--- trunk/phylmd/Interface_surf/fonte_neige.f 2014/08/29 13:00:05 103 +++ trunk/Sources/phylmd/Interface_surf/fonte_neige.f 2016/03/22 16:31:39 188 @@ -4,86 +4,84 @@ contains - SUBROUTINE fonte_neige(klon, knon, nisurf, dtime, tsurf, p1lay, beta, & - coef1lay, ps, precip_rain, precip_snow, snow, qsol, t1lay, q1lay, & - u1lay, v1lay, petAcoef, peqAcoef, petBcoef, peqBcoef, tsurf_new, evap, & - fqcalving, ffonte, run_off_lic_0) + SUBROUTINE fonte_neige(nisurf, dtime, tsurf, p1lay, beta, coef1lay, ps, & + precip_rain, precip_snow, snow, qsol, t1lay, q1lay, u1lay, v1lay, & + petAcoef, peqAcoef, petBcoef, peqBcoef, tsurf_new, evap, fqcalving, & + ffonte, run_off_lic_0) ! Routine de traitement de la fonte de la neige dans le cas du traitement - ! de sol simplifié + ! de sol simplifi\'e ! LF 03/2001 - USE fcttre, ONLY: dqsatl, dqsats, foede, foeew, qsatl, qsats, thermcep + USE fcttre, ONLY: foeew, qsatl, qsats, thermcep USE indicesol, ONLY: epsfra, is_lic, is_sic, is_ter USE interface_surf, ONLY: run_off, run_off_lic, tau_calv - USE suphec_m, ONLY: rcpd, rd, rday, retv, rkappa, rlmlt, rlstt, rlvtt, rtt + use nr_util, only: assert_eq + USE suphec_m, ONLY: rcpd, rday, retv, rlmlt, rlstt, rlvtt, rtt USE yoethf_m, ONLY: r2es, r5ies, r5les, rvtmp2 - integer, intent(IN):: klon - integer, intent(IN):: knon ! nombre de points à traiter - integer, intent(IN):: nisurf ! surface à traiter + integer, intent(IN):: nisurf ! surface \`a traiter real, intent(IN):: dtime ! pas de temps de la physique (en s) - real, dimension(klon), intent(IN):: tsurf, p1lay, beta, coef1lay + real, dimension(:), intent(IN):: tsurf, p1lay, beta, coef1lay ! (knon) ! tsurf temperature de surface ! p1lay pression 1er niveau (milieu de couche) ! beta evap reelle ! coef1lay coefficient d'echange - real, dimension(klon), intent(IN):: ps + real, dimension(:), intent(IN):: ps ! (knon) ! ps pression au sol real, intent(IN):: precip_rain(:) ! (knon) ! precipitation, liquid water mass flux (kg/m2/s), positive down - real, intent(IN):: precip_snow(klon) + real, intent(IN):: precip_snow(:) ! (knon) ! precipitation, solid water mass flux (kg/m2/s), positive down - real, intent(INOUT):: snow(klon) ! column-density of mass of snow, in kg m-2 + real, intent(INOUT):: snow(:) ! (knon) + ! column-density of mass of snow, in kg m-2 real, intent(INOUT):: qsol(:) ! (knon) ! column-density of water in soil, in kg m-2 - real, dimension(klon), intent(IN):: t1lay - real, dimension(klon), intent(IN):: q1lay - real, dimension(klon), intent(IN):: u1lay, v1lay - real, dimension(klon), intent(IN):: petAcoef, peqAcoef + real, dimension(:), intent(IN):: t1lay ! (knon) + real, dimension(:), intent(IN):: q1lay ! (knon) + real, dimension(:), intent(IN):: u1lay, v1lay ! (knon) + real, dimension(:), intent(IN):: petAcoef, peqAcoef ! (knon) ! petAcoef coeff. A de la resolution de la CL pour t ! peqAcoef coeff. A de la resolution de la CL pour q - real, dimension(klon), intent(IN):: petBcoef, peqBcoef + real, dimension(:), intent(IN):: petBcoef, peqBcoef ! (knon) ! petBcoef coeff. B de la resolution de la CL pour t ! peqBcoef coeff. B de la resolution de la CL pour q - real, intent(INOUT):: tsurf_new(klon), evap(klon) + real, intent(INOUT):: tsurf_new(:) ! tsurf_new temperature au sol + real, intent(IN):: evap(:) ! (knon) + ! Flux d'eau "perdue" par la surface et necessaire pour que limiter la ! hauteur de neige, en kg/m2/s - real, dimension(klon), intent(INOUT):: fqcalving + real, intent(OUT):: fqcalving(:) ! (knon) ! Flux thermique utiliser pour fondre la neige - real, dimension(klon), intent(INOUT):: ffonte + real, intent(OUT):: ffonte(:) ! (knon) - real, dimension(klon), intent(INOUT):: run_off_lic_0 - ! run_off_lic_0 run off glacier du pas de temps précedent + real, dimension(:), intent(INOUT):: run_off_lic_0 ! (knon) + ! run_off_lic_0 run off glacier du pas de temps pr\'ecedent ! Local: + integer knon ! nombre de points \`a traiter real, parameter:: snow_max=3000. ! Masse maximum de neige (kg/m2). Au dessus de ce seuil, la neige ! en exces "s'ecoule" (calving) integer i - real, dimension(klon):: zx_mh, zx_nh, zx_oh - real, dimension(klon):: zx_mq, zx_nq, zx_oq - real, dimension(klon):: zx_pkh, zx_dq_s_dt, zx_qsat, zx_coef - real, dimension(klon):: zx_sl, zx_k1 - real, dimension(klon):: d_ts logical zdelta - real zcvm5, zx_qs, zcor, zx_dq_s_dh + real zcvm5, zx_qs, zcor real fq_fonte - REAL bil_eau_s(knon) ! in kg m-2 - real snow_evap(klon) ! in kg m-2 s-1 - real, parameter:: t_grnd = 271.35, t_coup = 273.15 + REAL bil_eau_s(size(ps)) ! in kg m-2 + real snow_evap(size(ps)) ! in kg m-2 s-1 + real, parameter:: t_coup = 273.15 REAL, parameter:: chasno = 3.334E5/(2.3867E6*0.15) REAL, parameter:: chaice = 3.334E5/(2.3867E6*0.15) real, parameter:: max_eau_sol = 150. ! in kg m-2 @@ -91,11 +89,17 @@ !-------------------------------------------------------------------- + knon = assert_eq((/size(tsurf), size(p1lay), size(beta), size(coef1lay), & + size(ps), size(precip_rain), size(precip_snow), size(snow), & + size(qsol), size(t1lay), size(q1lay), size(u1lay), size(v1lay), & + size(petAcoef), size(peqAcoef), size(petBcoef), size(peqBcoef), & + size(tsurf_new), size(evap), size(fqcalving), size(ffonte), & + size(run_off_lic_0)/), "fonte_neige knon") + ! Initialisations coeff_rel = dtime/(tau_calv * rday) bil_eau_s = 0. DO i = 1, knon - zx_pkh(i) = (ps(i)/ps(i))**RKAPPA IF (thermcep) THEN zdelta= rtt >= tsurf(i) zcvm5 = merge(R5IES*RLSTT, R5LES*RLVTT, zdelta) @@ -104,50 +108,21 @@ zx_qs=MIN(0.5, zx_qs) zcor=1./(1.-retv*zx_qs) zx_qs=zx_qs*zcor - zx_dq_s_dh = FOEDE(tsurf(i), zdelta, zcvm5, zx_qs, zcor) /RLVTT & - / zx_pkh(i) ELSE IF (tsurf(i) < t_coup) THEN zx_qs = qsats(tsurf(i)) / ps(i) - zx_dq_s_dh = dqsats(tsurf(i), zx_qs)/RLVTT / zx_pkh(i) ELSE zx_qs = qsatl(tsurf(i)) / ps(i) - zx_dq_s_dh = dqsatl(tsurf(i), zx_qs)/RLVTT / zx_pkh(i) ENDIF ENDIF - zx_dq_s_dt(i) = RCPD * zx_pkh(i) * zx_dq_s_dh - zx_qsat(i) = zx_qs - zx_coef(i) = coef1lay(i) * (1. + SQRT(u1lay(i)**2 + v1lay(i)**2)) & - * p1lay(i) / (RD * t1lay(i)) ENDDO ! Calcul de la temperature de surface - ! zx_sl = chaleur latente d'evaporation ou de sublimation - - do i = 1, knon - zx_sl(i) = RLVTT - if (tsurf(i) < RTT) zx_sl(i) = RLSTT - zx_k1(i) = zx_coef(i) - enddo - - do i = 1, knon - ! Q - zx_oq(i) = 1. - (beta(i) * zx_k1(i) * peqBcoef(i) * dtime) - zx_mq(i) = beta(i) * zx_k1(i) * (peqAcoef(i) - zx_qsat(i) & - + zx_dq_s_dt(i) * tsurf(i)) / zx_oq(i) - zx_nq(i) = beta(i) * zx_k1(i) * (-1. * zx_dq_s_dt(i)) / zx_oq(i) - - ! H - zx_oh(i) = 1. - (zx_k1(i) * petBcoef(i) * dtime) - zx_mh(i) = zx_k1(i) * petAcoef(i) / zx_oh(i) - zx_nh(i) = - (zx_k1(i) * RCPD * zx_pkh(i))/ zx_oh(i) - enddo - WHERE (precip_snow > 0.) snow = snow + precip_snow * dtime WHERE (evap > 0.) - snow_evap = MIN (snow / dtime, evap) + snow_evap = MIN(snow / dtime, evap) snow = snow - snow_evap * dtime snow = MAX(0., snow) elsewhere @@ -174,10 +149,9 @@ bil_eau_s(i) = bil_eau_s(i) + fq_fonte tsurf_new(i) = RTT ENDIF - d_ts(i) = tsurf_new(i) - tsurf(i) endif - ! S'il y a une hauteur trop importante de neige, elle s'écoule + ! S'il y a une hauteur trop importante de neige, elle s'\'ecoule fqcalving(i) = max(0., snow(i) - snow_max)/dtime snow(i)=min(snow(i), snow_max)