/[lmdze]/trunk/Sources/phylmd/clmain.f
ViewVC logotype

Annotation of /trunk/Sources/phylmd/clmain.f

Parent Directory Parent Directory | Revision Log Revision Log


Revision 243 - (hide annotations)
Tue Nov 14 14:38:36 2017 UTC (6 years, 6 months ago) by guez
File size: 19960 byte(s)
Multiply by ypct in the computation of average value rather than
modifying surface-specific quantity. This way, the surface-specific
quantity keeps the same meaning throughout the procedure.

1 guez 38 module clmain_m
2 guez 3
3 guez 38 IMPLICIT NONE
4 guez 3
5 guez 38 contains
6 guez 3
7 guez 221 SUBROUTINE clmain(dtime, pctsrf, t, q, u, v, julien, mu0, ftsol, cdmmax, &
8 guez 215 cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, paprs, pplay, fsnow, &
9 guez 223 qsurf, evap, falbe, fluxlat, rain_fall, snow_f, fsolsw, fsollw, frugs, &
10     agesno, rugoro, d_t, d_q, d_u, d_v, d_ts, flux_t, flux_q, flux_u, &
11 guez 226 flux_v, cdragh, cdragm, q2, dflux_t, dflux_q, ycoefh, t2m, q2m, &
12     u10m_srf, v10m_srf, pblh, capcl, oliqcl, cteicl, pblt, therm, trmb1, &
13     trmb2, trmb3, plcl, fqcalving, ffonte, run_off_lic_0)
14 guez 3
15 guez 99 ! From phylmd/clmain.F, version 1.6, 2005/11/16 14:47:19
16 guez 62 ! Author: Z. X. Li (LMD/CNRS), date: 1993/08/18
17     ! Objet : interface de couche limite (diffusion verticale)
18 guez 3
19 guez 62 ! Tout ce qui a trait aux traceurs est dans "phytrac". Le calcul
20     ! de la couche limite pour les traceurs se fait avec "cltrac" et
21 guez 145 ! ne tient pas compte de la diff\'erentiation des sous-fractions
22     ! de sol.
23 guez 3
24 guez 49 use clqh_m, only: clqh
25 guez 62 use clvent_m, only: clvent
26 guez 47 use coefkz_m, only: coefkz
27     use coefkzmin_m, only: coefkzmin
28 guez 233 use coefkz2_m, only: coefkz2
29 guez 227 USE conf_gcm_m, ONLY: lmt_pas
30 guez 62 USE conf_phys_m, ONLY: iflag_pbl
31     USE dimphy, ONLY: klev, klon, zmasq
32     USE dimsoil, ONLY: nsoilmx
33 guez 47 use hbtm_m, only: hbtm
34 guez 62 USE indicesol, ONLY: epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf
35 guez 202 USE interfoce_lim_m, ONLY: interfoce_lim
36 guez 104 use stdlevvar_m, only: stdlevvar
37 guez 62 USE suphec_m, ONLY: rd, rg, rkappa
38 guez 202 use time_phylmdz, only: itap
39 guez 62 use ustarhb_m, only: ustarhb
40 guez 47 use yamada4_m, only: yamada4
41 guez 15
42 guez 62 REAL, INTENT(IN):: dtime ! interval du temps (secondes)
43 guez 202
44 guez 62 REAL, INTENT(inout):: pctsrf(klon, nbsrf)
45 guez 202 ! tableau des pourcentages de surface de chaque maille
46 guez 62
47     REAL, INTENT(IN):: t(klon, klev) ! temperature (K)
48 guez 225 REAL, INTENT(IN):: q(klon, klev) ! vapeur d'eau (kg / kg)
49 guez 62 REAL, INTENT(IN):: u(klon, klev), v(klon, klev) ! vitesse
50 guez 221 INTEGER, INTENT(IN):: julien ! jour de l'annee en cours
51 guez 213 REAL, intent(in):: mu0(klon) ! cosinus de l'angle solaire zenithal
52 guez 222 REAL, INTENT(IN):: ftsol(:, :) ! (klon, nbsrf) temp\'erature du sol (en K)
53 guez 71 REAL, INTENT(IN):: cdmmax, cdhmax ! seuils cdrm, cdrh
54 guez 99 REAL, INTENT(IN):: ksta, ksta_ter
55     LOGICAL, INTENT(IN):: ok_kzmin
56 guez 101
57 guez 118 REAL, INTENT(inout):: ftsoil(klon, nsoilmx, nbsrf)
58     ! soil temperature of surface fraction
59    
60 guez 225 REAL, INTENT(inout):: qsol(:) ! (klon)
61 guez 101 ! column-density of water in soil, in kg m-2
62    
63 guez 225 REAL, INTENT(IN):: paprs(klon, klev + 1) ! pression a intercouche (Pa)
64 guez 62 REAL, INTENT(IN):: pplay(klon, klev) ! pression au milieu de couche (Pa)
65 guez 215 REAL, INTENT(inout):: fsnow(:, :) ! (klon, nbsrf) \'epaisseur neigeuse
66 guez 70 REAL qsurf(klon, nbsrf)
67     REAL evap(klon, nbsrf)
68 guez 155 REAL, intent(inout):: falbe(klon, nbsrf)
69 guez 214 REAL, intent(out):: fluxlat(:, :) ! (klon, nbsrf)
70 guez 70
71 guez 101 REAL, intent(in):: rain_fall(klon)
72 guez 225 ! liquid water mass flux (kg / m2 / s), positive down
73 guez 101
74     REAL, intent(in):: snow_f(klon)
75 guez 225 ! solid water mass flux (kg / m2 / s), positive down
76 guez 101
77 guez 222 REAL, INTENT(IN):: fsolsw(klon, nbsrf), fsollw(klon, nbsrf)
78     REAL, intent(inout):: frugs(klon, nbsrf) ! longueur de rugosit\'e (en m)
79 guez 70 real agesno(klon, nbsrf)
80     REAL, INTENT(IN):: rugoro(klon)
81    
82 guez 38 REAL d_t(klon, klev), d_q(klon, klev)
83 guez 49 ! d_t------output-R- le changement pour "t"
84     ! d_q------output-R- le changement pour "q"
85 guez 62
86     REAL, intent(out):: d_u(klon, klev), d_v(klon, klev)
87     ! changement pour "u" et "v"
88    
89 guez 221 REAL, intent(out):: d_ts(:, :) ! (klon, nbsrf) variation of ftsol
90 guez 70
91 guez 206 REAL, intent(out):: flux_t(klon, nbsrf)
92 guez 225 ! flux de chaleur sensible (Cp T) (W / m2) (orientation positive vers
93 guez 206 ! le bas) à la surface
94 guez 70
95 guez 206 REAL, intent(out):: flux_q(klon, nbsrf)
96 guez 225 ! flux de vapeur d'eau (kg / m2 / s) à la surface
97 guez 70
98 guez 206 REAL, intent(out):: flux_u(klon, nbsrf), flux_v(klon, nbsrf)
99 guez 229 ! tension du vent (flux turbulent de vent) à la surface, en Pa
100 guez 206
101 guez 70 REAL, INTENT(out):: cdragh(klon), cdragm(klon)
102 guez 225 real q2(klon, klev + 1, nbsrf)
103 guez 70
104 guez 99 REAL, INTENT(out):: dflux_t(klon), dflux_q(klon)
105 guez 49 ! dflux_t derive du flux sensible
106     ! dflux_q derive du flux latent
107 guez 191 ! IM "slab" ocean
108 guez 70
109 guez 242 REAL, intent(out):: ycoefh(:, 2:) ! (klon, 2:klev)
110 guez 226 ! Pour pouvoir extraire les coefficients d'\'echange, le champ
111     ! "ycoefh" a \'et\'e cr\'e\'e. Nous avons moyenn\'e les valeurs de
112     ! ce champ sur les quatre sous-surfaces du mod\`ele.
113    
114 guez 221 REAL, INTENT(inout):: t2m(klon, nbsrf), q2m(klon, nbsrf)
115 guez 70
116 guez 225 REAL, INTENT(inout):: u10m_srf(:, :), v10m_srf(:, :) ! (klon, nbsrf)
117     ! composantes du vent \`a 10m sans spirale d'Ekman
118    
119     ! Ionela Musat. Cf. Anne Mathieu : planetary boundary layer, hbtm.
120     ! Comme les autres diagnostics on cumule dans physiq ce qui permet
121     ! de sortir les grandeurs par sous-surface.
122 guez 191 REAL pblh(klon, nbsrf) ! height of planetary boundary layer
123 guez 70 REAL capcl(klon, nbsrf)
124     REAL oliqcl(klon, nbsrf)
125     REAL cteicl(klon, nbsrf)
126 guez 221 REAL, INTENT(inout):: pblt(klon, nbsrf) ! T au nveau HCL
127 guez 70 REAL therm(klon, nbsrf)
128     REAL trmb1(klon, nbsrf)
129     ! trmb1-------deep_cape
130     REAL trmb2(klon, nbsrf)
131     ! trmb2--------inhibition
132     REAL trmb3(klon, nbsrf)
133     ! trmb3-------Point Omega
134     REAL plcl(klon, nbsrf)
135     REAL fqcalving(klon, nbsrf), ffonte(klon, nbsrf)
136     ! ffonte----Flux thermique utilise pour fondre la neige
137     ! fqcalving-Flux d'eau "perdue" par la surface et necessaire pour limiter la
138 guez 225 ! hauteur de neige, en kg / m2 / s
139 guez 70 REAL run_off_lic_0(klon)
140    
141     ! Local:
142 guez 15
143 guez 202 LOGICAL:: firstcal = .true.
144    
145     ! la nouvelle repartition des surfaces sortie de l'interface
146     REAL, save:: pctsrf_new_oce(klon)
147     REAL, save:: pctsrf_new_sic(klon)
148    
149 guez 70 REAL y_fqcalving(klon), y_ffonte(klon)
150     real y_run_off_lic_0(klon)
151     REAL rugmer(klon)
152 guez 38 REAL ytsoil(klon, nsoilmx)
153     REAL yts(klon), yrugos(klon), ypct(klon), yz0_new(klon)
154     REAL yalb(klon)
155 guez 215 REAL snow(klon), yqsurf(klon), yagesno(klon)
156 guez 225 real yqsol(klon) ! column-density of water in soil, in kg m-2
157     REAL yrain_f(klon) ! liquid water mass flux (kg / m2 / s), positive down
158     REAL ysnow_f(klon) ! solid water mass flux (kg / m2 / s), positive down
159 guez 38 REAL yrugm(klon), yrads(klon), yrugoro(klon)
160     REAL yfluxlat(klon)
161     REAL y_d_ts(klon)
162     REAL y_d_t(klon, klev), y_d_q(klon, klev)
163     REAL y_d_u(klon, klev), y_d_v(klon, klev)
164 guez 206 REAL y_flux_t(klon), y_flux_q(klon)
165     REAL y_flux_u(klon), y_flux_v(klon)
166 guez 38 REAL y_dflux_t(klon), y_dflux_q(klon)
167 guez 237 REAL coefh(klon, 2:klev), coefm(klon, 2:klev)
168     real ycdragh(klon), ycdragm(klon)
169 guez 38 REAL yu(klon, klev), yv(klon, klev)
170     REAL yt(klon, klev), yq(klon, klev)
171 guez 225 REAL ypaprs(klon, klev + 1), ypplay(klon, klev), ydelp(klon, klev)
172 guez 240 REAL ycoefm0(klon, 2:klev), ycoefh0(klon, 2:klev)
173 guez 227 REAL yzlay(klon, klev), zlev(klon, klev + 1), yteta(klon, klev)
174 guez 225 REAL ykmm(klon, klev + 1), ykmn(klon, klev + 1)
175     REAL yq2(klon, klev + 1)
176 guez 38 REAL delp(klon, klev)
177     INTEGER i, k, nsrf
178     INTEGER ni(klon), knon, j
179 guez 40
180 guez 38 REAL pctsrf_pot(klon, nbsrf)
181 guez 145 ! "pourcentage potentiel" pour tenir compte des \'eventuelles
182 guez 40 ! apparitions ou disparitions de la glace de mer
183 guez 15
184 guez 227 REAL yt2m(klon), yq2m(klon), wind10m(klon)
185     REAL ustar(klon)
186 guez 15
187 guez 38 REAL yt10m(klon), yq10m(klon)
188     REAL ypblh(klon)
189     REAL ylcl(klon)
190     REAL ycapcl(klon)
191     REAL yoliqcl(klon)
192     REAL ycteicl(klon)
193     REAL ypblt(klon)
194     REAL ytherm(klon)
195     REAL ytrmb1(klon)
196     REAL ytrmb2(klon)
197     REAL ytrmb3(klon)
198 guez 227 REAL u1(klon), v1(klon)
199 guez 38 REAL tair1(klon), qair1(klon), tairsol(klon)
200     REAL psfce(klon), patm(klon)
201 guez 15
202 guez 38 REAL qairsol(klon), zgeo1(klon)
203     REAL rugo1(klon)
204 guez 15
205 guez 38 !------------------------------------------------------------
206 guez 15
207 guez 38 ytherm = 0.
208 guez 15
209 guez 38 DO k = 1, klev ! epaisseur de couche
210     DO i = 1, klon
211 guez 225 delp(i, k) = paprs(i, k) - paprs(i, k + 1)
212 guez 38 END DO
213     END DO
214 guez 15
215 guez 40 ! Initialization:
216     rugmer = 0.
217     cdragh = 0.
218     cdragm = 0.
219     dflux_t = 0.
220     dflux_q = 0.
221     ypct = 0.
222     yqsurf = 0.
223     yrain_f = 0.
224     ysnow_f = 0.
225     yrugos = 0.
226     ypaprs = 0.
227     ypplay = 0.
228     ydelp = 0.
229     yu = 0.
230     yv = 0.
231     yt = 0.
232     yq = 0.
233     y_dflux_t = 0.
234     y_dflux_q = 0.
235 guez 38 yrugoro = 0.
236 guez 40 d_ts = 0.
237 guez 38 flux_t = 0.
238     flux_q = 0.
239     flux_u = 0.
240     flux_v = 0.
241 guez 214 fluxlat = 0.
242 guez 40 d_t = 0.
243     d_q = 0.
244     d_u = 0.
245     d_v = 0.
246 guez 70 ycoefh = 0.
247 guez 15
248 guez 145 ! Initialisation des "pourcentages potentiels". On consid\`ere ici qu'on
249     ! peut avoir potentiellement de la glace sur tout le domaine oc\'eanique
250     ! (\`a affiner)
251 guez 15
252 guez 202 pctsrf_pot(:, is_ter) = pctsrf(:, is_ter)
253     pctsrf_pot(:, is_lic) = pctsrf(:, is_lic)
254 guez 38 pctsrf_pot(:, is_oce) = 1. - zmasq
255     pctsrf_pot(:, is_sic) = 1. - zmasq
256 guez 15
257 guez 202 ! Tester si c'est le moment de lire le fichier:
258     if (mod(itap - 1, lmt_pas) == 0) then
259 guez 221 CALL interfoce_lim(julien, pctsrf_new_oce, pctsrf_new_sic)
260 guez 202 endif
261    
262 guez 99 ! Boucler sur toutes les sous-fractions du sol:
263    
264 guez 49 loop_surface: DO nsrf = 1, nbsrf
265     ! Chercher les indices :
266 guez 38 ni = 0
267     knon = 0
268     DO i = 1, klon
269 guez 145 ! Pour d\'eterminer le domaine \`a traiter, on utilise les surfaces
270 guez 38 ! "potentielles"
271     IF (pctsrf_pot(i, nsrf) > epsfra) THEN
272     knon = knon + 1
273     ni(knon) = i
274     END IF
275     END DO
276 guez 15
277 guez 62 if_knon: IF (knon /= 0) then
278 guez 38 DO j = 1, knon
279     i = ni(j)
280 guez 62 ypct(j) = pctsrf(i, nsrf)
281 guez 207 yts(j) = ftsol(i, nsrf)
282 guez 215 snow(j) = fsnow(i, nsrf)
283 guez 62 yqsurf(j) = qsurf(i, nsrf)
284 guez 155 yalb(j) = falbe(i, nsrf)
285 guez 62 yrain_f(j) = rain_fall(i)
286     ysnow_f(j) = snow_f(i)
287     yagesno(j) = agesno(i, nsrf)
288 guez 222 yrugos(j) = frugs(i, nsrf)
289 guez 62 yrugoro(j) = rugoro(i)
290 guez 222 yrads(j) = fsolsw(i, nsrf) + fsollw(i, nsrf)
291 guez 225 ypaprs(j, klev + 1) = paprs(i, klev + 1)
292 guez 62 y_run_off_lic_0(j) = run_off_lic_0(i)
293 guez 38 END DO
294 guez 3
295 guez 99 ! For continent, copy soil water content
296 guez 225 IF (nsrf == is_ter) yqsol(:knon) = qsol(ni(:knon))
297 guez 3
298 guez 208 ytsoil(:knon, :) = ftsoil(ni(:knon), :, nsrf)
299 guez 3
300 guez 38 DO k = 1, klev
301     DO j = 1, knon
302     i = ni(j)
303 guez 62 ypaprs(j, k) = paprs(i, k)
304     ypplay(j, k) = pplay(i, k)
305     ydelp(j, k) = delp(i, k)
306     yu(j, k) = u(i, k)
307     yv(j, k) = v(i, k)
308     yt(j, k) = t(i, k)
309     yq(j, k) = q(i, k)
310 guez 38 END DO
311     END DO
312 guez 3
313 guez 221 CALL coefkz(nsrf, ypaprs, ypplay, ksta, ksta_ter, yts(:knon), &
314 guez 237 yrugos, yu, yv, yt, yq, yqsurf(:knon), coefm(:knon, :), &
315     coefh(:knon, :), ycdragm(:knon), ycdragh(:knon))
316 guez 228
317 guez 62 IF (iflag_pbl == 1) THEN
318 guez 240 CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0(:knon, :), &
319     ycoefh0(:knon, :))
320     coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :))
321     coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, :))
322 guez 238 ycdragm(:knon) = max(ycdragm(:knon), 0.)
323     ycdragh(:knon) = max(ycdragh(:knon), 0.)
324 guez 62 END IF
325 guez 3
326 guez 237 ! on met un seuil pour ycdragm et ycdragh
327 guez 62 IF (nsrf == is_oce) THEN
328 guez 237 ycdragm(:knon) = min(ycdragm(:knon), cdmmax)
329     ycdragh(:knon) = min(ycdragh(:knon), cdhmax)
330 guez 38 END IF
331 guez 3
332 guez 62 IF (ok_kzmin) THEN
333     ! Calcul d'une diffusion minimale pour les conditions tres stables
334     CALL coefkzmin(knon, ypaprs, ypplay, yu, yv, yt, yq, &
335 guez 240 ycdragm(:knon), ycoefh0(:knon, :))
336     ycoefm0(:knon, :) = ycoefh0(:knon, :)
337     coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :))
338     coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, :))
339 guez 98 END IF
340 guez 3
341 guez 228 IF (iflag_pbl >= 6) THEN
342 guez 145 ! Mellor et Yamada adapt\'e \`a Mars, Richard Fournier et
343     ! Fr\'ed\'eric Hourdin
344 guez 62 yzlay(:knon, 1) = rd * yt(:knon, 1) / (0.5 * (ypaprs(:knon, 1) &
345     + ypplay(:knon, 1))) &
346     * (ypaprs(:knon, 1) - ypplay(:knon, 1)) / rg
347 guez 228
348 guez 62 DO k = 2, klev
349 guez 227 yzlay(:knon, k) = yzlay(:knon, k-1) &
350 guez 62 + rd * 0.5 * (yt(1:knon, k-1) + yt(1:knon, k)) &
351     / ypaprs(1:knon, k) &
352     * (ypplay(1:knon, k-1) - ypplay(1:knon, k)) / rg
353     END DO
354 guez 227
355 guez 62 DO k = 1, klev
356 guez 225 yteta(1:knon, k) = yt(1:knon, k) * (ypaprs(1:knon, 1) &
357     / ypplay(1:knon, k))**rkappa * (1. + 0.61 * yq(1:knon, k))
358 guez 62 END DO
359 guez 227
360     zlev(:knon, 1) = 0.
361     zlev(:knon, klev + 1) = 2. * yzlay(:knon, klev) &
362 guez 62 - yzlay(:knon, klev - 1)
363 guez 227
364 guez 62 DO k = 2, klev
365 guez 227 zlev(:knon, k) = 0.5 * (yzlay(:knon, k) + yzlay(:knon, k-1))
366 guez 62 END DO
367 guez 227
368 guez 62 DO k = 1, klev + 1
369     DO j = 1, knon
370     i = ni(j)
371     yq2(j, k) = q2(i, k, nsrf)
372     END DO
373     END DO
374    
375 guez 237 ustar(:knon) = ustarhb(yu(:knon, 1), yv(:knon, 1), ycdragm(:knon))
376 guez 228 CALL yamada4(dtime, rg, zlev(:knon, :), yzlay(:knon, :), &
377 guez 238 yu(:knon, :), yv(:knon, :), yteta(:knon, :), yq2(:knon, :), &
378     ykmm(:knon, :), ykmn(:knon, :), ustar(:knon))
379     coefm(:knon, :) = ykmm(:knon, 2:klev)
380     coefh(:knon, :) = ykmn(:knon, 2:klev)
381 guez 38 END IF
382 guez 3
383 guez 237 CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), coefm(:knon, :), &
384     ycdragm(:knon), yt(:knon, :), yu(:knon, :), ypaprs(:knon, :), &
385 guez 229 ypplay(:knon, :), ydelp(:knon, :), y_d_u(:knon, :), &
386 guez 225 y_flux_u(:knon))
387 guez 237 CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), coefm(:knon, :), &
388     ycdragm(:knon), yt(:knon, :), yv(:knon, :), ypaprs(:knon, :), &
389 guez 229 ypplay(:knon, :), ydelp(:knon, :), y_d_v(:knon, :), &
390 guez 225 y_flux_v(:knon))
391 guez 3
392 guez 62 ! calculer la diffusion de "q" et de "h"
393 guez 221 CALL clqh(dtime, julien, firstcal, nsrf, ni(:knon), &
394 guez 225 ytsoil(:knon, :), yqsol(:knon), mu0, yrugos, yrugoro, &
395 guez 237 yu(:knon, 1), yv(:knon, 1), coefh(:knon, :), ycdragh(:knon), &
396 guez 236 yt, yq, yts(:knon), ypaprs, ypplay, ydelp, yrads(:knon), &
397     yalb(:knon), snow(:knon), yqsurf, yrain_f, ysnow_f, &
398     yfluxlat(:knon), pctsrf_new_sic, yagesno(:knon), y_d_t, y_d_q, &
399     y_d_ts(:knon), yz0_new, y_flux_t(:knon), y_flux_q(:knon), &
400     y_dflux_t(:knon), y_dflux_q(:knon), y_fqcalving, y_ffonte, &
401     y_run_off_lic_0)
402 guez 3
403 guez 62 ! calculer la longueur de rugosite sur ocean
404     yrugm = 0.
405     IF (nsrf == is_oce) THEN
406     DO j = 1, knon
407 guez 237 yrugm(j) = 0.018 * ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2) &
408 guez 225 / rg + 0.11 * 14E-6 &
409 guez 237 / sqrt(ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2))
410 guez 62 yrugm(j) = max(1.5E-05, yrugm(j))
411     END DO
412     END IF
413 guez 38 DO j = 1, knon
414 guez 225 y_dflux_t(j) = y_dflux_t(j) * ypct(j)
415     y_dflux_q(j) = y_dflux_q(j) * ypct(j)
416 guez 38 END DO
417 guez 3
418 guez 237 DO k = 1, klev
419     DO j = 1, knon
420     i = ni(j)
421 guez 225 y_d_t(j, k) = y_d_t(j, k) * ypct(j)
422     y_d_q(j, k) = y_d_q(j, k) * ypct(j)
423     y_d_u(j, k) = y_d_u(j, k) * ypct(j)
424     y_d_v(j, k) = y_d_v(j, k) * ypct(j)
425 guez 62 END DO
426 guez 38 END DO
427 guez 3
428 guez 214 flux_t(ni(:knon), nsrf) = y_flux_t(:knon)
429     flux_q(ni(:knon), nsrf) = y_flux_q(:knon)
430     flux_u(ni(:knon), nsrf) = y_flux_u(:knon)
431     flux_v(ni(:knon), nsrf) = y_flux_v(:knon)
432 guez 15
433 guez 206 evap(:, nsrf) = -flux_q(:, nsrf)
434    
435 guez 155 falbe(:, nsrf) = 0.
436 guez 215 fsnow(:, nsrf) = 0.
437 guez 62 qsurf(:, nsrf) = 0.
438 guez 222 frugs(:, nsrf) = 0.
439 guez 38 DO j = 1, knon
440     i = ni(j)
441 guez 62 d_ts(i, nsrf) = y_d_ts(j)
442 guez 155 falbe(i, nsrf) = yalb(j)
443 guez 215 fsnow(i, nsrf) = snow(j)
444 guez 62 qsurf(i, nsrf) = yqsurf(j)
445 guez 222 frugs(i, nsrf) = yz0_new(j)
446 guez 62 fluxlat(i, nsrf) = yfluxlat(j)
447     IF (nsrf == is_oce) THEN
448     rugmer(i) = yrugm(j)
449 guez 222 frugs(i, nsrf) = yrugm(j)
450 guez 62 END IF
451     agesno(i, nsrf) = yagesno(j)
452     fqcalving(i, nsrf) = y_fqcalving(j)
453     ffonte(i, nsrf) = y_ffonte(j)
454 guez 243 cdragh(i) = cdragh(i) + ycdragh(j) * ypct(j)
455     cdragm(i) = cdragm(i) + ycdragm(j) * ypct(j)
456 guez 62 dflux_t(i) = dflux_t(i) + y_dflux_t(j)
457     dflux_q(i) = dflux_q(i) + y_dflux_q(j)
458 guez 38 END DO
459 guez 62 IF (nsrf == is_ter) THEN
460 guez 99 qsol(ni(:knon)) = yqsol(:knon)
461     else IF (nsrf == is_lic) THEN
462 guez 62 DO j = 1, knon
463     i = ni(j)
464     run_off_lic_0(i) = y_run_off_lic_0(j)
465     END DO
466     END IF
467 guez 118
468 guez 62 ftsoil(:, :, nsrf) = 0.
469 guez 208 ftsoil(ni(:knon), :, nsrf) = ytsoil(:knon, :)
470 guez 62
471 guez 38 DO j = 1, knon
472     i = ni(j)
473 guez 62 DO k = 1, klev
474     d_t(i, k) = d_t(i, k) + y_d_t(j, k)
475     d_q(i, k) = d_q(i, k) + y_d_q(j, k)
476     d_u(i, k) = d_u(i, k) + y_d_u(j, k)
477     d_v(i, k) = d_v(i, k) + y_d_v(j, k)
478 guez 237 END DO
479     END DO
480 guez 62
481 guez 243 forall (k = 2:klev) ycoefh(ni(:knon), k) &
482     = ycoefh(ni(:knon), k) + coefh(:knon, k) * ypct(:knon)
483 guez 242
484 guez 99 ! diagnostic t, q a 2m et u, v a 10m
485 guez 62
486 guez 38 DO j = 1, knon
487     i = ni(j)
488 guez 227 u1(j) = yu(j, 1) + y_d_u(j, 1)
489     v1(j) = yv(j, 1) + y_d_v(j, 1)
490 guez 62 tair1(j) = yt(j, 1) + y_d_t(j, 1)
491     qair1(j) = yq(j, 1) + y_d_q(j, 1)
492 guez 225 zgeo1(j) = rd * tair1(j) / (0.5 * (ypaprs(j, 1) + ypplay(j, &
493     1))) * (ypaprs(j, 1)-ypplay(j, 1))
494 guez 62 tairsol(j) = yts(j) + y_d_ts(j)
495     rugo1(j) = yrugos(j)
496     IF (nsrf == is_oce) THEN
497 guez 222 rugo1(j) = frugs(i, nsrf)
498 guez 62 END IF
499     psfce(j) = ypaprs(j, 1)
500     patm(j) = ypplay(j, 1)
501 guez 15
502 guez 62 qairsol(j) = yqsurf(j)
503 guez 38 END DO
504 guez 15
505 guez 227 CALL stdlevvar(klon, knon, nsrf, u1(:knon), v1(:knon), tair1(:knon), &
506     qair1, zgeo1, tairsol, qairsol, rugo1, psfce, patm, yt2m, &
507     yq2m, yt10m, yq10m, wind10m(:knon), ustar)
508 guez 3
509 guez 62 DO j = 1, knon
510     i = ni(j)
511     t2m(i, nsrf) = yt2m(j)
512     q2m(i, nsrf) = yq2m(j)
513 guez 3
514 guez 227 u10m_srf(i, nsrf) = (wind10m(j) * u1(j)) &
515     / sqrt(u1(j)**2 + v1(j)**2)
516     v10m_srf(i, nsrf) = (wind10m(j) * v1(j)) &
517     / sqrt(u1(j)**2 + v1(j)**2)
518 guez 62 END DO
519 guez 15
520 guez 227 CALL hbtm(ypaprs, ypplay, yt2m, yq2m, ustar(:knon), y_flux_t(:knon), &
521 guez 206 y_flux_q(:knon), yu, yv, yt, yq, ypblh(:knon), ycapcl, &
522     yoliqcl, ycteicl, ypblt, ytherm, ytrmb1, ytrmb2, ytrmb3, ylcl)
523 guez 15
524 guez 38 DO j = 1, knon
525     i = ni(j)
526 guez 62 pblh(i, nsrf) = ypblh(j)
527     plcl(i, nsrf) = ylcl(j)
528     capcl(i, nsrf) = ycapcl(j)
529     oliqcl(i, nsrf) = yoliqcl(j)
530     cteicl(i, nsrf) = ycteicl(j)
531     pblt(i, nsrf) = ypblt(j)
532     therm(i, nsrf) = ytherm(j)
533     trmb1(i, nsrf) = ytrmb1(j)
534     trmb2(i, nsrf) = ytrmb2(j)
535     trmb3(i, nsrf) = ytrmb3(j)
536 guez 38 END DO
537 guez 3
538 guez 38 DO j = 1, knon
539 guez 62 DO k = 1, klev + 1
540     i = ni(j)
541     q2(i, k, nsrf) = yq2(j, k)
542     END DO
543 guez 38 END DO
544 guez 215 else
545     fsnow(:, nsrf) = 0.
546 guez 62 end IF if_knon
547 guez 49 END DO loop_surface
548 guez 15
549 guez 38 ! On utilise les nouvelles surfaces
550 guez 222 frugs(:, is_oce) = rugmer
551 guez 202 pctsrf(:, is_oce) = pctsrf_new_oce
552     pctsrf(:, is_sic) = pctsrf_new_sic
553 guez 15
554 guez 202 firstcal = .false.
555    
556 guez 38 END SUBROUTINE clmain
557 guez 15
558 guez 38 end module clmain_m

  ViewVC Help
Powered by ViewVC 1.1.21