0*********0*********0*********0*********0*********0**********72
874 C Top & Bot always monotonic
875 call lmtppm(flux(1,1),A6(1,1),AR(1,1),AL(1,1),wk1(1,1),IMR,0)
876 call lmtppm(flux(1,NLAY),A6(1,NLAY),AR(1,NLAY),AL(1,NLAY),
877 & wk1(1,NLAY),IMR,0)
878 C
879 C Interior depending on KORD
880 if(LMT.LE.2)
881 & call lmtppm(flux(1,2),A6(1,2),AR(1,2),AL(1,2),wk1(1,2),
882 & IMR*(NLAY-2),LMT)
883 C
884 C****6***0*********0*********0*********0*********0*********0**********72
885 C
886 DO 140 i=1,IMR*NLAYM1
887 IF(wz2(i,1).GT.0.) then
888 CM = wz2(i,1) / wk2(i,1)
889 flux(i,2) = AR(i,1)+0.5*CM*(AL(i,1)-AR(i,1)+A6(i,1)*(1.-R23*CM))
890 else
891 CP= wz2(i,1) / wk2(i,2)
892 flux(i,2) = AL(i,2)+0.5*CP*(AL(i,2)-AR(i,2)-A6(i,2)*(1.+R23*CP))
893 endif
894 140 continue
895 C
896 DO 250 i=1,IMR*NLAYM1
897 flux(i,2) = wz2(i,1) * flux(i,2)
898 250 continue
899 C
900 do 350 i=1,IMR
901 DQ(i,j, 1) = DQ(i,j, 1) - flux(i, 2)
902 DQ(i,j,NLAY) = DQ(i,j,NLAY) + flux(i,NLAY)
903 350 continue
904 C
905 do 360 k=2,NLAYM1
906 do 360 i=1,IMR
907 360 DQ(i,j,k) = DQ(i,j,k) + flux(i,k) - flux(i,k+1)
908 2000 continue
909 return
910 end
911 C
912 subroutine xtp(IMR,JNP,IML,j1,j2,JN,JS,PU,DQ,Q,UC,
913 & fx1,xmass,IORD)
914 dimension UC(IMR,*),DC(-IML:IMR+IML+1),xmass(IMR,JNP)
915 & ,fx1(IMR+1),DQ(IMR,JNP),qtmp(-IML:IMR+1+IML)
916 dimension PU(IMR,JNP),Q(IMR,JNP),ISAVE(IMR)
917 C
918 IMP = IMR + 1
919 C
920 C van Leer at high latitudes
921 jvan = max(1,JNP/18)
922 j1vl = j1+jvan
923 j2vl = j2-jvan
924 C
925 do 1310 j=j1,j2
926 C
927 do i=1,IMR
928 qtmp(i) = q(i,j)
929 enddo
930 C
931 if(j.ge.JN .or. j.le.JS) goto 2222
932 C ************* Eulerian **********
933 C
934 qtmp(0) = q(IMR,J)
935 qtmp(-1) = q(IMR-1,J)
936 qtmp(IMP) = q(1,J)
937 qtmp(IMP+1) = q(2,J)
938 C
939 IF(IORD.eq.1 .or. j.eq.j1. or. j.eq.j2) THEN
940 DO 1406 i=1,IMR
941 iu = float(i) - uc(i,j)
942 1406 fx1(i) = qtmp(iu)
943 ELSE
944 call xmist(IMR,IML,Qtmp,DC)
945 DC(0) = DC(IMR)
946 C
947 if(IORD.eq.2 .or. j.le.j1vl .or. j.ge.j2vl) then
948 DO 1408 i=1,IMR
949 iu = float(i) - uc(i,j)
950 1408 fx1(i) = qtmp(iu) + DC(iu)*(sign(1.,uc(i,j))-uc(i,j))
951 else
952 call fxppm(IMR,IML,UC(1,j),Qtmp,DC,fx1,IORD)
953 endif
954 C
955 ENDIF
956 C
957 DO 1506 i=1,IMR
958 1506 fx1(i) = fx1(i)*xmass(i,j)
959 C
960 goto 1309
961 C
962 C ***** Conservative (flux-form) Semi-Lagrangian transport *****
963 C
964 2222 continue
965 C
966 do i=-IML,0
967 qtmp(i) = q(IMR+i,j)
968 qtmp(IMP-i) = q(1-i,j)
969 enddo
970 C
971 IF(IORD.eq.1 .or. j.eq.j1. or. j.eq.j2) THEN
972 DO 1306 i=1,IMR
973 itmp = INT(uc(i,j))
974 ISAVE(i) = i - itmp
975 iu = i - uc(i,j)
976 1306 fx1(i) = (uc(i,j) - itmp)*qtmp(iu)
977 ELSE
978 call xmist(IMR,IML,Qtmp,DC)
979 C
980 do i=-IML,0
981 DC(i) = DC(IMR+i)
982 DC(IMP-i) = DC(1-i)
983 enddo
984 C
985 DO 1307 i=1,IMR
986 itmp = INT(uc(i,j))
987 rut = uc(i,j) - itmp
988 ISAVE(i) = i - itmp
989 iu = i - uc(i,j)
990 1307 fx1(i) = rut*(qtmp(iu) + DC(iu)*(sign(1.,rut) - rut))
991 ENDIF
992 C
993 do 1308 i=1,IMR
994 IF(uc(i,j).GT.1.) then
995 CDIR$ NOVECTOR
996 do ist = ISAVE(i),i-1
997 fx1(i) = fx1(i) + qtmp(ist)
998 enddo
999 elseIF(uc(i,j).LT.-1.) then
1000 do ist = i,ISAVE(i)-1
1001 fx1(i) = fx1(i) - qtmp(ist)
1002 enddo
1003 CDIR$ VECTOR
1004 endif
1005 1308 continue
1006 do i=1,IMR
1007 fx1(i) = PU(i,j)*fx1(i)
1008 enddo
1009 C
1010 C ***************************************
1011 C
1012 1309 fx1(IMP) = fx1(1)
1013 DO 1215 i=1,IMR
1014 1215 DQ(i,j) = DQ(i,j) + fx1(i)-fx1(i+1)
1015 C
1016 C ***************************************
1017 C
1018 1310 continue
1019 return
1020 end
1021 C
1022 subroutine fxppm(IMR,IML,UT,P,DC,flux,IORD)
1023 parameter ( R3 = 1./3., R23 = 2./3. )
1024 DIMENSION UT(*),flux(*),P(-IML:IMR+IML+1),DC(-IML:IMR+IML+1)
1025 DIMENSION AR(0:IMR),AL(0:IMR),A6(0:IMR)
1026 integer LMT
1027 c logical first
1028 c data first /.true./
1029 c SAVE LMT
1030 c if(first) then
1031 C
1032 C correction calcul de LMT a chaque passage pour pouvoir choisir
1033 c plusieurs schemas PPM pour differents traceurs
1034 c IF (IORD.LE.0) then
1035 c if(IMR.GE.144) then
1036 c LMT = 0
1037 c elseif(IMR.GE.72) then
1038 c LMT = 1
1039 c else
1040 c LMT = 2
1041 c endif
1042 c else
1043 c LMT = IORD - 3
1044 c endif
1045 C
1046 LMT = IORD - 3
1047
1048 DO 10 i=1,IMR
1049 10 AL(i) = 0.5*(p(i-1)+p(i)) + (DC(i-1) - DC(i))*R3
1050 C
1051 do 20 i=1,IMR-1
1052 20 AR(i) = AL(i+1)
1053 AR(IMR) = AL(1)
1054 C
1055 do 30 i=1,IMR
1056 30 A6(i) = 3.*(p(i)+p(i) - (AL(i)+AR(i)))
1057 C
1058 if(LMT.LE.2) call lmtppm(DC(1),A6(1),AR(1),AL(1),P(1),IMR,LMT)
1059 C
1060 AL(0) = AL(IMR)
1061 AR(0) = AR(IMR)
1062 A6(0) = A6(IMR)
1063 C
1064 DO i=1,IMR
1065 IF(UT(i).GT.0.) then
1066 flux(i) = AR(i-1) + 0.5*UT(i)*(AL(i-1) - AR(i-1) +
1067 & A6(i-1)*(1.-R23*UT(i)) )
1068 else
1069 flux(i) = AL(i) - 0.5*UT(i)*(AR(i) - AL(i) +
1070 & A6(i)*(1.+R23*UT(i)))
1071 endif
1072 enddo
1073 return
1074 end
1075 C
1076 subroutine xmist(IMR,IML,P,DC)
1077 parameter( R24 = 1./24.)
1078 dimension P(-IML:IMR+1+IML),DC(-IML:IMR+1+IML)
1079 C
1080 do 10 i=1,IMR
1081 tmp = R24*(8.*(p(i+1) - p(i-1)) + p(i-2) - p(i+2))
1082 Pmax = max(P(i-1), p(i), p(i+1)) - p(i)
1083 Pmin = p(i) - min(P(i-1), p(i), p(i+1))
1084 10 DC(i) = sign(min(abs(tmp),Pmax,Pmin), tmp)
1085 return
1086 end
1087 C
1088 subroutine ytp(IMR,JNP,j1,j2,acosp,RCAP,DQ,P,VC,DC2
1089 & ,ymass,fx,A6,AR,AL,JORD)
1090 dimension P(IMR,JNP),VC(IMR,JNP),ymass(IMR,JNP)
1091 & ,DC2(IMR,JNP),DQ(IMR,JNP),acosp(JNP)
1092 C Work array
1093 DIMENSION fx(IMR,JNP),AR(IMR,JNP),AL(IMR,JNP),A6(IMR,JNP)
1094 C
1095 JMR = JNP - 1
1096 len = IMR*(J2-J1+2)
1097 C
1098 if(JORD.eq.1) then
1099 DO 1000 i=1,len
1100 JT = float(J1) - VC(i,J1)
1101 1000 fx(i,j1) = p(i,JT)
1102 else
1103
1104 call ymist(IMR,JNP,j1,P,DC2,4)
1105 C
1106 if(JORD.LE.0 .or. JORD.GE.3) then
1107
1108 call fyppm(VC,P,DC2,fx,IMR,JNP,j1,j2,A6,AR,AL,JORD)
1109
1110 else
1111 DO 1200 i=1,len
1112 JT = float(J1) - VC(i,J1)
1113 1200 fx(i,j1) = p(i,JT) + (sign(1.,VC(i,j1))-VC(i,j1))*DC2(i,JT)
1114 endif
1115 endif
1116 C
1117 DO 1300 i=1,len
1118 1300 fx(i,j1) = fx(i,j1)*ymass(i,j1)
1119 C
1120 DO 1400 j=j1,j2
1121 DO 1400 i=1,IMR
1122 1400 DQ(i,j) = DQ(i,j) + (fx(i,j) - fx(i,j+1)) * acosp(j)
1123 C
1124 C Poles
1125 sum1 = fx(IMR,j1 )
1126 sum2 = fx(IMR,J2+1)
1127 do i=1,IMR-1
1128 sum1 = sum1 + fx(i,j1 )
1129 sum2 = sum2 + fx(i,J2+1)
1130 enddo
1131 C
1132 sum1 = DQ(1, 1) - sum1 * RCAP
1133 sum2 = DQ(1,JNP) + sum2 * RCAP
1134 do i=1,IMR
1135 DQ(i, 1) = sum1
1136 DQ(i,JNP) = sum2
1137 enddo
1138 C
1139 if(j1.ne.2) then
1140 do i=1,IMR
1141 DQ(i, 2) = sum1
1142 DQ(i,JMR) = sum2
1143 enddo
1144 endif
1145 C
1146 return
1147 end
1148 C
1149 subroutine ymist(IMR,JNP,j1,P,DC,ID)
1150 parameter ( R24 = 1./24. )
1151 dimension P(IMR,JNP),DC(IMR,JNP)
1152 C
1153 IMH = IMR / 2
1154 JMR = JNP - 1
1155 IJM3 = IMR*(JMR-3)
1156 C
1157 IF(ID.EQ.2) THEN
1158 do 10 i=1,IMR*(JMR-1)
1159 tmp = 0.25*(p(i,3) - p(i,1))
1160 Pmax = max(p(i,1),p(i,2),p(i,3)) - p(i,2)
1161 Pmin = p(i,2) - min(p(i,1),p(i,2),p(i,3))
1162 DC(i,2) = sign(min(abs(tmp),Pmin,Pmax),tmp)
1163 10 CONTINUE
1164 ELSE
1165 do 12 i=1,IMH
1166 C J=2
1167 tmp = (8.*(p(i,3) - p(i,1)) + p(i+IMH,2) - p(i,4))*R24
1168 Pmax = max(p(i,1),p(i,2),p(i,3)) - p(i,2)
1169 Pmin = p(i,2) - min(p(i,1),p(i,2),p(i,3))
1170 DC(i,2) = sign(min(abs(tmp),Pmin,Pmax),tmp)
1171 C J=JMR
1172 tmp=(8.*(p(i,JNP)-p(i,JMR-1))+p(i,JMR-2)-p(i+IMH,JMR))*R24
1173 Pmax = max(p(i,JMR-1),p(i,JMR),p(i,JNP)) - p(i,JMR)
1174 Pmin = p(i,JMR) - min(p(i,JMR-1),p(i,JMR),p(i,JNP))
1175 DC(i,JMR) = sign(min(abs(tmp),Pmin,Pmax),tmp)
1176 12 CONTINUE
1177 do 14 i=IMH+1,IMR
1178 C J=2
1179 tmp = (8.*(p(i,3) - p(i,1)) + p(i-IMH,2) - p(i,4))*R24
1180 Pmax = max(p(i,1),p(i,2),p(i,3)) - p(i,2)
1181 Pmin = p(i,2) - min(p(i,1),p(i,2),p(i,3))
1182 DC(i,2) = sign(min(abs(tmp),Pmin,Pmax),tmp)
1183 C J=JMR
1184 tmp=(8.*(p(i,JNP)-p(i,JMR-1))+p(i,JMR-2)-p(i-IMH,JMR))*R24
1185 Pmax = max(p(i,JMR-1),p(i,JMR),p(i,JNP)) - p(i,JMR)
1186 Pmin = p(i,JMR) - min(p(i,JMR-1),p(i,JMR),p(i,JNP))
1187 DC(i,JMR) = sign(min(abs(tmp),Pmin,Pmax),tmp)
1188 14 CONTINUE
1189 C
1190 do 15 i=1,IJM3
1191 tmp = (8.*(p(i,4) - p(i,2)) + p(i,1) - p(i,5))*R24
1192 Pmax = max(p(i,2),p(i,3),p(i,4)) - p(i,3)
1193 Pmin = p(i,3) - min(p(i,2),p(i,3),p(i,4))
1194 DC(i,3) = sign(min(abs(tmp),Pmin,Pmax),tmp)
1195 15 CONTINUE
1196 ENDIF
1197 C
1198 if(j1.ne.2) then
1199 do i=1,IMR
1200 DC(i,1) = 0.
1201 DC(i,JNP) = 0.
1202 enddo
1203 else
1204 C Determine slopes in polar caps for scalars!
1205 C
1206 do 13 i=1,IMH
1207 C South
1208 tmp = 0.25*(p(i,2) - p(i+imh,2))
1209 Pmax = max(p(i,2),p(i,1), p(i+imh,2)) - p(i,1)
1210 Pmin = p(i,1) - min(p(i,2),p(i,1), p(i+imh,2))
1211 DC(i,1)=sign(min(abs(tmp),Pmax,Pmin),tmp)
1212 C North.
1213 tmp = 0.25*(p(i+imh,JMR) - p(i,JMR))
1214 Pmax = max(p(i+imh,JMR),p(i,jnp), p(i,JMR)) - p(i,JNP)
1215 Pmin = p(i,JNP) - min(p(i+imh,JMR),p(i,jnp), p(i,JMR))
1216 DC(i,JNP) = sign(min(abs(tmp),Pmax,pmin),tmp)
1217 13 continue
1218 C
1219 do 25 i=imh+1,IMR
1220 DC(i, 1) = - DC(i-imh, 1)
1221 DC(i,JNP) = - DC(i-imh,JNP)
1222 25 continue
1223 endif
1224 return
1225 end
1226 C
1227 subroutine fyppm(VC,P,DC,flux,IMR,JNP,j1,j2,A6,AR,AL,JORD)
1228 parameter ( R3 = 1./3., R23 = 2./3. )
1229 real VC(IMR,*),flux(IMR,*),P(IMR,*),DC(IMR,*)
1230 C Local work arrays.
1231 real AR(IMR,JNP),AL(IMR,JNP),A6(IMR,JNP)
1232 integer LMT
1233 c logical first
1234 C data first /.true./
1235 C SAVE LMT
1236 C
1237 IMH = IMR / 2
1238 JMR = JNP - 1
1239 j11 = j1-1
1240 IMJM1 = IMR*(J2-J1+2)
1241 len = IMR*(J2-J1+3)
1242 C if(first) then
1243 C IF(JORD.LE.0) then
1244 C if(JMR.GE.90) then
1245 C LMT = 0
1246 C elseif(JMR.GE.45) then
1247 C LMT = 1
1248 C else
1249 C LMT = 2
1250 C endif
1251 C else
1252 C LMT = JORD - 3
1253 C endif
1254 C
1255 C first = .false.
1256 C endif
1257 C
1258 c modifs pour pouvoir choisir plusieurs schemas PPM
1259 LMT = JORD - 3
1260 C
1261 DO 10 i=1,IMR*JMR
1262 AL(i,2) = 0.5*(p(i,1)+p(i,2)) + (DC(i,1) - DC(i,2))*R3
1263 AR(i,1) = AL(i,2)
1264 10 CONTINUE
1265 C
1266 CPoles:
1267 C
1268 DO i=1,IMH
1269 AL(i,1) = AL(i+IMH,2)
1270 AL(i+IMH,1) = AL(i,2)
1271 C
1272 AR(i,JNP) = AR(i+IMH,JMR)
1273 AR(i+IMH,JNP) = AR(i,JMR)
1274 ENDDO
1275
1276 ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
1277 c Rajout pour LMDZ.3.3
1278 cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
1279 AR(IMR,1)=AL(1,1)
1280 AR(IMR,JNP)=AL(1,JNP)
1281 ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
1282
1283
1284 do 30 i=1,len
1285 30 A6(i,j11) = 3.*(p(i,j11)+p(i,j11) - (AL(i,j11)+AR(i,j11)))
1286 C
1287 if(LMT.le.2) call lmtppm(DC(1,j11),A6(1,j11),AR(1,j11)
1288 & ,AL(1,j11),P(1,j11),len,LMT)
1289 C
1290
1291 DO 140 i=1,IMJM1
1292 IF(VC(i,j1).GT.0.) then
1293 flux(i,j1) = AR(i,j11) + 0.5*VC(i,j1)*(AL(i,j11) - AR(i,j11) +
1294 & A6(i,j11)*(1.-R23*VC(i,j1)) )
1295 else
1296 flux(i,j1) = AL(i,j1) - 0.5*VC(i,j1)*(AR(i,j1) - AL(i,j1) +
1297 & A6(i,j1)*(1.+R23*VC(i,j1)))
1298 endif
1299 140 continue
1300 return
1301 end
1302 C
1303 subroutine yadv(IMR,JNP,j1,j2,p,VA,ady,wk,IAD)
1304 REAL p(IMR,JNP),ady(IMR,JNP),VA(IMR,JNP)
1305 REAL WK(IMR,-1:JNP+2)
1306 C
1307 JMR = JNP-1
1308 IMH = IMR/2
1309 do j=1,JNP
1310 do i=1,IMR
1311 wk(i,j) = p(i,j)
1312 enddo
1313 enddo
1314 C Poles:
1315 do i=1,IMH
1316 wk(i, -1) = p(i+IMH,3)
1317 wk(i+IMH,-1) = p(i,3)
1318 wk(i, 0) = p(i+IMH,2)
1319 wk(i+IMH,0) = p(i,2)
1320 wk(i,JNP+1) = p(i+IMH,JMR)
1321 wk(i+IMH,JNP+1) = p(i,JMR)
1322 wk(i,JNP+2) = p(i+IMH,JNP-2)
1323 wk(i+IMH,JNP+2) = p(i,JNP-2)
1324 enddo
1325
1326 IF(IAD.eq.2) then
1327 do j=j1-1,j2+1
1328 do i=1,IMR
1329 JP = NINT(VA(i,j))
1330 rv = JP - VA(i,j)
1331 JP = j - JP
1332 a1 = 0.5*(wk(i,jp+1)+wk(i,jp-1)) - wk(i,jp)
1333 b1 = 0.5*(wk(i,jp+1)-wk(i,jp-1))
1334 ady(i,j) = wk(i,jp) + rv*(a1*rv + b1) - wk(i,j)
1335 enddo
1336 enddo
1337
1338 ELSEIF(IAD.eq.1) then
1339 do j=j1-1,j2+1
1340 do i=1,imr
1341 JP = float(j)-VA(i,j)
1342 ady(i,j) = VA(i,j)*(wk(i,jp)-wk(i,jp+1))
1343 enddo
1344 enddo
1345 ENDIF
1346 C
1347 if(j1.ne.2) then
1348 sum1 = 0.
1349 sum2 = 0.
1350 do i=1,imr
1351 sum1 = sum1 + ady(i,2)
1352 sum2 = sum2 + ady(i,JMR)
1353 enddo
1354 sum1 = sum1 / IMR
1355 sum2 = sum2 / IMR
1356 C
1357 do i=1,imr
1358 ady(i, 2) = sum1
1359 ady(i,JMR) = sum2
1360 ady(i, 1) = sum1
1361 ady(i,JNP) = sum2
1362 enddo
1363 else
1364 C Poles:
1365 sum1 = 0.
1366 sum2 = 0.
1367 do i=1,imr
1368 sum1 = sum1 + ady(i,1)
1369 sum2 = sum2 + ady(i,JNP)
1370 enddo
1371 sum1 = sum1 / IMR
1372 sum2 = sum2 / IMR
1373 C
1374 do i=1,imr
1375 ady(i, 1) = sum1
1376 ady(i,JNP) = sum2
1377 enddo
1378 endif
1379 C
1380 return
1381 end
1382 C
1383 subroutine xadv(IMR,JNP,j1,j2,p,UA,JS,JN,IML,adx,IAD)
1384 REAL p(IMR,JNP),adx(IMR,JNP),qtmp(-IMR:IMR+IMR),UA(IMR,JNP)
1385 C
1386 JMR = JNP-1
1387 do 1309 j=j1,j2
1388 if(J.GT.JS .and. J.LT.JN) GO TO 1309
1389 C
1390 do i=1,IMR
1391 qtmp(i) = p(i,j)
1392 enddo
1393 C
1394 do i=-IML,0
1395 qtmp(i) = p(IMR+i,j)
1396 qtmp(IMR+1-i) = p(1-i,j)
1397 enddo
1398 C
1399 IF(IAD.eq.2) THEN
1400 DO i=1,IMR
1401 IP = NINT(UA(i,j))
1402 ru = IP - UA(i,j)
1403 IP = i - IP
1404 a1 = 0.5*(qtmp(ip+1)+qtmp(ip-1)) - qtmp(ip)
1405 b1 = 0.5*(qtmp(ip+1)-qtmp(ip-1))
1406 adx(i,j) = qtmp(ip) + ru*(a1*ru + b1)
1407 enddo
1408 ELSEIF(IAD.eq.1) then
1409 DO i=1,IMR
1410 iu = UA(i,j)
1411 ru = UA(i,j) - iu
1412 iiu = i-iu
1413 if(UA(i,j).GE.0.) then
1414 adx(i,j) = qtmp(iiu)+ru*(qtmp(iiu-1)-qtmp(iiu))
1415 else
1416 adx(i,j) = qtmp(iiu)+ru*(qtmp(iiu)-qtmp(iiu+1))
1417 endif
1418 enddo
1419 ENDIF
1420 C
1421 do i=1,IMR
1422 adx(i,j) = adx(i,j) - p(i,j)
1423 enddo
1424 1309 continue
1425 C
1426 C Eulerian upwind
1427 C
1428 do j=JS+1,JN-1
1429 C
1430 do i=1,IMR
1431 qtmp(i) = p(i,j)
1432 enddo
1433 C
1434 qtmp(0) = p(IMR,J)
1435 qtmp(IMR+1) = p(1,J)
1436 C
1437 IF(IAD.eq.2) THEN
1438 qtmp(-1) = p(IMR-1,J)
1439 qtmp(IMR+2) = p(2,J)
1440 do i=1,imr
1441 IP = NINT(UA(i,j))
1442 ru = IP - UA(i,j)
1443 IP = i - IP
1444 a1 = 0.5*(qtmp(ip+1)+qtmp(ip-1)) - qtmp(ip)
1445 b1 = 0.5*(qtmp(ip+1)-qtmp(ip-1))
1446 adx(i,j) = qtmp(ip)- p(i,j) + ru*(a1*ru + b1)
1447 enddo
1448 ELSEIF(IAD.eq.1) then
1449 C 1st order
1450 DO i=1,IMR
1451 IP = i - UA(i,j)
1452 adx(i,j) = UA(i,j)*(qtmp(ip)-qtmp(ip+1))
1453 enddo
1454 ENDIF
1455 enddo
1456 C
1457 if(j1.ne.2) then
1458 do i=1,IMR
1459 adx(i, 2) = 0.
1460 adx(i,JMR) = 0.
1461 enddo
1462 endif
1463 C set cross term due to x-adv at the poles to zero.
1464 do i=1,IMR
1465 adx(i, 1) = 0.
1466 adx(i,JNP) = 0.
1467 enddo
1468 return
1469 end
1470 C
1471 subroutine lmtppm(DC,A6,AR,AL,P,IM,LMT)
1472 C
1473 C A6 = CURVATURE OF THE TEST PARABOLA
1474 C AR = RIGHT EDGE VALUE OF THE TEST PARABOLA
1475 C AL = LEFT EDGE VALUE OF THE TEST PARABOLA
1476 C DC = 0.5 * MISMATCH
1477 C P = CELL-AVERAGED VALUE
1478 C IM = VECTOR LENGTH
1479 C
1480 C OPTIONS:
1481 C
1482 C LMT = 0: FULL MONOTONICITY
1483 C LMT = 1: SEMI-MONOTONIC CONSTRAINT (NO UNDERSHOOTS)
1484 C LMT = 2: POSITIVE-DEFINITE CONSTRAINT
1485 C
1486 parameter ( R12 = 1./12. )
1487 dimension A6(IM),AR(IM),AL(IM),P(IM),DC(IM)
1488 C
1489 if(LMT.eq.0) then
1490 C Full constraint
1491 do 100 i=1,IM
1492 if(DC(i).eq.0.) then
1493 AR(i) = p(i)
1494 AL(i) = p(i)
1495 A6(i) = 0.
1496 else
1497 da1 = AR(i) - AL(i)
1498 da2 = da1**2
1499 A6DA = A6(i)*da1
1500 if(A6DA .lt. -da2) then
1501 A6(i) = 3.*(AL(i)-p(i))
1502 AR(i) = AL(i) - A6(i)
1503 elseif(A6DA .gt. da2) then
1504 A6(i) = 3.*(AR(i)-p(i))
1505 AL(i) = AR(i) - A6(i)
1506 endif
1507 endif
1508 100 continue
1509 elseif(LMT.eq.1) then
1510 C Semi-monotonic constraint
1511 do 150 i=1,IM
1512 if(abs(AR(i)-AL(i)) .GE. -A6(i)) go to 150
1513 if(p(i).lt.AR(i) .and. p(i).lt.AL(i)) then
1514 AR(i) = p(i)
1515 AL(i) = p(i)
1516 A6(i) = 0.
1517 elseif(AR(i) .gt. AL(i)) then
1518 A6(i) = 3.*(AL(i)-p(i))
1519 AR(i) = AL(i) - A6(i)
1520 else
1521 A6(i) = 3.*(AR(i)-p(i))
1522 AL(i) = AR(i) - A6(i)
1523 endif
1524 150 continue
1525 elseif(LMT.eq.2) then
1526 do 250 i=1,IM
1527 if(abs(AR(i)-AL(i)) .GE. -A6(i)) go to 250
1528 fmin = p(i) + 0.25*(AR(i)-AL(i))**2/A6(i) + A6(i)*R12
1529 if(fmin.ge.0.) go to 250
1530 if(p(i).lt.AR(i) .and. p(i).lt.AL(i)) then
1531 AR(i) = p(i)
1532 AL(i) = p(i)
1533 A6(i) = 0.
1534 elseif(AR(i) .gt. AL(i)) then
1535 A6(i) = 3.*(AL(i)-p(i))
1536 AR(i) = AL(i) - A6(i)
1537 else
1538 A6(i) = 3.*(AR(i)-p(i))
1539 AL(i) = AR(i) - A6(i)
1540 endif
1541 250 continue
1542 endif
1543 return
1544 end
1545 C
1546 subroutine A2C(U,V,IMR,JMR,j1,j2,CRX,CRY,dtdx5,DTDY5)
1547 dimension U(IMR,*),V(IMR,*),CRX(IMR,*),CRY(IMR,*),DTDX5(*)
1548 C
1549 do 35 j=j1,j2
1550 do 35 i=2,IMR
1551 35 CRX(i,J) = dtdx5(j)*(U(i,j)+U(i-1,j))
1552 C
1553 do 45 j=j1,j2
1554 45 CRX(1,J) = dtdx5(j)*(U(1,j)+U(IMR,j))
1555 C
1556 do 55 i=1,IMR*JMR
1557 55 CRY(i,2) = DTDY5*(V(i,2)+V(i,1))
1558 return
1559 end
1560 C
1561 subroutine cosa(cosp,cose,JNP,PI,DP)
1562 dimension cosp(*),cose(*)
1563 JMR = JNP-1
1564 do 55 j=2,JNP
1565 ph5 = -0.5*PI + (FLOAT(J-1)-0.5)*DP
1566 55 cose(j) = cos(ph5)
1567 C
1568 JEQ = (JNP+1) / 2
1569 if(JMR .eq. 2*(JMR/2) ) then
1570 do j=JNP, JEQ+1, -1
1571 cose(j) = cose(JNP+2-j)
1572 enddo
1573 else
1574 C cell edge at equator.
1575 cose(JEQ+1) = 1.
1576 do j=JNP, JEQ+2, -1
1577 cose(j) = cose(JNP+2-j)
1578 enddo
1579 endif
1580 C
1581 do 66 j=2,JMR
1582 66 cosp(j) = 0.5*(cose(j)+cose(j+1))
1583 cosp(1) = 0.
1584 cosp(JNP) = 0.
1585 return
1586 end
1587 C
1588 subroutine cosc(cosp,cose,JNP,PI,DP)
1589 dimension cosp(*),cose(*)
1590 C
1591 phi = -0.5*PI
1592 do 55 j=2,JNP-1
1593 phi = phi + DP
1594 55 cosp(j) = cos(phi)
1595 cosp( 1) = 0.
1596 cosp(JNP) = 0.
1597 C
1598 do 66 j=2,JNP
1599 cose(j) = 0.5*(cosp(j)+cosp(j-1))
1600 66 CONTINUE
1601 C
1602 do 77 j=2,JNP-1
1603 cosp(j) = 0.5*(cose(j)+cose(j+1))
1604 77 CONTINUE
1605 return
1606 end
1607 C
1608 SUBROUTINE qckxyz (Q,qtmp,IMR,JNP,NLAY,j1,j2,cosp,acosp,
1609 & cross,IC,NSTEP)
1610 C
1611 parameter( tiny = 1.E-60 )
1612 DIMENSION Q(IMR,JNP,NLAY),qtmp(IMR,JNP),cosp(*),acosp(*)
1613 logical cross
1614 C
1615 NLAYM1 = NLAY-1
1616 len = IMR*(j2-j1+1)
1617 ip = 0
1618 C
1619 C Top layer
1620 L = 1
1621 icr = 1
1622 call filns(q(1,1,L),IMR,JNP,j1,j2,cosp,acosp,ipy,tiny)
1623 if(ipy.eq.0) goto 50
1624 call filew(q(1,1,L),qtmp,IMR,JNP,j1,j2,ipx,tiny)
1625 if(ipx.eq.0) goto 50
1626 C
1627 if(cross) then
1628 call filcr(q(1,1,L),IMR,JNP,j1,j2,cosp,acosp,icr,tiny)
1629 endif
1630 if(icr.eq.0) goto 50
1631 C
1632 C Vertical filling...
1633 do i=1,len
1634 IF( Q(i,j1,1).LT.0.) THEN
1635 ip = ip + 1
1636 Q(i,j1,2) = Q(i,j1,2) + Q(i,j1,1)
1637 Q(i,j1,1) = 0.
1638 endif
1639 enddo
1640 C
1641 50 continue
1642 DO 225 L = 2,NLAYM1
1643 icr = 1
1644 C
1645 call filns(q(1,1,L),IMR,JNP,j1,j2,cosp,acosp,ipy,tiny)
1646 if(ipy.eq.0) goto 225
1647 call filew(q(1,1,L),qtmp,IMR,JNP,j1,j2,ipx,tiny)
1648 if(ipx.eq.0) go to 225
1649 if(cross) then
1650 call filcr(q(1,1,L),IMR,JNP,j1,j2,cosp,acosp,icr,tiny)
1651 endif
1652 if(icr.eq.0) goto 225
1653 C
1654 do i=1,len
1655 IF( Q(I,j1,L).LT.0.) THEN
1656 C
1657 ip = ip + 1
1658 C From above
1659 qup = Q(I,j1,L-1)
1660 qly = -Q(I,j1,L)
1661 dup = min(qly,qup)
1662 Q(I,j1,L-1) = qup - dup
1663 Q(I,j1,L ) = dup-qly
1664 C Below
1665 Q(I,j1,L+1) = Q(I,j1,L+1) + Q(I,j1,L)
1666 Q(I,j1,L) = 0.
1667 ENDIF
1668 ENDDO
1669 225 CONTINUE
1670 C
1671 C BOTTOM LAYER
1672 sum = 0.
1673 L = NLAY
1674 C
1675 call filns(q(1,1,L),IMR,JNP,j1,j2,cosp,acosp,ipy,tiny)
1676 if(ipy.eq.0) goto 911
1677 call filew(q(1,1,L),qtmp,IMR,JNP,j1,j2,ipx,tiny)
1678 if(ipx.eq.0) goto 911
1679 C
1680 call filcr(q(1,1,L),IMR,JNP,j1,j2,cosp,acosp,icr,tiny)
1681 if(icr.eq.0) goto 911
1682 C
1683 DO I=1,len
1684 IF( Q(I,j1,L).LT.0.) THEN
1685 ip = ip + 1
1686 c
1687 C From above
1688 C
1689 qup = Q(I,j1,NLAYM1)
1690 qly = -Q(I,j1,L)
1691 dup = min(qly,qup)
1692 Q(I,j1,NLAYM1) = qup - dup
1693 C From "below" the surface.
1694 sum = sum + qly-dup
1695 Q(I,j1,L) = 0.
1696 ENDIF
1697 ENDDO
1698 C
1699 911 continue
1700 C
1701 if(ip.gt.IMR) then
1702 write(6,*) 'IC=',IC,' STEP=',NSTEP,
1703 & ' Vertical filling pts=',ip
1704 endif
1705 C
1706 if(sum.gt.1.e-25) then
1707 write(6,*) IC,NSTEP,' Mass source from the ground=',sum
1708 endif
1709 RETURN
1710 END
1711 C
1712 subroutine filcr(q,IMR,JNP,j1,j2,cosp,acosp,icr,tiny)
1713 dimension q(IMR,*),cosp(*),acosp(*)
1714 icr = 0
1715 do 65 j=j1+1,j2-1
1716 DO 50 i=1,IMR-1
1717 IF(q(i,j).LT.0.) THEN
1718 icr = 1
1719 dq = - q(i,j)*cosp(j)
1720 C N-E
1721 dn = q(i+1,j+1)*cosp(j+1)
1722 d0 = max(0.,dn)
1723 d1 = min(dq,d0)
1724 q(i+1,j+1) = (dn - d1)*acosp(j+1)
1725 dq = dq - d1
1726 C S-E
1727 ds = q(i+1,j-1)*cosp(j-1)
1728 d0 = max(0.,ds)
1729 d2 = min(dq,d0)
1730 q(i+1,j-1) = (ds - d2)*acosp(j-1)
1731 q(i,j) = (d2 - dq)*acosp(j) + tiny
1732 endif
1733 50 continue
1734 if(icr.eq.0 .and. q(IMR,j).ge.0.) goto 65
1735 DO 55 i=2,IMR
1736 IF(q(i,j).LT.0.) THEN
1737 icr = 1
1738 dq = - q(i,j)*cosp(j)
1739 C N-W
1740 dn = q(i-1,j+1)*cosp(j+1)
1741 d0 = max(0.,dn)
1742 d1 = min(dq,d0)
1743 q(i-1,j+1) = (dn - d1)*acosp(j+1)
1744 dq = dq - d1
1745 C S-W
1746 ds = q(i-1,j-1)*cosp(j-1)
1747 d0 = max(0.,ds)
1748 d2 = min(dq,d0)
1749 q(i-1,j-1) = (ds - d2)*acosp(j-1)
1750 q(i,j) = (d2 - dq)*acosp(j) + tiny
1751 endif
1752 55 continue
1753 C *****************************************
1754 C i=1
1755 i=1
1756 IF(q(i,j).LT.0.) THEN
1757 icr = 1
1758 dq = - q(i,j)*cosp(j)
1759 C N-W
1760 dn = q(IMR,j+1)*cosp(j+1)
1761 d0 = max(0.,dn)
1762 d1 = min(dq,d0)
1763 q(IMR,j+1) = (dn - d1)*acosp(j+1)
1764 dq = dq - d1
1765 C S-W
1766 ds = q(IMR,j-1)*cosp(j-1)
1767 d0 = max(0.,ds)
1768 d2 = min(dq,d0)
1769 q(IMR,j-1) = (ds - d2)*acosp(j-1)
1770 q(i,j) = (d2 - dq)*acosp(j) + tiny
1771 endif
1772 C *****************************************
1773 C i=IMR
1774 i=IMR
1775 IF(q(i,j).LT.0.) THEN
1776 icr = 1
1777 dq = - q(i,j)*cosp(j)
1778 C N-E
1779 dn = q(1,j+1)*cosp(j+1)
1780 d0 = max(0.,dn)
1781 d1 = min(dq,d0)
1782 q(1,j+1) = (dn - d1)*acosp(j+1)
1783 dq = dq - d1
1784 C S-E
1785 ds = q(1,j-1)*cosp(j-1)
1786 d0 = max(0.,ds)
1787 d2 = min(dq,d0)
1788 q(1,j-1) = (ds - d2)*acosp(j-1)
1789 q(i,j) = (d2 - dq)*acosp(j) + tiny
1790 endif
1791 C *****************************************
1792 65 continue
1793 C
1794 do i=1,IMR
1795 if(q(i,j1).lt.0. .or. q(i,j2).lt.0.) then
1796 icr = 1
1797 goto 80
1798 endif
1799 enddo
1800 C
1801 80 continue
1802 C
1803 if(q(1,1).lt.0. .or. q(1,jnp).lt.0.) then
1804 icr = 1
1805 endif
1806 C
1807 return
1808 end
1809 C
1810 subroutine filns(q,IMR,JNP,j1,j2,cosp,acosp,ipy,tiny)
1811 dimension q(IMR,*),cosp(*),acosp(*)
1812 c logical first
1813 c data first /.true./
1814 c save cap1
1815 C
1816 c if(first) then
1817 DP = 4.*ATAN(1.)/float(JNP-1)
1818 CAP1 = IMR*(1.-COS((j1-1.5)*DP))/DP
1819 c first = .false.
1820 c endif
1821 C
1822 ipy = 0
1823 do 55 j=j1+1,j2-1
1824 DO 55 i=1,IMR
1825 IF(q(i,j).LT.0.) THEN
1826 ipy = 1
1827 dq = - q(i,j)*cosp(j)
1828 C North
1829 dn = q(i,j+1)*cosp(j+1)
1830 d0 = max(0.,dn)
1831 d1 = min(dq,d0)
1832 q(i,j+1) = (dn - d1)*acosp(j+1)
1833 dq = dq - d1
1834 C South
1835 ds = q(i,j-1)*cosp(j-1)
1836 d0 = max(0.,ds)
1837 d2 = min(dq,d0)
1838 q(i,j-1) = (ds - d2)*acosp(j-1)
1839 q(i,j) = (d2 - dq)*acosp(j) + tiny
1840 endif
1841 55 continue
1842 C
1843 do i=1,imr
1844 IF(q(i,j1).LT.0.) THEN
1845 ipy = 1
1846 dq = - q(i,j1)*cosp(j1)
1847 C North
1848 dn = q(i,j1+1)*cosp(j1+1)
1849 d0 = max(0.,dn)
1850 d1 = min(dq,d0)
1851 q(i,j1+1) = (dn - d1)*acosp(j1+1)
1852 q(i,j1) = (d1 - dq)*acosp(j1) + tiny
1853 endif
1854 enddo
1855 C
1856 j = j2
1857 do i=1,imr
1858 IF(q(i,j).LT.0.) THEN
1859 ipy = 1
1860 dq = - q(i,j)*cosp(j)
1861 C South
1862 ds = q(i,j-1)*cosp(j-1)
1863 d0 = max(0.,ds)
1864 d2 = min(dq,d0)
1865 q(i,j-1) = (ds - d2)*acosp(j-1)
1866 q(i,j) = (d2 - dq)*acosp(j) + tiny
1867 endif
1868 enddo
1869 C
1870 C Check Poles.
1871 if(q(1,1).lt.0.) then
1872 dq = q(1,1)*cap1/float(IMR)*acosp(j1)
1873 do i=1,imr
1874 q(i,1) = 0.
1875 q(i,j1) = q(i,j1) + dq
1876 if(q(i,j1).lt.0.) ipy = 1
1877 enddo
1878 endif
1879 C
1880 if(q(1,JNP).lt.0.) then
1881 dq = q(1,JNP)*cap1/float(IMR)*acosp(j2)
1882 do i=1,imr
1883 q(i,JNP) = 0.
1884 q(i,j2) = q(i,j2) + dq
1885 if(q(i,j2).lt.0.) ipy = 1
1886 enddo
1887 endif
1888 C
1889 return
1890 end
1891 C
1892 subroutine filew(q,qtmp,IMR,JNP,j1,j2,ipx,tiny)
1893 dimension q(IMR,*),qtmp(JNP,IMR)
1894 C
1895 ipx = 0
1896 C Copy & swap direction for vectorization.
1897 do 25 i=1,imr
1898 do 25 j=j1,j2
1899 25 qtmp(j,i) = q(i,j)
1900 C
1901 do 55 i=2,imr-1
1902 do 55 j=j1,j2
1903 if(qtmp(j,i).lt.0.) then
1904 ipx = 1
1905 c west
1906 d0 = max(0.,qtmp(j,i-1))
1907 d1 = min(-qtmp(j,i),d0)
1908 qtmp(j,i-1) = qtmp(j,i-1) - d1
1909 qtmp(j,i) = qtmp(j,i) + d1
1910 c east
1911 d0 = max(0.,qtmp(j,i+1))
1912 d2 = min(-qtmp(j,i),d0)
1913 qtmp(j,i+1) = qtmp(j,i+1) - d2
1914 qtmp(j,i) = qtmp(j,i) + d2 + tiny
1915 endif
1916 55 continue
1917 c
1918 i=1
1919 do 65 j=j1,j2
1920 if(qtmp(j,i).lt.0.) then
1921 ipx = 1
1922 c west
1923 d0 = max(0.,qtmp(j,imr))
1924 d1 = min(-qtmp(j,i),d0)
1925 qtmp(j,imr) = qtmp(j,imr) - d1
1926 qtmp(j,i) = qtmp(j,i) + d1
1927 c east
1928 d0 = max(0.,qtmp(j,i+1))
1929 d2 = min(-qtmp(j,i),d0)
1930 qtmp(j,i+1) = qtmp(j,i+1) - d2
1931 c
1932 qtmp(j,i) = qtmp(j,i) + d2 + tiny
1933 endif
1934 65 continue
1935 i=IMR
1936 do 75 j=j1,j2
1937 if(qtmp(j,i).lt.0.) then
1938 ipx = 1
1939 c west
1940 d0 = max(0.,qtmp(j,i-1))
1941 d1 = min(-qtmp(j,i),d0)
1942 qtmp(j,i-1) = qtmp(j,i-1) - d1
1943 qtmp(j,i) = qtmp(j,i) + d1
1944 c east
1945 d0 = max(0.,qtmp(j,1))
1946 d2 = min(-qtmp(j,i),d0)
1947 qtmp(j,1) = qtmp(j,1) - d2
1948 c
1949 qtmp(j,i) = qtmp(j,i) + d2 + tiny
1950 endif
1951 75 continue
1952 C
1953 if(ipx.ne.0) then
1954 do 85 j=j1,j2
1955 do 85 i=1,imr
1956 85 q(i,j) = qtmp(j,i)
1957 else
1958 C
1959 C Poles.
1960 if(q(1,1).lt.0. or. q(1,JNP).lt.0.) ipx = 1
1961 endif
1962 return
1963 end

  ViewVC Help
Powered by ViewVC 1.1.21