/[lmdze]/trunk/Sources/phylmd/clmain.f
ViewVC logotype

Annotation of /trunk/Sources/phylmd/clmain.f

Parent Directory Parent Directory | Revision Log Revision Log


Revision 241 - (hide annotations)
Mon Nov 13 11:51:04 2017 UTC (6 years, 6 months ago) by guez
File size: 20405 byte(s)
In procedure phytrac, separate dummy argument coefh(klon, klev) into
coefh(klon, 2:klev) and cdragh(klon).

1 guez 38 module clmain_m
2 guez 3
3 guez 38 IMPLICIT NONE
4 guez 3
5 guez 38 contains
6 guez 3
7 guez 221 SUBROUTINE clmain(dtime, pctsrf, t, q, u, v, julien, mu0, ftsol, cdmmax, &
8 guez 215 cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, paprs, pplay, fsnow, &
9 guez 223 qsurf, evap, falbe, fluxlat, rain_fall, snow_f, fsolsw, fsollw, frugs, &
10     agesno, rugoro, d_t, d_q, d_u, d_v, d_ts, flux_t, flux_q, flux_u, &
11 guez 226 flux_v, cdragh, cdragm, q2, dflux_t, dflux_q, ycoefh, t2m, q2m, &
12     u10m_srf, v10m_srf, pblh, capcl, oliqcl, cteicl, pblt, therm, trmb1, &
13     trmb2, trmb3, plcl, fqcalving, ffonte, run_off_lic_0)
14 guez 3
15 guez 99 ! From phylmd/clmain.F, version 1.6, 2005/11/16 14:47:19
16 guez 62 ! Author: Z. X. Li (LMD/CNRS), date: 1993/08/18
17     ! Objet : interface de couche limite (diffusion verticale)
18 guez 3
19 guez 62 ! Tout ce qui a trait aux traceurs est dans "phytrac". Le calcul
20     ! de la couche limite pour les traceurs se fait avec "cltrac" et
21 guez 145 ! ne tient pas compte de la diff\'erentiation des sous-fractions
22     ! de sol.
23 guez 3
24 guez 49 use clqh_m, only: clqh
25 guez 62 use clvent_m, only: clvent
26 guez 47 use coefkz_m, only: coefkz
27     use coefkzmin_m, only: coefkzmin
28 guez 233 use coefkz2_m, only: coefkz2
29 guez 227 USE conf_gcm_m, ONLY: lmt_pas
30 guez 62 USE conf_phys_m, ONLY: iflag_pbl
31     USE dimphy, ONLY: klev, klon, zmasq
32     USE dimsoil, ONLY: nsoilmx
33 guez 47 use hbtm_m, only: hbtm
34 guez 62 USE indicesol, ONLY: epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf
35 guez 202 USE interfoce_lim_m, ONLY: interfoce_lim
36 guez 104 use stdlevvar_m, only: stdlevvar
37 guez 62 USE suphec_m, ONLY: rd, rg, rkappa
38 guez 202 use time_phylmdz, only: itap
39 guez 62 use ustarhb_m, only: ustarhb
40 guez 47 use yamada4_m, only: yamada4
41 guez 15
42 guez 62 REAL, INTENT(IN):: dtime ! interval du temps (secondes)
43 guez 202
44 guez 62 REAL, INTENT(inout):: pctsrf(klon, nbsrf)
45 guez 202 ! tableau des pourcentages de surface de chaque maille
46 guez 62
47     REAL, INTENT(IN):: t(klon, klev) ! temperature (K)
48 guez 225 REAL, INTENT(IN):: q(klon, klev) ! vapeur d'eau (kg / kg)
49 guez 62 REAL, INTENT(IN):: u(klon, klev), v(klon, klev) ! vitesse
50 guez 221 INTEGER, INTENT(IN):: julien ! jour de l'annee en cours
51 guez 213 REAL, intent(in):: mu0(klon) ! cosinus de l'angle solaire zenithal
52 guez 222 REAL, INTENT(IN):: ftsol(:, :) ! (klon, nbsrf) temp\'erature du sol (en K)
53 guez 71 REAL, INTENT(IN):: cdmmax, cdhmax ! seuils cdrm, cdrh
54 guez 99 REAL, INTENT(IN):: ksta, ksta_ter
55     LOGICAL, INTENT(IN):: ok_kzmin
56 guez 101
57 guez 118 REAL, INTENT(inout):: ftsoil(klon, nsoilmx, nbsrf)
58     ! soil temperature of surface fraction
59    
60 guez 225 REAL, INTENT(inout):: qsol(:) ! (klon)
61 guez 101 ! column-density of water in soil, in kg m-2
62    
63 guez 225 REAL, INTENT(IN):: paprs(klon, klev + 1) ! pression a intercouche (Pa)
64 guez 62 REAL, INTENT(IN):: pplay(klon, klev) ! pression au milieu de couche (Pa)
65 guez 215 REAL, INTENT(inout):: fsnow(:, :) ! (klon, nbsrf) \'epaisseur neigeuse
66 guez 70 REAL qsurf(klon, nbsrf)
67     REAL evap(klon, nbsrf)
68 guez 155 REAL, intent(inout):: falbe(klon, nbsrf)
69 guez 214 REAL, intent(out):: fluxlat(:, :) ! (klon, nbsrf)
70 guez 70
71 guez 101 REAL, intent(in):: rain_fall(klon)
72 guez 225 ! liquid water mass flux (kg / m2 / s), positive down
73 guez 101
74     REAL, intent(in):: snow_f(klon)
75 guez 225 ! solid water mass flux (kg / m2 / s), positive down
76 guez 101
77 guez 222 REAL, INTENT(IN):: fsolsw(klon, nbsrf), fsollw(klon, nbsrf)
78     REAL, intent(inout):: frugs(klon, nbsrf) ! longueur de rugosit\'e (en m)
79 guez 70 real agesno(klon, nbsrf)
80     REAL, INTENT(IN):: rugoro(klon)
81    
82 guez 38 REAL d_t(klon, klev), d_q(klon, klev)
83 guez 49 ! d_t------output-R- le changement pour "t"
84     ! d_q------output-R- le changement pour "q"
85 guez 62
86     REAL, intent(out):: d_u(klon, klev), d_v(klon, klev)
87     ! changement pour "u" et "v"
88    
89 guez 221 REAL, intent(out):: d_ts(:, :) ! (klon, nbsrf) variation of ftsol
90 guez 70
91 guez 206 REAL, intent(out):: flux_t(klon, nbsrf)
92 guez 225 ! flux de chaleur sensible (Cp T) (W / m2) (orientation positive vers
93 guez 206 ! le bas) à la surface
94 guez 70
95 guez 206 REAL, intent(out):: flux_q(klon, nbsrf)
96 guez 225 ! flux de vapeur d'eau (kg / m2 / s) à la surface
97 guez 70
98 guez 206 REAL, intent(out):: flux_u(klon, nbsrf), flux_v(klon, nbsrf)
99 guez 229 ! tension du vent (flux turbulent de vent) à la surface, en Pa
100 guez 206
101 guez 70 REAL, INTENT(out):: cdragh(klon), cdragm(klon)
102 guez 225 real q2(klon, klev + 1, nbsrf)
103 guez 70
104 guez 99 REAL, INTENT(out):: dflux_t(klon), dflux_q(klon)
105 guez 49 ! dflux_t derive du flux sensible
106     ! dflux_q derive du flux latent
107 guez 191 ! IM "slab" ocean
108 guez 70
109 guez 237 REAL, intent(out):: ycoefh(:, :) ! (klon, klev)
110 guez 226 ! Pour pouvoir extraire les coefficients d'\'echange, le champ
111     ! "ycoefh" a \'et\'e cr\'e\'e. Nous avons moyenn\'e les valeurs de
112     ! ce champ sur les quatre sous-surfaces du mod\`ele.
113    
114 guez 221 REAL, INTENT(inout):: t2m(klon, nbsrf), q2m(klon, nbsrf)
115 guez 70
116 guez 225 REAL, INTENT(inout):: u10m_srf(:, :), v10m_srf(:, :) ! (klon, nbsrf)
117     ! composantes du vent \`a 10m sans spirale d'Ekman
118    
119     ! Ionela Musat. Cf. Anne Mathieu : planetary boundary layer, hbtm.
120     ! Comme les autres diagnostics on cumule dans physiq ce qui permet
121     ! de sortir les grandeurs par sous-surface.
122 guez 191 REAL pblh(klon, nbsrf) ! height of planetary boundary layer
123 guez 70 REAL capcl(klon, nbsrf)
124     REAL oliqcl(klon, nbsrf)
125     REAL cteicl(klon, nbsrf)
126 guez 221 REAL, INTENT(inout):: pblt(klon, nbsrf) ! T au nveau HCL
127 guez 70 REAL therm(klon, nbsrf)
128     REAL trmb1(klon, nbsrf)
129     ! trmb1-------deep_cape
130     REAL trmb2(klon, nbsrf)
131     ! trmb2--------inhibition
132     REAL trmb3(klon, nbsrf)
133     ! trmb3-------Point Omega
134     REAL plcl(klon, nbsrf)
135     REAL fqcalving(klon, nbsrf), ffonte(klon, nbsrf)
136     ! ffonte----Flux thermique utilise pour fondre la neige
137     ! fqcalving-Flux d'eau "perdue" par la surface et necessaire pour limiter la
138 guez 225 ! hauteur de neige, en kg / m2 / s
139 guez 70 REAL run_off_lic_0(klon)
140    
141     ! Local:
142 guez 15
143 guez 202 LOGICAL:: firstcal = .true.
144    
145     ! la nouvelle repartition des surfaces sortie de l'interface
146     REAL, save:: pctsrf_new_oce(klon)
147     REAL, save:: pctsrf_new_sic(klon)
148    
149 guez 70 REAL y_fqcalving(klon), y_ffonte(klon)
150     real y_run_off_lic_0(klon)
151     REAL rugmer(klon)
152 guez 38 REAL ytsoil(klon, nsoilmx)
153     REAL yts(klon), yrugos(klon), ypct(klon), yz0_new(klon)
154     REAL yalb(klon)
155 guez 215 REAL snow(klon), yqsurf(klon), yagesno(klon)
156 guez 225 real yqsol(klon) ! column-density of water in soil, in kg m-2
157     REAL yrain_f(klon) ! liquid water mass flux (kg / m2 / s), positive down
158     REAL ysnow_f(klon) ! solid water mass flux (kg / m2 / s), positive down
159 guez 38 REAL yrugm(klon), yrads(klon), yrugoro(klon)
160     REAL yfluxlat(klon)
161     REAL y_d_ts(klon)
162     REAL y_d_t(klon, klev), y_d_q(klon, klev)
163     REAL y_d_u(klon, klev), y_d_v(klon, klev)
164 guez 206 REAL y_flux_t(klon), y_flux_q(klon)
165     REAL y_flux_u(klon), y_flux_v(klon)
166 guez 38 REAL y_dflux_t(klon), y_dflux_q(klon)
167 guez 237 REAL coefh(klon, 2:klev), coefm(klon, 2:klev)
168     real ycdragh(klon), ycdragm(klon)
169 guez 38 REAL yu(klon, klev), yv(klon, klev)
170     REAL yt(klon, klev), yq(klon, klev)
171 guez 225 REAL ypaprs(klon, klev + 1), ypplay(klon, klev), ydelp(klon, klev)
172 guez 240 REAL ycoefm0(klon, 2:klev), ycoefh0(klon, 2:klev)
173 guez 227 REAL yzlay(klon, klev), zlev(klon, klev + 1), yteta(klon, klev)
174 guez 225 REAL ykmm(klon, klev + 1), ykmn(klon, klev + 1)
175     REAL yq2(klon, klev + 1)
176 guez 38 REAL delp(klon, klev)
177     INTEGER i, k, nsrf
178     INTEGER ni(klon), knon, j
179 guez 40
180 guez 38 REAL pctsrf_pot(klon, nbsrf)
181 guez 145 ! "pourcentage potentiel" pour tenir compte des \'eventuelles
182 guez 40 ! apparitions ou disparitions de la glace de mer
183 guez 15
184 guez 227 REAL yt2m(klon), yq2m(klon), wind10m(klon)
185     REAL ustar(klon)
186 guez 15
187 guez 38 REAL yt10m(klon), yq10m(klon)
188     REAL ypblh(klon)
189     REAL ylcl(klon)
190     REAL ycapcl(klon)
191     REAL yoliqcl(klon)
192     REAL ycteicl(klon)
193     REAL ypblt(klon)
194     REAL ytherm(klon)
195     REAL ytrmb1(klon)
196     REAL ytrmb2(klon)
197     REAL ytrmb3(klon)
198 guez 227 REAL u1(klon), v1(klon)
199 guez 38 REAL tair1(klon), qair1(klon), tairsol(klon)
200     REAL psfce(klon), patm(klon)
201 guez 15
202 guez 38 REAL qairsol(klon), zgeo1(klon)
203     REAL rugo1(klon)
204 guez 15
205 guez 38 !------------------------------------------------------------
206 guez 15
207 guez 38 ytherm = 0.
208 guez 15
209 guez 38 DO k = 1, klev ! epaisseur de couche
210     DO i = 1, klon
211 guez 225 delp(i, k) = paprs(i, k) - paprs(i, k + 1)
212 guez 38 END DO
213     END DO
214 guez 15
215 guez 40 ! Initialization:
216     rugmer = 0.
217     cdragh = 0.
218     cdragm = 0.
219     dflux_t = 0.
220     dflux_q = 0.
221     ypct = 0.
222     yqsurf = 0.
223     yrain_f = 0.
224     ysnow_f = 0.
225     yrugos = 0.
226     ypaprs = 0.
227     ypplay = 0.
228     ydelp = 0.
229     yu = 0.
230     yv = 0.
231     yt = 0.
232     yq = 0.
233     y_dflux_t = 0.
234     y_dflux_q = 0.
235 guez 38 yrugoro = 0.
236 guez 40 d_ts = 0.
237 guez 38 flux_t = 0.
238     flux_q = 0.
239     flux_u = 0.
240     flux_v = 0.
241 guez 214 fluxlat = 0.
242 guez 40 d_t = 0.
243     d_q = 0.
244     d_u = 0.
245     d_v = 0.
246 guez 70 ycoefh = 0.
247 guez 15
248 guez 145 ! Initialisation des "pourcentages potentiels". On consid\`ere ici qu'on
249     ! peut avoir potentiellement de la glace sur tout le domaine oc\'eanique
250     ! (\`a affiner)
251 guez 15
252 guez 202 pctsrf_pot(:, is_ter) = pctsrf(:, is_ter)
253     pctsrf_pot(:, is_lic) = pctsrf(:, is_lic)
254 guez 38 pctsrf_pot(:, is_oce) = 1. - zmasq
255     pctsrf_pot(:, is_sic) = 1. - zmasq
256 guez 15
257 guez 202 ! Tester si c'est le moment de lire le fichier:
258     if (mod(itap - 1, lmt_pas) == 0) then
259 guez 221 CALL interfoce_lim(julien, pctsrf_new_oce, pctsrf_new_sic)
260 guez 202 endif
261    
262 guez 99 ! Boucler sur toutes les sous-fractions du sol:
263    
264 guez 49 loop_surface: DO nsrf = 1, nbsrf
265     ! Chercher les indices :
266 guez 38 ni = 0
267     knon = 0
268     DO i = 1, klon
269 guez 145 ! Pour d\'eterminer le domaine \`a traiter, on utilise les surfaces
270 guez 38 ! "potentielles"
271     IF (pctsrf_pot(i, nsrf) > epsfra) THEN
272     knon = knon + 1
273     ni(knon) = i
274     END IF
275     END DO
276 guez 15
277 guez 62 if_knon: IF (knon /= 0) then
278 guez 38 DO j = 1, knon
279     i = ni(j)
280 guez 62 ypct(j) = pctsrf(i, nsrf)
281 guez 207 yts(j) = ftsol(i, nsrf)
282 guez 215 snow(j) = fsnow(i, nsrf)
283 guez 62 yqsurf(j) = qsurf(i, nsrf)
284 guez 155 yalb(j) = falbe(i, nsrf)
285 guez 62 yrain_f(j) = rain_fall(i)
286     ysnow_f(j) = snow_f(i)
287     yagesno(j) = agesno(i, nsrf)
288 guez 222 yrugos(j) = frugs(i, nsrf)
289 guez 62 yrugoro(j) = rugoro(i)
290 guez 222 yrads(j) = fsolsw(i, nsrf) + fsollw(i, nsrf)
291 guez 225 ypaprs(j, klev + 1) = paprs(i, klev + 1)
292 guez 62 y_run_off_lic_0(j) = run_off_lic_0(i)
293 guez 38 END DO
294 guez 3
295 guez 99 ! For continent, copy soil water content
296 guez 225 IF (nsrf == is_ter) yqsol(:knon) = qsol(ni(:knon))
297 guez 3
298 guez 208 ytsoil(:knon, :) = ftsoil(ni(:knon), :, nsrf)
299 guez 3
300 guez 38 DO k = 1, klev
301     DO j = 1, knon
302     i = ni(j)
303 guez 62 ypaprs(j, k) = paprs(i, k)
304     ypplay(j, k) = pplay(i, k)
305     ydelp(j, k) = delp(i, k)
306     yu(j, k) = u(i, k)
307     yv(j, k) = v(i, k)
308     yt(j, k) = t(i, k)
309     yq(j, k) = q(i, k)
310 guez 38 END DO
311     END DO
312 guez 3
313 guez 62 ! calculer Cdrag et les coefficients d'echange
314 guez 221 CALL coefkz(nsrf, ypaprs, ypplay, ksta, ksta_ter, yts(:knon), &
315 guez 237 yrugos, yu, yv, yt, yq, yqsurf(:knon), coefm(:knon, :), &
316     coefh(:knon, :), ycdragm(:knon), ycdragh(:knon))
317 guez 228
318 guez 62 IF (iflag_pbl == 1) THEN
319 guez 240 CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0(:knon, :), &
320     ycoefh0(:knon, :))
321     coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :))
322     coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, :))
323 guez 238 ycdragm(:knon) = max(ycdragm(:knon), 0.)
324     ycdragh(:knon) = max(ycdragh(:knon), 0.)
325 guez 62 END IF
326 guez 3
327 guez 237 ! on met un seuil pour ycdragm et ycdragh
328 guez 62 IF (nsrf == is_oce) THEN
329 guez 237 ycdragm(:knon) = min(ycdragm(:knon), cdmmax)
330     ycdragh(:knon) = min(ycdragh(:knon), cdhmax)
331 guez 38 END IF
332 guez 3
333 guez 62 IF (ok_kzmin) THEN
334     ! Calcul d'une diffusion minimale pour les conditions tres stables
335     CALL coefkzmin(knon, ypaprs, ypplay, yu, yv, yt, yq, &
336 guez 240 ycdragm(:knon), ycoefh0(:knon, :))
337     ycoefm0(:knon, :) = ycoefh0(:knon, :)
338     coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :))
339     coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, :))
340 guez 98 END IF
341 guez 3
342 guez 228 IF (iflag_pbl >= 6) THEN
343 guez 145 ! Mellor et Yamada adapt\'e \`a Mars, Richard Fournier et
344     ! Fr\'ed\'eric Hourdin
345 guez 62 yzlay(:knon, 1) = rd * yt(:knon, 1) / (0.5 * (ypaprs(:knon, 1) &
346     + ypplay(:knon, 1))) &
347     * (ypaprs(:knon, 1) - ypplay(:knon, 1)) / rg
348 guez 228
349 guez 62 DO k = 2, klev
350 guez 227 yzlay(:knon, k) = yzlay(:knon, k-1) &
351 guez 62 + rd * 0.5 * (yt(1:knon, k-1) + yt(1:knon, k)) &
352     / ypaprs(1:knon, k) &
353     * (ypplay(1:knon, k-1) - ypplay(1:knon, k)) / rg
354     END DO
355 guez 227
356 guez 62 DO k = 1, klev
357 guez 225 yteta(1:knon, k) = yt(1:knon, k) * (ypaprs(1:knon, 1) &
358     / ypplay(1:knon, k))**rkappa * (1. + 0.61 * yq(1:knon, k))
359 guez 62 END DO
360 guez 227
361     zlev(:knon, 1) = 0.
362     zlev(:knon, klev + 1) = 2. * yzlay(:knon, klev) &
363 guez 62 - yzlay(:knon, klev - 1)
364 guez 227
365 guez 62 DO k = 2, klev
366 guez 227 zlev(:knon, k) = 0.5 * (yzlay(:knon, k) + yzlay(:knon, k-1))
367 guez 62 END DO
368 guez 227
369 guez 62 DO k = 1, klev + 1
370     DO j = 1, knon
371     i = ni(j)
372     yq2(j, k) = q2(i, k, nsrf)
373     END DO
374     END DO
375    
376 guez 237 ustar(:knon) = ustarhb(yu(:knon, 1), yv(:knon, 1), ycdragm(:knon))
377 guez 228 CALL yamada4(dtime, rg, zlev(:knon, :), yzlay(:knon, :), &
378 guez 238 yu(:knon, :), yv(:knon, :), yteta(:knon, :), yq2(:knon, :), &
379     ykmm(:knon, :), ykmn(:knon, :), ustar(:knon))
380     coefm(:knon, :) = ykmm(:knon, 2:klev)
381     coefh(:knon, :) = ykmn(:knon, 2:klev)
382 guez 38 END IF
383 guez 3
384 guez 237 CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), coefm(:knon, :), &
385     ycdragm(:knon), yt(:knon, :), yu(:knon, :), ypaprs(:knon, :), &
386 guez 229 ypplay(:knon, :), ydelp(:knon, :), y_d_u(:knon, :), &
387 guez 225 y_flux_u(:knon))
388 guez 237 CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), coefm(:knon, :), &
389     ycdragm(:knon), yt(:knon, :), yv(:knon, :), ypaprs(:knon, :), &
390 guez 229 ypplay(:knon, :), ydelp(:knon, :), y_d_v(:knon, :), &
391 guez 225 y_flux_v(:knon))
392 guez 3
393 guez 62 ! calculer la diffusion de "q" et de "h"
394 guez 221 CALL clqh(dtime, julien, firstcal, nsrf, ni(:knon), &
395 guez 225 ytsoil(:knon, :), yqsol(:knon), mu0, yrugos, yrugoro, &
396 guez 237 yu(:knon, 1), yv(:knon, 1), coefh(:knon, :), ycdragh(:knon), &
397 guez 236 yt, yq, yts(:knon), ypaprs, ypplay, ydelp, yrads(:knon), &
398     yalb(:knon), snow(:knon), yqsurf, yrain_f, ysnow_f, &
399     yfluxlat(:knon), pctsrf_new_sic, yagesno(:knon), y_d_t, y_d_q, &
400     y_d_ts(:knon), yz0_new, y_flux_t(:knon), y_flux_q(:knon), &
401     y_dflux_t(:knon), y_dflux_q(:knon), y_fqcalving, y_ffonte, &
402     y_run_off_lic_0)
403 guez 3
404 guez 62 ! calculer la longueur de rugosite sur ocean
405     yrugm = 0.
406     IF (nsrf == is_oce) THEN
407     DO j = 1, knon
408 guez 237 yrugm(j) = 0.018 * ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2) &
409 guez 225 / rg + 0.11 * 14E-6 &
410 guez 237 / sqrt(ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2))
411 guez 62 yrugm(j) = max(1.5E-05, yrugm(j))
412     END DO
413     END IF
414 guez 38 DO j = 1, knon
415 guez 225 y_dflux_t(j) = y_dflux_t(j) * ypct(j)
416     y_dflux_q(j) = y_dflux_q(j) * ypct(j)
417 guez 38 END DO
418 guez 3
419 guez 237 DO k = 2, klev
420 guez 62 DO j = 1, knon
421     i = ni(j)
422 guez 225 coefh(j, k) = coefh(j, k) * ypct(j)
423     coefm(j, k) = coefm(j, k) * ypct(j)
424 guez 237 END DO
425     END DO
426     DO j = 1, knon
427     i = ni(j)
428     ycdragh(j) = ycdragh(j) * ypct(j)
429     ycdragm(j) = ycdragm(j) * ypct(j)
430     END DO
431     DO k = 1, klev
432     DO j = 1, knon
433     i = ni(j)
434 guez 225 y_d_t(j, k) = y_d_t(j, k) * ypct(j)
435     y_d_q(j, k) = y_d_q(j, k) * ypct(j)
436     y_d_u(j, k) = y_d_u(j, k) * ypct(j)
437     y_d_v(j, k) = y_d_v(j, k) * ypct(j)
438 guez 62 END DO
439 guez 38 END DO
440 guez 3
441 guez 214 flux_t(ni(:knon), nsrf) = y_flux_t(:knon)
442     flux_q(ni(:knon), nsrf) = y_flux_q(:knon)
443     flux_u(ni(:knon), nsrf) = y_flux_u(:knon)
444     flux_v(ni(:knon), nsrf) = y_flux_v(:knon)
445 guez 15
446 guez 206 evap(:, nsrf) = -flux_q(:, nsrf)
447    
448 guez 155 falbe(:, nsrf) = 0.
449 guez 215 fsnow(:, nsrf) = 0.
450 guez 62 qsurf(:, nsrf) = 0.
451 guez 222 frugs(:, nsrf) = 0.
452 guez 38 DO j = 1, knon
453     i = ni(j)
454 guez 62 d_ts(i, nsrf) = y_d_ts(j)
455 guez 155 falbe(i, nsrf) = yalb(j)
456 guez 215 fsnow(i, nsrf) = snow(j)
457 guez 62 qsurf(i, nsrf) = yqsurf(j)
458 guez 222 frugs(i, nsrf) = yz0_new(j)
459 guez 62 fluxlat(i, nsrf) = yfluxlat(j)
460     IF (nsrf == is_oce) THEN
461     rugmer(i) = yrugm(j)
462 guez 222 frugs(i, nsrf) = yrugm(j)
463 guez 62 END IF
464     agesno(i, nsrf) = yagesno(j)
465     fqcalving(i, nsrf) = y_fqcalving(j)
466     ffonte(i, nsrf) = y_ffonte(j)
467 guez 237 cdragh(i) = cdragh(i) + ycdragh(j)
468     cdragm(i) = cdragm(i) + ycdragm(j)
469 guez 62 dflux_t(i) = dflux_t(i) + y_dflux_t(j)
470     dflux_q(i) = dflux_q(i) + y_dflux_q(j)
471 guez 38 END DO
472 guez 62 IF (nsrf == is_ter) THEN
473 guez 99 qsol(ni(:knon)) = yqsol(:knon)
474     else IF (nsrf == is_lic) THEN
475 guez 62 DO j = 1, knon
476     i = ni(j)
477     run_off_lic_0(i) = y_run_off_lic_0(j)
478     END DO
479     END IF
480 guez 118
481 guez 62 ftsoil(:, :, nsrf) = 0.
482 guez 208 ftsoil(ni(:knon), :, nsrf) = ytsoil(:knon, :)
483 guez 62
484 guez 38 DO j = 1, knon
485     i = ni(j)
486 guez 62 DO k = 1, klev
487     d_t(i, k) = d_t(i, k) + y_d_t(j, k)
488     d_q(i, k) = d_q(i, k) + y_d_q(j, k)
489     d_u(i, k) = d_u(i, k) + y_d_u(j, k)
490     d_v(i, k) = d_v(i, k) + y_d_v(j, k)
491 guez 237 END DO
492     END DO
493    
494 guez 241 ycoefh(ni(:knon), 2:) = ycoefh(ni(:knon), 2:) + coefh(:knon, :)
495     ycoefh(ni(:knon), 1) = ycoefh(ni(:knon), 1) + ycdragh(:knon)
496 guez 62
497 guez 99 ! diagnostic t, q a 2m et u, v a 10m
498 guez 62
499 guez 38 DO j = 1, knon
500     i = ni(j)
501 guez 227 u1(j) = yu(j, 1) + y_d_u(j, 1)
502     v1(j) = yv(j, 1) + y_d_v(j, 1)
503 guez 62 tair1(j) = yt(j, 1) + y_d_t(j, 1)
504     qair1(j) = yq(j, 1) + y_d_q(j, 1)
505 guez 225 zgeo1(j) = rd * tair1(j) / (0.5 * (ypaprs(j, 1) + ypplay(j, &
506     1))) * (ypaprs(j, 1)-ypplay(j, 1))
507 guez 62 tairsol(j) = yts(j) + y_d_ts(j)
508     rugo1(j) = yrugos(j)
509     IF (nsrf == is_oce) THEN
510 guez 222 rugo1(j) = frugs(i, nsrf)
511 guez 62 END IF
512     psfce(j) = ypaprs(j, 1)
513     patm(j) = ypplay(j, 1)
514 guez 15
515 guez 62 qairsol(j) = yqsurf(j)
516 guez 38 END DO
517 guez 15
518 guez 227 CALL stdlevvar(klon, knon, nsrf, u1(:knon), v1(:knon), tair1(:knon), &
519     qair1, zgeo1, tairsol, qairsol, rugo1, psfce, patm, yt2m, &
520     yq2m, yt10m, yq10m, wind10m(:knon), ustar)
521 guez 3
522 guez 62 DO j = 1, knon
523     i = ni(j)
524     t2m(i, nsrf) = yt2m(j)
525     q2m(i, nsrf) = yq2m(j)
526 guez 3
527 guez 227 u10m_srf(i, nsrf) = (wind10m(j) * u1(j)) &
528     / sqrt(u1(j)**2 + v1(j)**2)
529     v10m_srf(i, nsrf) = (wind10m(j) * v1(j)) &
530     / sqrt(u1(j)**2 + v1(j)**2)
531 guez 62 END DO
532 guez 15
533 guez 227 CALL hbtm(ypaprs, ypplay, yt2m, yq2m, ustar(:knon), y_flux_t(:knon), &
534 guez 206 y_flux_q(:knon), yu, yv, yt, yq, ypblh(:knon), ycapcl, &
535     yoliqcl, ycteicl, ypblt, ytherm, ytrmb1, ytrmb2, ytrmb3, ylcl)
536 guez 15
537 guez 38 DO j = 1, knon
538     i = ni(j)
539 guez 62 pblh(i, nsrf) = ypblh(j)
540     plcl(i, nsrf) = ylcl(j)
541     capcl(i, nsrf) = ycapcl(j)
542     oliqcl(i, nsrf) = yoliqcl(j)
543     cteicl(i, nsrf) = ycteicl(j)
544     pblt(i, nsrf) = ypblt(j)
545     therm(i, nsrf) = ytherm(j)
546     trmb1(i, nsrf) = ytrmb1(j)
547     trmb2(i, nsrf) = ytrmb2(j)
548     trmb3(i, nsrf) = ytrmb3(j)
549 guez 38 END DO
550 guez 3
551 guez 38 DO j = 1, knon
552 guez 62 DO k = 1, klev + 1
553     i = ni(j)
554     q2(i, k, nsrf) = yq2(j, k)
555     END DO
556 guez 38 END DO
557 guez 215 else
558     fsnow(:, nsrf) = 0.
559 guez 62 end IF if_knon
560 guez 49 END DO loop_surface
561 guez 15
562 guez 38 ! On utilise les nouvelles surfaces
563 guez 222 frugs(:, is_oce) = rugmer
564 guez 202 pctsrf(:, is_oce) = pctsrf_new_oce
565     pctsrf(:, is_sic) = pctsrf_new_sic
566 guez 15
567 guez 202 firstcal = .false.
568    
569 guez 38 END SUBROUTINE clmain
570 guez 15
571 guez 38 end module clmain_m

  ViewVC Help
Powered by ViewVC 1.1.21