/[lmdze]/trunk/Sources/phylmd/clmain.f
ViewVC logotype

Annotation of /trunk/Sources/phylmd/clmain.f

Parent Directory Parent Directory | Revision Log Revision Log


Revision 238 - (hide annotations)
Thu Nov 9 14:11:39 2017 UTC (6 years, 6 months ago) by guez
File size: 20733 byte(s)
In procedure clmain, remove local variable ykmq, not used (not used in
LMDZ either). Remove its computation in yamada4.

In procedure yamada4, remove dummy argument cd, not used.

1 guez 38 module clmain_m
2 guez 3
3 guez 38 IMPLICIT NONE
4 guez 3
5 guez 38 contains
6 guez 3
7 guez 221 SUBROUTINE clmain(dtime, pctsrf, t, q, u, v, julien, mu0, ftsol, cdmmax, &
8 guez 215 cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, paprs, pplay, fsnow, &
9 guez 223 qsurf, evap, falbe, fluxlat, rain_fall, snow_f, fsolsw, fsollw, frugs, &
10     agesno, rugoro, d_t, d_q, d_u, d_v, d_ts, flux_t, flux_q, flux_u, &
11 guez 226 flux_v, cdragh, cdragm, q2, dflux_t, dflux_q, ycoefh, t2m, q2m, &
12     u10m_srf, v10m_srf, pblh, capcl, oliqcl, cteicl, pblt, therm, trmb1, &
13     trmb2, trmb3, plcl, fqcalving, ffonte, run_off_lic_0)
14 guez 3
15 guez 99 ! From phylmd/clmain.F, version 1.6, 2005/11/16 14:47:19
16 guez 62 ! Author: Z. X. Li (LMD/CNRS), date: 1993/08/18
17     ! Objet : interface de couche limite (diffusion verticale)
18 guez 3
19 guez 62 ! Tout ce qui a trait aux traceurs est dans "phytrac". Le calcul
20     ! de la couche limite pour les traceurs se fait avec "cltrac" et
21 guez 145 ! ne tient pas compte de la diff\'erentiation des sous-fractions
22     ! de sol.
23 guez 3
24 guez 49 use clqh_m, only: clqh
25 guez 62 use clvent_m, only: clvent
26 guez 47 use coefkz_m, only: coefkz
27     use coefkzmin_m, only: coefkzmin
28 guez 233 use coefkz2_m, only: coefkz2
29 guez 227 USE conf_gcm_m, ONLY: lmt_pas
30 guez 62 USE conf_phys_m, ONLY: iflag_pbl
31     USE dimphy, ONLY: klev, klon, zmasq
32     USE dimsoil, ONLY: nsoilmx
33 guez 47 use hbtm_m, only: hbtm
34 guez 62 USE indicesol, ONLY: epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf
35 guez 202 USE interfoce_lim_m, ONLY: interfoce_lim
36 guez 104 use stdlevvar_m, only: stdlevvar
37 guez 62 USE suphec_m, ONLY: rd, rg, rkappa
38 guez 202 use time_phylmdz, only: itap
39 guez 62 use ustarhb_m, only: ustarhb
40 guez 47 use yamada4_m, only: yamada4
41 guez 15
42 guez 62 REAL, INTENT(IN):: dtime ! interval du temps (secondes)
43 guez 202
44 guez 62 REAL, INTENT(inout):: pctsrf(klon, nbsrf)
45 guez 202 ! tableau des pourcentages de surface de chaque maille
46 guez 62
47     REAL, INTENT(IN):: t(klon, klev) ! temperature (K)
48 guez 225 REAL, INTENT(IN):: q(klon, klev) ! vapeur d'eau (kg / kg)
49 guez 62 REAL, INTENT(IN):: u(klon, klev), v(klon, klev) ! vitesse
50 guez 221 INTEGER, INTENT(IN):: julien ! jour de l'annee en cours
51 guez 213 REAL, intent(in):: mu0(klon) ! cosinus de l'angle solaire zenithal
52 guez 222 REAL, INTENT(IN):: ftsol(:, :) ! (klon, nbsrf) temp\'erature du sol (en K)
53 guez 71 REAL, INTENT(IN):: cdmmax, cdhmax ! seuils cdrm, cdrh
54 guez 99 REAL, INTENT(IN):: ksta, ksta_ter
55     LOGICAL, INTENT(IN):: ok_kzmin
56 guez 101
57 guez 118 REAL, INTENT(inout):: ftsoil(klon, nsoilmx, nbsrf)
58     ! soil temperature of surface fraction
59    
60 guez 225 REAL, INTENT(inout):: qsol(:) ! (klon)
61 guez 101 ! column-density of water in soil, in kg m-2
62    
63 guez 225 REAL, INTENT(IN):: paprs(klon, klev + 1) ! pression a intercouche (Pa)
64 guez 62 REAL, INTENT(IN):: pplay(klon, klev) ! pression au milieu de couche (Pa)
65 guez 215 REAL, INTENT(inout):: fsnow(:, :) ! (klon, nbsrf) \'epaisseur neigeuse
66 guez 70 REAL qsurf(klon, nbsrf)
67     REAL evap(klon, nbsrf)
68 guez 155 REAL, intent(inout):: falbe(klon, nbsrf)
69 guez 214 REAL, intent(out):: fluxlat(:, :) ! (klon, nbsrf)
70 guez 70
71 guez 101 REAL, intent(in):: rain_fall(klon)
72 guez 225 ! liquid water mass flux (kg / m2 / s), positive down
73 guez 101
74     REAL, intent(in):: snow_f(klon)
75 guez 225 ! solid water mass flux (kg / m2 / s), positive down
76 guez 101
77 guez 222 REAL, INTENT(IN):: fsolsw(klon, nbsrf), fsollw(klon, nbsrf)
78     REAL, intent(inout):: frugs(klon, nbsrf) ! longueur de rugosit\'e (en m)
79 guez 70 real agesno(klon, nbsrf)
80     REAL, INTENT(IN):: rugoro(klon)
81    
82 guez 38 REAL d_t(klon, klev), d_q(klon, klev)
83 guez 49 ! d_t------output-R- le changement pour "t"
84     ! d_q------output-R- le changement pour "q"
85 guez 62
86     REAL, intent(out):: d_u(klon, klev), d_v(klon, klev)
87     ! changement pour "u" et "v"
88    
89 guez 221 REAL, intent(out):: d_ts(:, :) ! (klon, nbsrf) variation of ftsol
90 guez 70
91 guez 206 REAL, intent(out):: flux_t(klon, nbsrf)
92 guez 225 ! flux de chaleur sensible (Cp T) (W / m2) (orientation positive vers
93 guez 206 ! le bas) à la surface
94 guez 70
95 guez 206 REAL, intent(out):: flux_q(klon, nbsrf)
96 guez 225 ! flux de vapeur d'eau (kg / m2 / s) à la surface
97 guez 70
98 guez 206 REAL, intent(out):: flux_u(klon, nbsrf), flux_v(klon, nbsrf)
99 guez 229 ! tension du vent (flux turbulent de vent) à la surface, en Pa
100 guez 206
101 guez 70 REAL, INTENT(out):: cdragh(klon), cdragm(klon)
102 guez 225 real q2(klon, klev + 1, nbsrf)
103 guez 70
104 guez 99 REAL, INTENT(out):: dflux_t(klon), dflux_q(klon)
105 guez 49 ! dflux_t derive du flux sensible
106     ! dflux_q derive du flux latent
107 guez 191 ! IM "slab" ocean
108 guez 70
109 guez 237 REAL, intent(out):: ycoefh(:, :) ! (klon, klev)
110 guez 226 ! Pour pouvoir extraire les coefficients d'\'echange, le champ
111     ! "ycoefh" a \'et\'e cr\'e\'e. Nous avons moyenn\'e les valeurs de
112     ! ce champ sur les quatre sous-surfaces du mod\`ele.
113    
114 guez 221 REAL, INTENT(inout):: t2m(klon, nbsrf), q2m(klon, nbsrf)
115 guez 70
116 guez 225 REAL, INTENT(inout):: u10m_srf(:, :), v10m_srf(:, :) ! (klon, nbsrf)
117     ! composantes du vent \`a 10m sans spirale d'Ekman
118    
119     ! Ionela Musat. Cf. Anne Mathieu : planetary boundary layer, hbtm.
120     ! Comme les autres diagnostics on cumule dans physiq ce qui permet
121     ! de sortir les grandeurs par sous-surface.
122 guez 191 REAL pblh(klon, nbsrf) ! height of planetary boundary layer
123 guez 70 REAL capcl(klon, nbsrf)
124     REAL oliqcl(klon, nbsrf)
125     REAL cteicl(klon, nbsrf)
126 guez 221 REAL, INTENT(inout):: pblt(klon, nbsrf) ! T au nveau HCL
127 guez 70 REAL therm(klon, nbsrf)
128     REAL trmb1(klon, nbsrf)
129     ! trmb1-------deep_cape
130     REAL trmb2(klon, nbsrf)
131     ! trmb2--------inhibition
132     REAL trmb3(klon, nbsrf)
133     ! trmb3-------Point Omega
134     REAL plcl(klon, nbsrf)
135     REAL fqcalving(klon, nbsrf), ffonte(klon, nbsrf)
136     ! ffonte----Flux thermique utilise pour fondre la neige
137     ! fqcalving-Flux d'eau "perdue" par la surface et necessaire pour limiter la
138 guez 225 ! hauteur de neige, en kg / m2 / s
139 guez 70 REAL run_off_lic_0(klon)
140    
141     ! Local:
142 guez 15
143 guez 202 LOGICAL:: firstcal = .true.
144    
145     ! la nouvelle repartition des surfaces sortie de l'interface
146     REAL, save:: pctsrf_new_oce(klon)
147     REAL, save:: pctsrf_new_sic(klon)
148    
149 guez 70 REAL y_fqcalving(klon), y_ffonte(klon)
150     real y_run_off_lic_0(klon)
151     REAL rugmer(klon)
152 guez 38 REAL ytsoil(klon, nsoilmx)
153     REAL yts(klon), yrugos(klon), ypct(klon), yz0_new(klon)
154     REAL yalb(klon)
155 guez 215 REAL snow(klon), yqsurf(klon), yagesno(klon)
156 guez 225 real yqsol(klon) ! column-density of water in soil, in kg m-2
157     REAL yrain_f(klon) ! liquid water mass flux (kg / m2 / s), positive down
158     REAL ysnow_f(klon) ! solid water mass flux (kg / m2 / s), positive down
159 guez 38 REAL yrugm(klon), yrads(klon), yrugoro(klon)
160     REAL yfluxlat(klon)
161     REAL y_d_ts(klon)
162     REAL y_d_t(klon, klev), y_d_q(klon, klev)
163     REAL y_d_u(klon, klev), y_d_v(klon, klev)
164 guez 206 REAL y_flux_t(klon), y_flux_q(klon)
165     REAL y_flux_u(klon), y_flux_v(klon)
166 guez 38 REAL y_dflux_t(klon), y_dflux_q(klon)
167 guez 237 REAL coefh(klon, 2:klev), coefm(klon, 2:klev)
168     real ycdragh(klon), ycdragm(klon)
169 guez 38 REAL yu(klon, klev), yv(klon, klev)
170     REAL yt(klon, klev), yq(klon, klev)
171 guez 225 REAL ypaprs(klon, klev + 1), ypplay(klon, klev), ydelp(klon, klev)
172 guez 38 REAL ycoefm0(klon, klev), ycoefh0(klon, klev)
173 guez 227 REAL yzlay(klon, klev), zlev(klon, klev + 1), yteta(klon, klev)
174 guez 225 REAL ykmm(klon, klev + 1), ykmn(klon, klev + 1)
175     REAL yq2(klon, klev + 1)
176 guez 38 REAL delp(klon, klev)
177     INTEGER i, k, nsrf
178     INTEGER ni(klon), knon, j
179 guez 40
180 guez 38 REAL pctsrf_pot(klon, nbsrf)
181 guez 145 ! "pourcentage potentiel" pour tenir compte des \'eventuelles
182 guez 40 ! apparitions ou disparitions de la glace de mer
183 guez 15
184 guez 227 REAL yt2m(klon), yq2m(klon), wind10m(klon)
185     REAL ustar(klon)
186 guez 15
187 guez 38 REAL yt10m(klon), yq10m(klon)
188     REAL ypblh(klon)
189     REAL ylcl(klon)
190     REAL ycapcl(klon)
191     REAL yoliqcl(klon)
192     REAL ycteicl(klon)
193     REAL ypblt(klon)
194     REAL ytherm(klon)
195     REAL ytrmb1(klon)
196     REAL ytrmb2(klon)
197     REAL ytrmb3(klon)
198 guez 227 REAL u1(klon), v1(klon)
199 guez 38 REAL tair1(klon), qair1(klon), tairsol(klon)
200     REAL psfce(klon), patm(klon)
201 guez 15
202 guez 38 REAL qairsol(klon), zgeo1(klon)
203     REAL rugo1(klon)
204 guez 15
205 guez 38 !------------------------------------------------------------
206 guez 15
207 guez 38 ytherm = 0.
208 guez 15
209 guez 38 DO k = 1, klev ! epaisseur de couche
210     DO i = 1, klon
211 guez 225 delp(i, k) = paprs(i, k) - paprs(i, k + 1)
212 guez 38 END DO
213     END DO
214 guez 15
215 guez 40 ! Initialization:
216     rugmer = 0.
217     cdragh = 0.
218     cdragm = 0.
219     dflux_t = 0.
220     dflux_q = 0.
221     ypct = 0.
222     yqsurf = 0.
223     yrain_f = 0.
224     ysnow_f = 0.
225     yrugos = 0.
226     ypaprs = 0.
227     ypplay = 0.
228     ydelp = 0.
229     yu = 0.
230     yv = 0.
231     yt = 0.
232     yq = 0.
233     y_dflux_t = 0.
234     y_dflux_q = 0.
235 guez 38 yrugoro = 0.
236 guez 40 d_ts = 0.
237 guez 38 flux_t = 0.
238     flux_q = 0.
239     flux_u = 0.
240     flux_v = 0.
241 guez 214 fluxlat = 0.
242 guez 40 d_t = 0.
243     d_q = 0.
244     d_u = 0.
245     d_v = 0.
246 guez 70 ycoefh = 0.
247 guez 15
248 guez 145 ! Initialisation des "pourcentages potentiels". On consid\`ere ici qu'on
249     ! peut avoir potentiellement de la glace sur tout le domaine oc\'eanique
250     ! (\`a affiner)
251 guez 15
252 guez 202 pctsrf_pot(:, is_ter) = pctsrf(:, is_ter)
253     pctsrf_pot(:, is_lic) = pctsrf(:, is_lic)
254 guez 38 pctsrf_pot(:, is_oce) = 1. - zmasq
255     pctsrf_pot(:, is_sic) = 1. - zmasq
256 guez 15
257 guez 202 ! Tester si c'est le moment de lire le fichier:
258     if (mod(itap - 1, lmt_pas) == 0) then
259 guez 221 CALL interfoce_lim(julien, pctsrf_new_oce, pctsrf_new_sic)
260 guez 202 endif
261    
262 guez 99 ! Boucler sur toutes les sous-fractions du sol:
263    
264 guez 49 loop_surface: DO nsrf = 1, nbsrf
265     ! Chercher les indices :
266 guez 38 ni = 0
267     knon = 0
268     DO i = 1, klon
269 guez 145 ! Pour d\'eterminer le domaine \`a traiter, on utilise les surfaces
270 guez 38 ! "potentielles"
271     IF (pctsrf_pot(i, nsrf) > epsfra) THEN
272     knon = knon + 1
273     ni(knon) = i
274     END IF
275     END DO
276 guez 15
277 guez 62 if_knon: IF (knon /= 0) then
278 guez 38 DO j = 1, knon
279     i = ni(j)
280 guez 62 ypct(j) = pctsrf(i, nsrf)
281 guez 207 yts(j) = ftsol(i, nsrf)
282 guez 215 snow(j) = fsnow(i, nsrf)
283 guez 62 yqsurf(j) = qsurf(i, nsrf)
284 guez 155 yalb(j) = falbe(i, nsrf)
285 guez 62 yrain_f(j) = rain_fall(i)
286     ysnow_f(j) = snow_f(i)
287     yagesno(j) = agesno(i, nsrf)
288 guez 222 yrugos(j) = frugs(i, nsrf)
289 guez 62 yrugoro(j) = rugoro(i)
290 guez 222 yrads(j) = fsolsw(i, nsrf) + fsollw(i, nsrf)
291 guez 225 ypaprs(j, klev + 1) = paprs(i, klev + 1)
292 guez 62 y_run_off_lic_0(j) = run_off_lic_0(i)
293 guez 38 END DO
294 guez 3
295 guez 99 ! For continent, copy soil water content
296 guez 225 IF (nsrf == is_ter) yqsol(:knon) = qsol(ni(:knon))
297 guez 3
298 guez 208 ytsoil(:knon, :) = ftsoil(ni(:knon), :, nsrf)
299 guez 3
300 guez 38 DO k = 1, klev
301     DO j = 1, knon
302     i = ni(j)
303 guez 62 ypaprs(j, k) = paprs(i, k)
304     ypplay(j, k) = pplay(i, k)
305     ydelp(j, k) = delp(i, k)
306     yu(j, k) = u(i, k)
307     yv(j, k) = v(i, k)
308     yt(j, k) = t(i, k)
309     yq(j, k) = q(i, k)
310 guez 38 END DO
311     END DO
312 guez 3
313 guez 62 ! calculer Cdrag et les coefficients d'echange
314 guez 221 CALL coefkz(nsrf, ypaprs, ypplay, ksta, ksta_ter, yts(:knon), &
315 guez 237 yrugos, yu, yv, yt, yq, yqsurf(:knon), coefm(:knon, :), &
316     coefh(:knon, :), ycdragm(:knon), ycdragh(:knon))
317 guez 228
318 guez 62 IF (iflag_pbl == 1) THEN
319 guez 235 CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0(:knon, 2:), &
320     ycoefh0(:knon, 2:))
321     ycoefm0(:knon, 1) = 0.
322     ycoefh0(:knon, 1) = 0.
323 guez 237 coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, 2:))
324     coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, 2:))
325 guez 238 ycdragm(:knon) = max(ycdragm(:knon), 0.)
326     ycdragh(:knon) = max(ycdragh(:knon), 0.)
327 guez 62 END IF
328 guez 3
329 guez 237 ! on met un seuil pour ycdragm et ycdragh
330 guez 62 IF (nsrf == is_oce) THEN
331 guez 237 ycdragm(:knon) = min(ycdragm(:knon), cdmmax)
332     ycdragh(:knon) = min(ycdragh(:knon), cdhmax)
333 guez 38 END IF
334 guez 3
335 guez 62 IF (ok_kzmin) THEN
336     ! Calcul d'une diffusion minimale pour les conditions tres stables
337     CALL coefkzmin(knon, ypaprs, ypplay, yu, yv, yt, yq, &
338 guez 237 ycdragm(:knon), ycoefm0(:knon, 2:), ycoefh0(:knon, 2:))
339     coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, 2:))
340     coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, 2:))
341     ycdragm(:knon) = max(ycdragm(:knon), ycoefm0(:knon, 1))
342     ycdragh(:knon) = max(ycdragh(:knon), ycoefh0(:knon, 1))
343 guez 98 END IF
344 guez 3
345 guez 228 IF (iflag_pbl >= 6) THEN
346 guez 145 ! Mellor et Yamada adapt\'e \`a Mars, Richard Fournier et
347     ! Fr\'ed\'eric Hourdin
348 guez 62 yzlay(:knon, 1) = rd * yt(:knon, 1) / (0.5 * (ypaprs(:knon, 1) &
349     + ypplay(:knon, 1))) &
350     * (ypaprs(:knon, 1) - ypplay(:knon, 1)) / rg
351 guez 228
352 guez 62 DO k = 2, klev
353 guez 227 yzlay(:knon, k) = yzlay(:knon, k-1) &
354 guez 62 + rd * 0.5 * (yt(1:knon, k-1) + yt(1:knon, k)) &
355     / ypaprs(1:knon, k) &
356     * (ypplay(1:knon, k-1) - ypplay(1:knon, k)) / rg
357     END DO
358 guez 227
359 guez 62 DO k = 1, klev
360 guez 225 yteta(1:knon, k) = yt(1:knon, k) * (ypaprs(1:knon, 1) &
361     / ypplay(1:knon, k))**rkappa * (1. + 0.61 * yq(1:knon, k))
362 guez 62 END DO
363 guez 227
364     zlev(:knon, 1) = 0.
365     zlev(:knon, klev + 1) = 2. * yzlay(:knon, klev) &
366 guez 62 - yzlay(:knon, klev - 1)
367 guez 227
368 guez 62 DO k = 2, klev
369 guez 227 zlev(:knon, k) = 0.5 * (yzlay(:knon, k) + yzlay(:knon, k-1))
370 guez 62 END DO
371 guez 227
372 guez 62 DO k = 1, klev + 1
373     DO j = 1, knon
374     i = ni(j)
375     yq2(j, k) = q2(i, k, nsrf)
376     END DO
377     END DO
378    
379 guez 237 ustar(:knon) = ustarhb(yu(:knon, 1), yv(:knon, 1), ycdragm(:knon))
380 guez 228 CALL yamada4(dtime, rg, zlev(:knon, :), yzlay(:knon, :), &
381 guez 238 yu(:knon, :), yv(:knon, :), yteta(:knon, :), yq2(:knon, :), &
382     ykmm(:knon, :), ykmn(:knon, :), ustar(:knon))
383     coefm(:knon, :) = ykmm(:knon, 2:klev)
384     coefh(:knon, :) = ykmn(:knon, 2:klev)
385 guez 38 END IF
386 guez 3
387 guez 237 CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), coefm(:knon, :), &
388     ycdragm(:knon), yt(:knon, :), yu(:knon, :), ypaprs(:knon, :), &
389 guez 229 ypplay(:knon, :), ydelp(:knon, :), y_d_u(:knon, :), &
390 guez 225 y_flux_u(:knon))
391 guez 237 CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), coefm(:knon, :), &
392     ycdragm(:knon), yt(:knon, :), yv(:knon, :), ypaprs(:knon, :), &
393 guez 229 ypplay(:knon, :), ydelp(:knon, :), y_d_v(:knon, :), &
394 guez 225 y_flux_v(:knon))
395 guez 3
396 guez 62 ! calculer la diffusion de "q" et de "h"
397 guez 221 CALL clqh(dtime, julien, firstcal, nsrf, ni(:knon), &
398 guez 225 ytsoil(:knon, :), yqsol(:knon), mu0, yrugos, yrugoro, &
399 guez 237 yu(:knon, 1), yv(:knon, 1), coefh(:knon, :), ycdragh(:knon), &
400 guez 236 yt, yq, yts(:knon), ypaprs, ypplay, ydelp, yrads(:knon), &
401     yalb(:knon), snow(:knon), yqsurf, yrain_f, ysnow_f, &
402     yfluxlat(:knon), pctsrf_new_sic, yagesno(:knon), y_d_t, y_d_q, &
403     y_d_ts(:knon), yz0_new, y_flux_t(:knon), y_flux_q(:knon), &
404     y_dflux_t(:knon), y_dflux_q(:knon), y_fqcalving, y_ffonte, &
405     y_run_off_lic_0)
406 guez 3
407 guez 62 ! calculer la longueur de rugosite sur ocean
408     yrugm = 0.
409     IF (nsrf == is_oce) THEN
410     DO j = 1, knon
411 guez 237 yrugm(j) = 0.018 * ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2) &
412 guez 225 / rg + 0.11 * 14E-6 &
413 guez 237 / sqrt(ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2))
414 guez 62 yrugm(j) = max(1.5E-05, yrugm(j))
415     END DO
416     END IF
417 guez 38 DO j = 1, knon
418 guez 225 y_dflux_t(j) = y_dflux_t(j) * ypct(j)
419     y_dflux_q(j) = y_dflux_q(j) * ypct(j)
420 guez 38 END DO
421 guez 3
422 guez 237 DO k = 2, klev
423 guez 62 DO j = 1, knon
424     i = ni(j)
425 guez 225 coefh(j, k) = coefh(j, k) * ypct(j)
426     coefm(j, k) = coefm(j, k) * ypct(j)
427 guez 237 END DO
428     END DO
429     DO j = 1, knon
430     i = ni(j)
431     ycdragh(j) = ycdragh(j) * ypct(j)
432     ycdragm(j) = ycdragm(j) * ypct(j)
433     END DO
434     DO k = 1, klev
435     DO j = 1, knon
436     i = ni(j)
437 guez 225 y_d_t(j, k) = y_d_t(j, k) * ypct(j)
438     y_d_q(j, k) = y_d_q(j, k) * ypct(j)
439     y_d_u(j, k) = y_d_u(j, k) * ypct(j)
440     y_d_v(j, k) = y_d_v(j, k) * ypct(j)
441 guez 62 END DO
442 guez 38 END DO
443 guez 3
444 guez 214 flux_t(ni(:knon), nsrf) = y_flux_t(:knon)
445     flux_q(ni(:knon), nsrf) = y_flux_q(:knon)
446     flux_u(ni(:knon), nsrf) = y_flux_u(:knon)
447     flux_v(ni(:knon), nsrf) = y_flux_v(:knon)
448 guez 15
449 guez 206 evap(:, nsrf) = -flux_q(:, nsrf)
450    
451 guez 155 falbe(:, nsrf) = 0.
452 guez 215 fsnow(:, nsrf) = 0.
453 guez 62 qsurf(:, nsrf) = 0.
454 guez 222 frugs(:, nsrf) = 0.
455 guez 38 DO j = 1, knon
456     i = ni(j)
457 guez 62 d_ts(i, nsrf) = y_d_ts(j)
458 guez 155 falbe(i, nsrf) = yalb(j)
459 guez 215 fsnow(i, nsrf) = snow(j)
460 guez 62 qsurf(i, nsrf) = yqsurf(j)
461 guez 222 frugs(i, nsrf) = yz0_new(j)
462 guez 62 fluxlat(i, nsrf) = yfluxlat(j)
463     IF (nsrf == is_oce) THEN
464     rugmer(i) = yrugm(j)
465 guez 222 frugs(i, nsrf) = yrugm(j)
466 guez 62 END IF
467     agesno(i, nsrf) = yagesno(j)
468     fqcalving(i, nsrf) = y_fqcalving(j)
469     ffonte(i, nsrf) = y_ffonte(j)
470 guez 237 cdragh(i) = cdragh(i) + ycdragh(j)
471     cdragm(i) = cdragm(i) + ycdragm(j)
472 guez 62 dflux_t(i) = dflux_t(i) + y_dflux_t(j)
473     dflux_q(i) = dflux_q(i) + y_dflux_q(j)
474 guez 38 END DO
475 guez 62 IF (nsrf == is_ter) THEN
476 guez 99 qsol(ni(:knon)) = yqsol(:knon)
477     else IF (nsrf == is_lic) THEN
478 guez 62 DO j = 1, knon
479     i = ni(j)
480     run_off_lic_0(i) = y_run_off_lic_0(j)
481     END DO
482     END IF
483 guez 118
484 guez 62 ftsoil(:, :, nsrf) = 0.
485 guez 208 ftsoil(ni(:knon), :, nsrf) = ytsoil(:knon, :)
486 guez 62
487 guez 38 DO j = 1, knon
488     i = ni(j)
489 guez 62 DO k = 1, klev
490     d_t(i, k) = d_t(i, k) + y_d_t(j, k)
491     d_q(i, k) = d_q(i, k) + y_d_q(j, k)
492     d_u(i, k) = d_u(i, k) + y_d_u(j, k)
493     d_v(i, k) = d_v(i, k) + y_d_v(j, k)
494 guez 237 END DO
495     END DO
496    
497     DO j = 1, knon
498     i = ni(j)
499     DO k = 2, klev
500 guez 70 ycoefh(i, k) = ycoefh(i, k) + coefh(j, k)
501 guez 62 END DO
502 guez 38 END DO
503 guez 62
504 guez 237 DO j = 1, knon
505     i = ni(j)
506     ycoefh(i, 1) = ycoefh(i, 1) + ycdragh(j)
507     END DO
508    
509 guez 99 ! diagnostic t, q a 2m et u, v a 10m
510 guez 62
511 guez 38 DO j = 1, knon
512     i = ni(j)
513 guez 227 u1(j) = yu(j, 1) + y_d_u(j, 1)
514     v1(j) = yv(j, 1) + y_d_v(j, 1)
515 guez 62 tair1(j) = yt(j, 1) + y_d_t(j, 1)
516     qair1(j) = yq(j, 1) + y_d_q(j, 1)
517 guez 225 zgeo1(j) = rd * tair1(j) / (0.5 * (ypaprs(j, 1) + ypplay(j, &
518     1))) * (ypaprs(j, 1)-ypplay(j, 1))
519 guez 62 tairsol(j) = yts(j) + y_d_ts(j)
520     rugo1(j) = yrugos(j)
521     IF (nsrf == is_oce) THEN
522 guez 222 rugo1(j) = frugs(i, nsrf)
523 guez 62 END IF
524     psfce(j) = ypaprs(j, 1)
525     patm(j) = ypplay(j, 1)
526 guez 15
527 guez 62 qairsol(j) = yqsurf(j)
528 guez 38 END DO
529 guez 15
530 guez 227 CALL stdlevvar(klon, knon, nsrf, u1(:knon), v1(:knon), tair1(:knon), &
531     qair1, zgeo1, tairsol, qairsol, rugo1, psfce, patm, yt2m, &
532     yq2m, yt10m, yq10m, wind10m(:knon), ustar)
533 guez 3
534 guez 62 DO j = 1, knon
535     i = ni(j)
536     t2m(i, nsrf) = yt2m(j)
537     q2m(i, nsrf) = yq2m(j)
538 guez 3
539 guez 227 u10m_srf(i, nsrf) = (wind10m(j) * u1(j)) &
540     / sqrt(u1(j)**2 + v1(j)**2)
541     v10m_srf(i, nsrf) = (wind10m(j) * v1(j)) &
542     / sqrt(u1(j)**2 + v1(j)**2)
543 guez 62 END DO
544 guez 15
545 guez 227 CALL hbtm(ypaprs, ypplay, yt2m, yq2m, ustar(:knon), y_flux_t(:knon), &
546 guez 206 y_flux_q(:knon), yu, yv, yt, yq, ypblh(:knon), ycapcl, &
547     yoliqcl, ycteicl, ypblt, ytherm, ytrmb1, ytrmb2, ytrmb3, ylcl)
548 guez 15
549 guez 38 DO j = 1, knon
550     i = ni(j)
551 guez 62 pblh(i, nsrf) = ypblh(j)
552     plcl(i, nsrf) = ylcl(j)
553     capcl(i, nsrf) = ycapcl(j)
554     oliqcl(i, nsrf) = yoliqcl(j)
555     cteicl(i, nsrf) = ycteicl(j)
556     pblt(i, nsrf) = ypblt(j)
557     therm(i, nsrf) = ytherm(j)
558     trmb1(i, nsrf) = ytrmb1(j)
559     trmb2(i, nsrf) = ytrmb2(j)
560     trmb3(i, nsrf) = ytrmb3(j)
561 guez 38 END DO
562 guez 3
563 guez 38 DO j = 1, knon
564 guez 62 DO k = 1, klev + 1
565     i = ni(j)
566     q2(i, k, nsrf) = yq2(j, k)
567     END DO
568 guez 38 END DO
569 guez 215 else
570     fsnow(:, nsrf) = 0.
571 guez 62 end IF if_knon
572 guez 49 END DO loop_surface
573 guez 15
574 guez 38 ! On utilise les nouvelles surfaces
575 guez 222 frugs(:, is_oce) = rugmer
576 guez 202 pctsrf(:, is_oce) = pctsrf_new_oce
577     pctsrf(:, is_sic) = pctsrf_new_sic
578 guez 15
579 guez 202 firstcal = .false.
580    
581 guez 38 END SUBROUTINE clmain
582 guez 15
583 guez 38 end module clmain_m

  ViewVC Help
Powered by ViewVC 1.1.21