/[lmdze]/trunk/Sources/phylmd/clmain.f
ViewVC logotype

Diff of /trunk/Sources/phylmd/clmain.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/libf/phylmd/clmain.f90 revision 30 by guez, Thu Apr 1 09:07:28 2010 UTC trunk/Sources/phylmd/clmain.f revision 207 by guez, Thu Sep 1 10:30:53 2016 UTC
# Line 1  Line 1 
1  SUBROUTINE clmain(dtime, itap, date0, pctsrf, pctsrf_new, t, q, u, v,&  module clmain_m
      jour, rmu0, co2_ppm, ok_veget, ocean, npas, nexca, ts,&  
      soil_model, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil,&  
      qsol, paprs, pplay, snow, qsurf, evap, albe, alblw, fluxlat,&  
      rain_f, snow_f, solsw, sollw, sollwdown, fder, rlon, rlat, cufi,&  
      cvfi, rugos, debut, lafin, agesno, rugoro, d_t, d_q, d_u, d_v,&  
      d_ts, flux_t, flux_q, flux_u, flux_v, cdragh, cdragm, q2,&  
      dflux_t, dflux_q, zcoefh, zu1, zv1, t2m, q2m, u10m, v10m, pblh,&  
      capcl, oliqcl, cteicl, pblt, therm, trmb1, trmb2, trmb3, plcl,&  
      fqcalving, ffonte, run_off_lic_0, flux_o, flux_g, tslab, seaice)  
   
   ! From phylmd/clmain.F, v 1.6 2005/11/16 14:47:19  
   
   !AA Tout ce qui a trait au traceurs est dans phytrac maintenant  
   !AA pour l'instant le calcul de la couche limite pour les traceurs  
   !AA se fait avec cltrac et ne tient pas compte de la differentiation  
   !AA des sous-fraction de sol.  
   
   !AA Pour pouvoir extraire les coefficient d'echanges et le vent  
   !AA dans la premiere couche, 3 champs supplementaires ont ete crees  
   !AA zcoefh, zu1 et zv1. Pour l'instant nous avons moyenne les valeurs  
   !AA de ces trois champs sur les 4 subsurfaces du modele. Dans l'avenir  
   !AA si les informations des subsurfaces doivent etre prises en compte  
   !AA il faudra sortir ces memes champs en leur ajoutant une dimension,  
   !AA c'est a dire nbsrf (nbre de subsurface).  
   
   ! Auteur(s) Z.X. Li (LMD/CNRS) date: 19930818  
   ! Objet: interface de "couche limite" (diffusion verticale)  
   
   ! Arguments:  
   ! dtime----input-R- interval du temps (secondes)  
   ! itap-----input-I- numero du pas de temps  
   ! date0----input-R- jour initial  
   ! t--------input-R- temperature (K)  
   ! q--------input-R- vapeur d'eau (kg/kg)  
   ! u--------input-R- vitesse u  
   ! v--------input-R- vitesse v  
   ! ts-------input-R- temperature du sol (en Kelvin)  
   ! paprs----input-R- pression a intercouche (Pa)  
   ! pplay----input-R- pression au milieu de couche (Pa)  
   ! radsol---input-R- flux radiatif net (positif vers le sol) en W/m**2  
   ! rlat-----input-R- latitude en degree  
   ! rugos----input-R- longeur de rugosite (en m)  
   ! cufi-----input-R- resolution des mailles en x (m)  
   ! cvfi-----input-R- resolution des mailles en y (m)  
   
   ! d_t------output-R- le changement pour "t"  
   ! d_q------output-R- le changement pour "q"  
   ! d_u------output-R- le changement pour "u"  
   ! d_v------output-R- le changement pour "v"  
   ! d_ts-----output-R- le changement pour "ts"  
   ! flux_t---output-R- flux de chaleur sensible (CpT) J/m**2/s (W/m**2)  
   !                    (orientation positive vers le bas)  
   ! flux_q---output-R- flux de vapeur d'eau (kg/m**2/s)  
   ! flux_u---output-R- tension du vent X: (kg m/s)/(m**2 s) ou Pascal  
   ! flux_v---output-R- tension du vent Y: (kg m/s)/(m**2 s) ou Pascal  
   ! dflux_t derive du flux sensible  
   ! dflux_q derive du flux latent  
   !IM "slab" ocean  
   ! flux_g---output-R-  flux glace (pour OCEAN='slab  ')  
   ! flux_o---output-R-  flux ocean (pour OCEAN='slab  ')  
   ! tslab-in/output-R temperature du slab ocean (en Kelvin) ! uniqmnt pour slab  
   ! seaice---output-R-  glace de mer (kg/m2) (pour OCEAN='slab  ')  
   !cc  
   ! ffonte----Flux thermique utilise pour fondre la neige  
   ! fqcalving-Flux d'eau "perdue" par la surface et necessaire pour limiter la  
   !           hauteur de neige, en kg/m2/s  
   !AA on rajoute en output yu1 et yv1 qui sont les vents dans  
   !AA la premiere couche  
   !AA ces 4 variables sont maintenant traites dans phytrac  
   ! itr--------input-I- nombre de traceurs  
   ! tr---------input-R- q. de traceurs  
   ! flux_surf--input-R- flux de traceurs a la surface  
   ! d_tr-------output-R tendance de traceurs  
   !IM cf. AM : PBL  
   ! trmb1-------deep_cape  
   ! trmb2--------inhibition  
   ! trmb3-------Point Omega  
   ! Cape(klon)-------Cape du thermique  
   ! EauLiq(klon)-------Eau liqu integr du thermique  
   ! ctei(klon)-------Critere d'instab d'entrainmt des nuages de CL  
   ! lcl------- Niveau de condensation  
   ! pblh------- HCL  
   ! pblT------- T au nveau HCL  
   
   !$$$ PB ajout pour soil  
   
   USE histcom, ONLY : histbeg_totreg, histdef, histend, histsync  
   use histwrite_m, only: histwrite  
   use calendar, ONLY : ymds2ju  
   USE dimens_m, ONLY : iim, jjm  
   USE indicesol, ONLY : epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf  
   USE dimphy, ONLY : klev, klon, zmasq  
   USE dimsoil, ONLY : nsoilmx  
   USE temps, ONLY : annee_ref, itau_phy  
   USE dynetat0_m, ONLY : day_ini  
   USE iniprint, ONLY : prt_level  
   USE yomcst, ONLY : rd, rg, rkappa  
   USE conf_phys_m, ONLY : iflag_pbl  
   USE gath_cpl, ONLY : gath2cpl  
2    
3    IMPLICIT NONE    IMPLICIT NONE
4    
5    REAL, INTENT (IN) :: dtime  contains
   REAL date0  
   INTEGER, INTENT (IN) :: itap  
   REAL t(klon, klev), q(klon, klev)  
   REAL u(klon, klev), v(klon, klev)  
   REAL, INTENT (IN) :: paprs(klon, klev+1)  
   REAL, INTENT (IN) :: pplay(klon, klev)  
   REAL, INTENT (IN) :: rlon(klon), rlat(klon)  
   REAL cufi(klon), cvfi(klon)  
   REAL d_t(klon, klev), d_q(klon, klev)  
   REAL d_u(klon, klev), d_v(klon, klev)  
   REAL flux_t(klon, klev, nbsrf), flux_q(klon, klev, nbsrf)  
   REAL dflux_t(klon), dflux_q(klon)  
   !IM "slab" ocean  
   REAL flux_o(klon), flux_g(klon)  
   REAL y_flux_o(klon), y_flux_g(klon)  
   REAL tslab(klon), ytslab(klon)  
   REAL seaice(klon), y_seaice(klon)  
   REAL y_fqcalving(klon), y_ffonte(klon)  
   REAL fqcalving(klon, nbsrf), ffonte(klon, nbsrf)  
   REAL run_off_lic_0(klon), y_run_off_lic_0(klon)  
   
   REAL flux_u(klon, klev, nbsrf), flux_v(klon, klev, nbsrf)  
   REAL rugmer(klon), agesno(klon, nbsrf)  
   REAL, INTENT (IN) :: rugoro(klon)  
   REAL cdragh(klon), cdragm(klon)  
   ! jour de l'annee en cours                  
   INTEGER jour  
   REAL rmu0(klon) ! cosinus de l'angle solaire zenithal      
   ! taux CO2 atmosphere                      
   REAL co2_ppm  
   LOGICAL, INTENT (IN) :: debut  
   LOGICAL, INTENT (IN) :: lafin  
   LOGICAL ok_veget  
   CHARACTER (len=*), INTENT (IN) :: ocean  
   INTEGER npas, nexca  
   
   REAL pctsrf(klon, nbsrf)  
   REAL ts(klon, nbsrf)  
   REAL d_ts(klon, nbsrf)  
   REAL snow(klon, nbsrf)  
   REAL qsurf(klon, nbsrf)  
   REAL evap(klon, nbsrf)  
   REAL albe(klon, nbsrf)  
   REAL alblw(klon, nbsrf)  
   
   REAL fluxlat(klon, nbsrf)  
   
   REAL rain_f(klon), snow_f(klon)  
   REAL fder(klon)  
   
   REAL sollw(klon, nbsrf), solsw(klon, nbsrf), sollwdown(klon)  
   REAL rugos(klon, nbsrf)  
   ! la nouvelle repartition des surfaces sortie de l'interface  
   REAL pctsrf_new(klon, nbsrf)  
   
   REAL zcoefh(klon, klev)  
   REAL zu1(klon)  
   REAL zv1(klon)  
   
   !$$$ PB ajout pour soil  
   LOGICAL, INTENT (IN) :: soil_model  
   !IM ajout seuils cdrm, cdrh  
   REAL cdmmax, cdhmax  
   
   REAL ksta, ksta_ter  
   LOGICAL ok_kzmin  
   
   REAL ftsoil(klon, nsoilmx, nbsrf)  
   REAL ytsoil(klon, nsoilmx)  
   REAL qsol(klon)  
   
   EXTERNAL clqh, clvent, coefkz, calbeta, cltrac  
   
   REAL yts(klon), yrugos(klon), ypct(klon), yz0_new(klon)  
   REAL yalb(klon)  
   REAL yalblw(klon)  
   REAL yu1(klon), yv1(klon)  
   REAL ysnow(klon), yqsurf(klon), yagesno(klon), yqsol(klon)  
   REAL yrain_f(klon), ysnow_f(klon)  
   REAL ysollw(klon), ysolsw(klon), ysollwdown(klon)  
   REAL yfder(klon), ytaux(klon), ytauy(klon)  
   REAL yrugm(klon), yrads(klon), yrugoro(klon)  
   
   REAL yfluxlat(klon)  
   
   REAL y_d_ts(klon)  
   REAL y_d_t(klon, klev), y_d_q(klon, klev)  
   REAL y_d_u(klon, klev), y_d_v(klon, klev)  
   REAL y_flux_t(klon, klev), y_flux_q(klon, klev)  
   REAL y_flux_u(klon, klev), y_flux_v(klon, klev)  
   REAL y_dflux_t(klon), y_dflux_q(klon)  
   REAL ycoefh(klon, klev), ycoefm(klon, klev)  
   REAL yu(klon, klev), yv(klon, klev)  
   REAL yt(klon, klev), yq(klon, klev)  
   REAL ypaprs(klon, klev+1), ypplay(klon, klev), ydelp(klon, klev)  
   
   LOGICAL ok_nonloc  
   PARAMETER (ok_nonloc=.FALSE.)  
   REAL ycoefm0(klon, klev), ycoefh0(klon, klev)  
   
   !IM 081204 hcl_Anne ? BEG  
   REAL yzlay(klon, klev), yzlev(klon, klev+1), yteta(klon, klev)  
   REAL ykmm(klon, klev+1), ykmn(klon, klev+1)  
   REAL ykmq(klon, klev+1)  
   REAL yq2(klon, klev+1), q2(klon, klev+1, nbsrf)  
   REAL q2diag(klon, klev+1)  
   !IM 081204 hcl_Anne ? END  
   
   REAL u1lay(klon), v1lay(klon)  
   REAL delp(klon, klev)  
   INTEGER i, k, nsrf  
   
   INTEGER ni(klon), knon, j  
   ! Introduction d'une variable "pourcentage potentiel" pour tenir compte  
   ! des eventuelles apparitions et/ou disparitions de la glace de mer  
   REAL pctsrf_pot(klon, nbsrf)  
   
   REAL zx_alf1, zx_alf2 !valeur ambiante par extrapola.  
   
   ! maf pour sorties IOISPL en cas de debugagage  
   
   CHARACTER (80) cldebug  
   SAVE cldebug  
   CHARACTER (8) cl_surf(nbsrf)  
   SAVE cl_surf  
   INTEGER nhoridbg, nidbg  
   SAVE nhoridbg, nidbg  
   INTEGER ndexbg(iim*(jjm+1))  
   REAL zx_lon(iim, jjm+1), zx_lat(iim, jjm+1), zjulian  
   REAL tabindx(klon)  
   REAL debugtab(iim, jjm+1)  
   LOGICAL first_appel  
   SAVE first_appel  
   DATA first_appel/ .TRUE./  
   LOGICAL :: debugindex = .FALSE.  
   INTEGER idayref  
   REAL t2m(klon, nbsrf), q2m(klon, nbsrf)  
   REAL u10m(klon, nbsrf), v10m(klon, nbsrf)  
   
   REAL yt2m(klon), yq2m(klon), yu10m(klon)  
   REAL yustar(klon)  
   ! -- LOOP  
   REAL yu10mx(klon)  
   REAL yu10my(klon)  
   REAL ywindsp(klon)  
   ! -- LOOP  
   
   REAL yt10m(klon), yq10m(klon)  
   !IM cf. AM : pbl, hbtm2 (Comme les autres diagnostics on cumule ds  
   ! physiq ce qui permet de sortir les grdeurs par sous surface)  
   REAL pblh(klon, nbsrf)  
   REAL plcl(klon, nbsrf)  
   REAL capcl(klon, nbsrf)  
   REAL oliqcl(klon, nbsrf)  
   REAL cteicl(klon, nbsrf)  
   REAL pblt(klon, nbsrf)  
   REAL therm(klon, nbsrf)  
   REAL trmb1(klon, nbsrf)  
   REAL trmb2(klon, nbsrf)  
   REAL trmb3(klon, nbsrf)  
   REAL ypblh(klon)  
   REAL ylcl(klon)  
   REAL ycapcl(klon)  
   REAL yoliqcl(klon)  
   REAL ycteicl(klon)  
   REAL ypblt(klon)  
   REAL ytherm(klon)  
   REAL ytrmb1(klon)  
   REAL ytrmb2(klon)  
   REAL ytrmb3(klon)  
   REAL y_cd_h(klon), y_cd_m(klon)  
   REAL uzon(klon), vmer(klon)  
   REAL tair1(klon), qair1(klon), tairsol(klon)  
   REAL psfce(klon), patm(klon)  
   
   REAL qairsol(klon), zgeo1(klon)  
   REAL rugo1(klon)  
   
   ! utiliser un jeu de fonctions simples                
   LOGICAL zxli  
   PARAMETER (zxli=.FALSE.)  
   
   REAL zt, zqs, zdelta, zcor  
   REAL t_coup  
   PARAMETER (t_coup=273.15)  
   
   CHARACTER (len=20) :: modname = 'clmain'  
   LOGICAL check  
   PARAMETER (check=.FALSE.)  
   
   !------------------------------------------------------------  
   
   ! initialisation Anne  
   ytherm = 0.  
   
   IF (check) THEN  
      PRINT *, modname, '  klon=', klon  
   END IF  
   
   IF (debugindex .AND. first_appel) THEN  
      first_appel = .FALSE.  
   
      ! initialisation sorties netcdf  
   
      idayref = day_ini  
      CALL ymds2ju(annee_ref, 1, idayref, 0.0, zjulian)  
      CALL gr_fi_ecrit(1, klon, iim, jjm+1, rlon, zx_lon)  
      DO i = 1, iim  
         zx_lon(i, 1) = rlon(i+1)  
         zx_lon(i, jjm+1) = rlon(i+1)  
      END DO  
      CALL gr_fi_ecrit(1, klon, iim, jjm+1, rlat, zx_lat)  
      cldebug = 'sous_index'  
      CALL histbeg_totreg(cldebug, zx_lon(:, 1), zx_lat(1, :), 1, &  
           iim, 1, jjm+1, itau_phy, zjulian, dtime, nhoridbg, nidbg)  
      ! no vertical axis  
      cl_surf(1) = 'ter'  
      cl_surf(2) = 'lic'  
      cl_surf(3) = 'oce'  
      cl_surf(4) = 'sic'  
      DO nsrf = 1, nbsrf  
         CALL histdef(nidbg, cl_surf(nsrf), cl_surf(nsrf), '-', iim, jjm+1, &  
              nhoridbg, 1, 1, 1, -99, 'inst', dtime, dtime)  
      END DO  
      CALL histend(nidbg)  
      CALL histsync(nidbg)  
   END IF  
   
   DO k = 1, klev ! epaisseur de couche  
      DO i = 1, klon  
         delp(i, k) = paprs(i, k) - paprs(i, k+1)  
      END DO  
   END DO  
   DO i = 1, klon ! vent de la premiere couche  
      zx_alf1 = 1.0  
      zx_alf2 = 1.0 - zx_alf1  
      u1lay(i) = u(i, 1)*zx_alf1 + u(i, 2)*zx_alf2  
      v1lay(i) = v(i, 1)*zx_alf1 + v(i, 2)*zx_alf2  
   END DO  
   
   ! initialisation:  
   
   DO i = 1, klon  
      rugmer(i) = 0.0  
      cdragh(i) = 0.0  
      cdragm(i) = 0.0  
      dflux_t(i) = 0.0  
      dflux_q(i) = 0.0  
      zu1(i) = 0.0  
      zv1(i) = 0.0  
   END DO  
   ypct = 0.0  
   yts = 0.0  
   ysnow = 0.0  
   yqsurf = 0.0  
   yalb = 0.0  
   yalblw = 0.0  
   yrain_f = 0.0  
   ysnow_f = 0.0  
   yfder = 0.0  
   ytaux = 0.0  
   ytauy = 0.0  
   ysolsw = 0.0  
   ysollw = 0.0  
   ysollwdown = 0.0  
   yrugos = 0.0  
   yu1 = 0.0  
   yv1 = 0.0  
   yrads = 0.0  
   ypaprs = 0.0  
   ypplay = 0.0  
   ydelp = 0.0  
   yu = 0.0  
   yv = 0.0  
   yt = 0.0  
   yq = 0.0  
   pctsrf_new = 0.0  
   y_flux_u = 0.0  
   y_flux_v = 0.0  
   !$$ PB  
   y_dflux_t = 0.0  
   y_dflux_q = 0.0  
   ytsoil = 999999.  
   yrugoro = 0.  
   ! -- LOOP  
   yu10mx = 0.0  
   yu10my = 0.0  
   ywindsp = 0.0  
   ! -- LOOP  
   DO nsrf = 1, nbsrf  
      DO i = 1, klon  
         d_ts(i, nsrf) = 0.0  
      END DO  
   END DO  
   !§§§ PB  
   yfluxlat = 0.  
   flux_t = 0.  
   flux_q = 0.  
   flux_u = 0.  
   flux_v = 0.  
   DO k = 1, klev  
      DO i = 1, klon  
         d_t(i, k) = 0.0  
         d_q(i, k) = 0.0  
         !$$$         flux_t(i, k) = 0.0  
         !$$$         flux_q(i, k) = 0.0  
         d_u(i, k) = 0.0  
         d_v(i, k) = 0.0  
         !$$$         flux_u(i, k) = 0.0  
         !$$$         flux_v(i, k) = 0.0  
         zcoefh(i, k) = 0.0  
      END DO  
   END DO  
   !AA      IF (itr.GE.1) THEN  
   !AA      DO it = 1, itr  
   !AA      DO k = 1, klev  
   !AA      DO i = 1, klon  
   !AA         d_tr(i, k, it) = 0.0  
   !AA      ENDDO  
   !AA      ENDDO  
   !AA      ENDDO  
   !AA      ENDIF  
   
   
   ! Boucler sur toutes les sous-fractions du sol:  
   
   ! Initialisation des "pourcentages potentiels". On considere ici qu'on  
   ! peut avoir potentiellementdela glace sur tout le domaine oceanique  
   ! (a affiner)  
   
   pctsrf_pot = pctsrf  
   pctsrf_pot(:, is_oce) = 1. - zmasq  
   pctsrf_pot(:, is_sic) = 1. - zmasq  
   
   DO nsrf = 1, nbsrf  
      ! chercher les indices:  
      ni = 0  
      knon = 0  
      DO i = 1, klon  
         ! pour determiner le domaine a traiter on utilise les surfaces  
         ! "potentielles"  
         IF (pctsrf_pot(i, nsrf) > epsfra) THEN  
            knon = knon + 1  
            ni(knon) = i  
         END IF  
      END DO  
   
      IF (check) THEN  
         PRINT *, 'CLMAIN, nsrf, knon =', nsrf, knon  
      END IF  
   
      ! variables pour avoir une sortie IOIPSL des INDEX  
      IF (debugindex) THEN  
         tabindx = 0.  
         DO i = 1, knon  
            tabindx(i) = real(i)  
         END DO  
         debugtab = 0.  
         ndexbg = 0  
         CALL gath2cpl(tabindx, debugtab, klon, knon, iim, jjm, ni)  
         CALL histwrite(nidbg, cl_surf(nsrf), itap, debugtab)  
      END IF  
   
      IF (knon==0) CYCLE  
   
      DO j = 1, knon  
         i = ni(j)  
         ypct(j) = pctsrf(i, nsrf)  
         yts(j) = ts(i, nsrf)  
         ytslab(i) = tslab(i)  
         ysnow(j) = snow(i, nsrf)  
         yqsurf(j) = qsurf(i, nsrf)  
         yalb(j) = albe(i, nsrf)  
         yalblw(j) = alblw(i, nsrf)  
         yrain_f(j) = rain_f(i)  
         ysnow_f(j) = snow_f(i)  
         yagesno(j) = agesno(i, nsrf)  
         yfder(j) = fder(i)  
         ytaux(j) = flux_u(i, 1, nsrf)  
         ytauy(j) = flux_v(i, 1, nsrf)  
         ysolsw(j) = solsw(i, nsrf)  
         ysollw(j) = sollw(i, nsrf)  
         ysollwdown(j) = sollwdown(i)  
         yrugos(j) = rugos(i, nsrf)  
         yrugoro(j) = rugoro(i)  
         yu1(j) = u1lay(i)  
         yv1(j) = v1lay(i)  
         yrads(j) = ysolsw(j) + ysollw(j)  
         ypaprs(j, klev+1) = paprs(i, klev+1)  
         y_run_off_lic_0(j) = run_off_lic_0(i)  
         yu10mx(j) = u10m(i, nsrf)  
         yu10my(j) = v10m(i, nsrf)  
         ywindsp(j) = sqrt(yu10mx(j)*yu10mx(j)+yu10my(j)*yu10my(j))  
      END DO  
   
      !     IF bucket model for continent, copy soil water content  
      IF (nsrf==is_ter .AND. .NOT. ok_veget) THEN  
         DO j = 1, knon  
            i = ni(j)  
            yqsol(j) = qsol(i)  
         END DO  
      ELSE  
         yqsol = 0.  
      END IF  
      !$$$ PB ajour pour soil  
      DO k = 1, nsoilmx  
         DO j = 1, knon  
            i = ni(j)  
            ytsoil(j, k) = ftsoil(i, k, nsrf)  
         END DO  
      END DO  
      DO k = 1, klev  
         DO j = 1, knon  
            i = ni(j)  
            ypaprs(j, k) = paprs(i, k)  
            ypplay(j, k) = pplay(i, k)  
            ydelp(j, k) = delp(i, k)  
            yu(j, k) = u(i, k)  
            yv(j, k) = v(i, k)  
            yt(j, k) = t(i, k)  
            yq(j, k) = q(i, k)  
         END DO  
      END DO  
   
      ! calculer Cdrag et les coefficients d'echange  
      CALL coefkz(nsrf, knon, ypaprs, ypplay, ksta, ksta_ter, yts,&  
           yrugos, yu, yv, yt, yq, yqsurf, ycoefm, ycoefh)  
      !IM 081204 BEG  
      !CR test  
      IF (iflag_pbl==1) THEN  
         !IM 081204 END  
         CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0, ycoefh0)  
         DO k = 1, klev  
            DO i = 1, knon  
               ycoefm(i, k) = max(ycoefm(i, k), ycoefm0(i, k))  
               ycoefh(i, k) = max(ycoefh(i, k), ycoefh0(i, k))  
            END DO  
         END DO  
      END IF  
   
      !IM cf JLD : on seuille ycoefm et ycoefh  
      IF (nsrf==is_oce) THEN  
         DO j = 1, knon  
            !           ycoefm(j, 1)=min(ycoefm(j, 1), 1.1E-3)  
            ycoefm(j, 1) = min(ycoefm(j, 1), cdmmax)  
            !           ycoefh(j, 1)=min(ycoefh(j, 1), 1.1E-3)  
            ycoefh(j, 1) = min(ycoefh(j, 1), cdhmax)  
         END DO  
      END IF  
   
   
      !IM: 261103  
      IF (ok_kzmin) THEN  
         !IM cf FH: 201103 BEG  
         !   Calcul d'une diffusion minimale pour les conditions tres stables.  
         CALL coefkzmin(knon, ypaprs, ypplay, yu, yv, yt, yq, ycoefm, ycoefm0, &  
              ycoefh0)  
         !      call dump2d(iim, jjm-1, ycoefm(2:klon-1, 2), 'KZ         ')  
         !      call dump2d(iim, jjm-1, ycoefm0(2:klon-1, 2), 'KZMIN      ')  
   
         IF (1==1) THEN  
            DO k = 1, klev  
               DO i = 1, knon  
                  ycoefm(i, k) = max(ycoefm(i, k), ycoefm0(i, k))  
                  ycoefh(i, k) = max(ycoefh(i, k), ycoefh0(i, k))  
               END DO  
            END DO  
         END IF  
         !IM cf FH: 201103 END  
         !IM: 261103  
      END IF !ok_kzmin  
   
      IF (iflag_pbl>=3) THEN  
   
         !ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc  
         ! MELLOR ET YAMADA adapte a Mars Richard Fournier et Frederic Hourdin  
         !ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc  
   
         yzlay(1:knon, 1) = rd*yt(1:knon, 1)/(0.5*(ypaprs(1:knon, &  
              1)+ypplay(1:knon, 1)))*(ypaprs(1:knon, 1)-ypplay(1:knon, 1))/rg  
         DO k = 2, klev  
            yzlay(1:knon, k) = yzlay(1:knon, k-1) &  
                 + rd*0.5*(yt(1:knon, k-1) +yt(1: knon, k)) &  
                 / ypaprs(1:knon, k) *(ypplay(1:knon, k-1)-ypplay(1:knon, k))/ &  
                 rg  
         END DO  
         DO k = 1, klev  
            yteta(1:knon, k) = yt(1:knon, k)*(ypaprs(1:knon, 1) &  
                 / ypplay(1:knon, k))**rkappa * (1.+0.61*yq(1:knon, k))  
         END DO  
         yzlev(1:knon, 1) = 0.  
         yzlev(1:knon, klev+1) = 2.*yzlay(1:knon, klev) - yzlay(1:knon, klev-1)  
         DO k = 2, klev  
            yzlev(1:knon, k) = 0.5*(yzlay(1:knon, k)+yzlay(1:knon, k-1))  
         END DO  
         DO k = 1, klev + 1  
            DO j = 1, knon  
               i = ni(j)  
               yq2(j, k) = q2(i, k, nsrf)  
            END DO  
         END DO  
   
   
         !   Bug introduit volontairement pour converger avec les resultats  
         !  du papier sur les thermiques.  
         IF (1==1) THEN  
            y_cd_m(1:knon) = ycoefm(1:knon, 1)  
            y_cd_h(1:knon) = ycoefh(1:knon, 1)  
         ELSE  
            y_cd_h(1:knon) = ycoefm(1:knon, 1)  
            y_cd_m(1:knon) = ycoefh(1:knon, 1)  
         END IF  
         CALL ustarhb(knon, yu, yv, y_cd_m, yustar)  
   
         IF (prt_level>9) THEN  
            PRINT *, 'USTAR = ', yustar  
         END IF  
   
         !   iflag_pbl peut etre utilise comme longuer de melange  
   
         IF (iflag_pbl>=11) THEN  
            CALL vdif_kcay(knon, dtime, rg, rd, ypaprs, yt, yzlev, yzlay, yu, yv, yteta, &  
                 y_cd_m, yq2, q2diag, ykmm, ykmn, yustar, iflag_pbl)  
         ELSE  
            CALL yamada4(knon, dtime, rg, rd, ypaprs, yt, yzlev, yzlay, yu, yv, yteta, &  
                 y_cd_m, yq2, ykmm, ykmn, ykmq, yustar, iflag_pbl)  
         END IF  
   
         ycoefm(1:knon, 1) = y_cd_m(1:knon)  
         ycoefh(1:knon, 1) = y_cd_h(1:knon)  
         ycoefm(1:knon, 2:klev) = ykmm(1:knon, 2:klev)  
         ycoefh(1:knon, 2:klev) = ykmn(1:knon, 2:klev)  
   
   
      END IF  
   
      !ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc  
      ! calculer la diffusion des vitesses "u" et "v"  
      !ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc  
   
      CALL clvent(knon, dtime, yu1, yv1, ycoefm, yt, yu, ypaprs, ypplay, &  
           ydelp, y_d_u, y_flux_u)  
      CALL clvent(knon, dtime, yu1, yv1, ycoefm, yt, yv, ypaprs, ypplay, &  
           ydelp, y_d_v, y_flux_v)  
   
      ! pour le couplage  
      ytaux = y_flux_u(:, 1)  
      ytauy = y_flux_v(:, 1)  
   
      ! FH modif sur le cdrag temperature  
      !$$$PB : déplace dans clcdrag  
      !$$$      do i=1, knon  
      !$$$         ycoefh(i, 1)=ycoefm(i, 1)*0.8  
      !$$$      enddo  
   
      ! calculer la diffusion de "q" et de "h"  
      CALL clqh(dtime, itap, date0, jour, debut, lafin, rlon, rlat,&  
           cufi, cvfi, knon, nsrf, ni, pctsrf, soil_model, ytsoil,&  
           yqsol, ok_veget, ocean, npas, nexca, rmu0, co2_ppm, yrugos,&  
           yrugoro, yu1, yv1, ycoefh, yt, yq, yts, ypaprs, ypplay,&  
           ydelp, yrads, yalb, yalblw, ysnow, yqsurf, yrain_f, ysnow_f, &  
           yfder, ytaux, ytauy, ywindsp, ysollw, ysollwdown, ysolsw,&  
           yfluxlat, pctsrf_new, yagesno, y_d_t, y_d_q, y_d_ts,&  
           yz0_new, y_flux_t, y_flux_q, y_dflux_t, y_dflux_q,&  
           y_fqcalving, y_ffonte, y_run_off_lic_0, y_flux_o, y_flux_g,&  
           ytslab, y_seaice)  
   
      ! calculer la longueur de rugosite sur ocean  
      yrugm = 0.  
      IF (nsrf==is_oce) THEN  
         DO j = 1, knon  
            yrugm(j) = 0.018*ycoefm(j, 1)*(yu1(j)**2+yv1(j)**2)/rg + &  
                 0.11*14E-6/sqrt(ycoefm(j, 1)*(yu1(j)**2+yv1(j)**2))  
            yrugm(j) = max(1.5E-05, yrugm(j))  
         END DO  
      END IF  
      DO j = 1, knon  
         y_dflux_t(j) = y_dflux_t(j)*ypct(j)  
         y_dflux_q(j) = y_dflux_q(j)*ypct(j)  
         yu1(j) = yu1(j)*ypct(j)  
         yv1(j) = yv1(j)*ypct(j)  
      END DO  
   
      DO k = 1, klev  
         DO j = 1, knon  
            i = ni(j)  
            ycoefh(j, k) = ycoefh(j, k)*ypct(j)  
            ycoefm(j, k) = ycoefm(j, k)*ypct(j)  
            y_d_t(j, k) = y_d_t(j, k)*ypct(j)  
            y_d_q(j, k) = y_d_q(j, k)*ypct(j)  
            !§§§ PB  
            flux_t(i, k, nsrf) = y_flux_t(j, k)  
            flux_q(i, k, nsrf) = y_flux_q(j, k)  
            flux_u(i, k, nsrf) = y_flux_u(j, k)  
            flux_v(i, k, nsrf) = y_flux_v(j, k)  
            !$$$ PB        y_flux_t(j, k) = y_flux_t(j, k) * ypct(j)  
            !$$$ PB        y_flux_q(j, k) = y_flux_q(j, k) * ypct(j)  
            y_d_u(j, k) = y_d_u(j, k)*ypct(j)  
            y_d_v(j, k) = y_d_v(j, k)*ypct(j)  
            !$$$ PB        y_flux_u(j, k) = y_flux_u(j, k) * ypct(j)  
            !$$$ PB        y_flux_v(j, k) = y_flux_v(j, k) * ypct(j)  
         END DO  
      END DO  
   
   
      evap(:, nsrf) = -flux_q(:, 1, nsrf)  
   
      albe(:, nsrf) = 0.  
      alblw(:, nsrf) = 0.  
      snow(:, nsrf) = 0.  
      qsurf(:, nsrf) = 0.  
      rugos(:, nsrf) = 0.  
      fluxlat(:, nsrf) = 0.  
      DO j = 1, knon  
         i = ni(j)  
         d_ts(i, nsrf) = y_d_ts(j)  
         albe(i, nsrf) = yalb(j)  
         alblw(i, nsrf) = yalblw(j)  
         snow(i, nsrf) = ysnow(j)  
         qsurf(i, nsrf) = yqsurf(j)  
         rugos(i, nsrf) = yz0_new(j)  
         fluxlat(i, nsrf) = yfluxlat(j)  
         !$$$ pb         rugmer(i) = yrugm(j)  
         IF (nsrf==is_oce) THEN  
            rugmer(i) = yrugm(j)  
            rugos(i, nsrf) = yrugm(j)  
         END IF  
         !IM cf JLD ??  
         agesno(i, nsrf) = yagesno(j)  
         fqcalving(i, nsrf) = y_fqcalving(j)  
         ffonte(i, nsrf) = y_ffonte(j)  
         cdragh(i) = cdragh(i) + ycoefh(j, 1)  
         cdragm(i) = cdragm(i) + ycoefm(j, 1)  
         dflux_t(i) = dflux_t(i) + y_dflux_t(j)  
         dflux_q(i) = dflux_q(i) + y_dflux_q(j)  
         zu1(i) = zu1(i) + yu1(j)  
         zv1(i) = zv1(i) + yv1(j)  
      END DO  
      IF (nsrf==is_ter) THEN  
         DO j = 1, knon  
            i = ni(j)  
            qsol(i) = yqsol(j)  
         END DO  
      END IF  
      IF (nsrf==is_lic) THEN  
         DO j = 1, knon  
            i = ni(j)  
            run_off_lic_0(i) = y_run_off_lic_0(j)  
         END DO  
      END IF  
      !$$$ PB ajout pour soil  
      ftsoil(:, :, nsrf) = 0.  
      DO k = 1, nsoilmx  
         DO j = 1, knon  
            i = ni(j)  
            ftsoil(i, k, nsrf) = ytsoil(j, k)  
         END DO  
      END DO  
   
      DO j = 1, knon  
         i = ni(j)  
         DO k = 1, klev  
            d_t(i, k) = d_t(i, k) + y_d_t(j, k)  
            d_q(i, k) = d_q(i, k) + y_d_q(j, k)  
            !$$$ PB        flux_t(i, k) = flux_t(i, k) + y_flux_t(j, k)  
            !$$$         flux_q(i, k) = flux_q(i, k) + y_flux_q(j, k)  
            d_u(i, k) = d_u(i, k) + y_d_u(j, k)  
            d_v(i, k) = d_v(i, k) + y_d_v(j, k)  
            !$$$  PB       flux_u(i, k) = flux_u(i, k) + y_flux_u(j, k)  
            !$$$         flux_v(i, k) = flux_v(i, k) + y_flux_v(j, k)  
            zcoefh(i, k) = zcoefh(i, k) + ycoefh(j, k)  
         END DO  
      END DO  
   
   
      !cc diagnostic t, q a 2m et u, v a 10m  
   
      DO j = 1, knon  
         i = ni(j)  
         uzon(j) = yu(j, 1) + y_d_u(j, 1)  
         vmer(j) = yv(j, 1) + y_d_v(j, 1)  
         tair1(j) = yt(j, 1) + y_d_t(j, 1)  
         qair1(j) = yq(j, 1) + y_d_q(j, 1)  
         zgeo1(j) = rd*tair1(j)/(0.5*(ypaprs(j, 1)+ypplay(j, &  
              1)))*(ypaprs(j, 1)-ypplay(j, 1))  
         tairsol(j) = yts(j) + y_d_ts(j)  
         rugo1(j) = yrugos(j)  
         IF (nsrf==is_oce) THEN  
            rugo1(j) = rugos(i, nsrf)  
         END IF  
         psfce(j) = ypaprs(j, 1)  
         patm(j) = ypplay(j, 1)  
   
         qairsol(j) = yqsurf(j)  
      END DO  
   
      CALL stdlevvar(klon, knon, nsrf, zxli, uzon, vmer, tair1, qair1, zgeo1, &  
           tairsol, qairsol, rugo1, psfce, patm, yt2m, yq2m, yt10m, yq10m, &  
           yu10m, yustar)  
      !IM 081204 END  
   
      DO j = 1, knon  
         i = ni(j)  
         t2m(i, nsrf) = yt2m(j)  
         q2m(i, nsrf) = yq2m(j)  
   
         ! u10m, v10m : composantes du vent a 10m sans spirale de Ekman  
         u10m(i, nsrf) = (yu10m(j)*uzon(j))/sqrt(uzon(j)**2+vmer(j)**2)  
         v10m(i, nsrf) = (yu10m(j)*vmer(j))/sqrt(uzon(j)**2+vmer(j)**2)  
   
      END DO  
   
      !IM cf AM : pbl, HBTM  
      DO i = 1, knon  
         y_cd_h(i) = ycoefh(i, 1)  
         y_cd_m(i) = ycoefm(i, 1)  
      END DO  
      !     print*, 'appel hbtm2'  
      CALL hbtm(knon, ypaprs, ypplay, yt2m, yt10m, yq2m, yq10m, yustar, y_flux_t, &  
           y_flux_q, yu, yv, yt, yq, ypblh, ycapcl, yoliqcl, ycteicl, ypblt, ytherm, &  
           ytrmb1, ytrmb2, ytrmb3, ylcl)  
      !     print*, 'fin hbtm2'  
   
      DO j = 1, knon  
         i = ni(j)  
         pblh(i, nsrf) = ypblh(j)  
         plcl(i, nsrf) = ylcl(j)  
         capcl(i, nsrf) = ycapcl(j)  
         oliqcl(i, nsrf) = yoliqcl(j)  
         cteicl(i, nsrf) = ycteicl(j)  
         pblt(i, nsrf) = ypblt(j)  
         therm(i, nsrf) = ytherm(j)  
         trmb1(i, nsrf) = ytrmb1(j)  
         trmb2(i, nsrf) = ytrmb2(j)  
         trmb3(i, nsrf) = ytrmb3(j)  
      END DO  
   
   
      DO j = 1, knon  
         DO k = 1, klev + 1  
            i = ni(j)  
            q2(i, k, nsrf) = yq2(j, k)  
         END DO  
      END DO  
      !IM "slab" ocean  
      IF (nsrf==is_oce) THEN  
         DO j = 1, knon  
            ! on projette sur la grille globale  
            i = ni(j)  
            IF (pctsrf_new(i, is_oce)>epsfra) THEN  
               flux_o(i) = y_flux_o(j)  
            ELSE  
               flux_o(i) = 0.  
            END IF  
         END DO  
      END IF  
   
      IF (nsrf==is_sic) THEN  
         DO j = 1, knon  
            i = ni(j)  
            !IM 230604 on pondere lorsque l'on fait le bilan au sol :  flux_g(i) = y_flux_g(j)*ypct(j)  
            IF (pctsrf_new(i, is_sic)>epsfra) THEN  
               flux_g(i) = y_flux_g(j)  
            ELSE  
               flux_g(i) = 0.  
            END IF  
         END DO  
   
      END IF  
      !nsrf.EQ.is_sic                                              
      IF (ocean=='slab  ') THEN  
         IF (nsrf==is_oce) THEN  
            tslab(1:klon) = ytslab(1:klon)  
            seaice(1:klon) = y_seaice(1:klon)  
            !nsrf                                                        
         END IF  
         !OCEAN                                                        
      END IF  
   END DO  
6    
7    ! On utilise les nouvelles surfaces    SUBROUTINE clmain(dtime, pctsrf, t, q, u, v, jour, rmu0, ftsol, cdmmax, &
8    ! A rajouter: conservation de l'albedo         cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, paprs, pplay, snow, &
9           qsurf, evap, falbe, fluxlat, rain_fall, snow_f, solsw, sollw, fder, &
10           rlat, rugos, agesno, rugoro, d_t, d_q, d_u, d_v, d_ts, flux_t, flux_q, &
11           flux_u, flux_v, cdragh, cdragm, q2, dflux_t, dflux_q, ycoefh, zu1, &
12           zv1, t2m, q2m, u10m, v10m, pblh, capcl, oliqcl, cteicl, pblt, therm, &
13           trmb1, trmb2, trmb3, plcl, fqcalving, ffonte, run_off_lic_0)
14    
15        ! From phylmd/clmain.F, version 1.6, 2005/11/16 14:47:19
16        ! Author: Z. X. Li (LMD/CNRS), date: 1993/08/18
17        ! Objet : interface de couche limite (diffusion verticale)
18    
19        ! Tout ce qui a trait aux traceurs est dans "phytrac". Le calcul
20        ! de la couche limite pour les traceurs se fait avec "cltrac" et
21        ! ne tient pas compte de la diff\'erentiation des sous-fractions
22        ! de sol.
23    
24        ! Pour pouvoir extraire les coefficients d'\'echanges et le vent
25        ! dans la premi\`ere couche, trois champs ont \'et\'e cr\'e\'es : "ycoefh",
26        ! "zu1" et "zv1". Nous avons moyenn\'e les valeurs de ces trois
27        ! champs sur les quatre sous-surfaces du mod\`ele.
28    
29        use clqh_m, only: clqh
30        use clvent_m, only: clvent
31        use coefkz_m, only: coefkz
32        use coefkzmin_m, only: coefkzmin
33        USE conf_gcm_m, ONLY: prt_level, lmt_pas
34        USE conf_phys_m, ONLY: iflag_pbl
35        USE dimphy, ONLY: klev, klon, zmasq
36        USE dimsoil, ONLY: nsoilmx
37        use hbtm_m, only: hbtm
38        USE indicesol, ONLY: epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf
39        USE interfoce_lim_m, ONLY: interfoce_lim
40        use stdlevvar_m, only: stdlevvar
41        USE suphec_m, ONLY: rd, rg, rkappa
42        use time_phylmdz, only: itap
43        use ustarhb_m, only: ustarhb
44        use vdif_kcay_m, only: vdif_kcay
45        use yamada4_m, only: yamada4
46    
47        REAL, INTENT(IN):: dtime ! interval du temps (secondes)
48    
49        REAL, INTENT(inout):: pctsrf(klon, nbsrf)
50        ! tableau des pourcentages de surface de chaque maille
51    
52        REAL, INTENT(IN):: t(klon, klev) ! temperature (K)
53        REAL, INTENT(IN):: q(klon, klev) ! vapeur d'eau (kg/kg)
54        REAL, INTENT(IN):: u(klon, klev), v(klon, klev) ! vitesse
55        INTEGER, INTENT(IN):: jour ! jour de l'annee en cours
56        REAL, intent(in):: rmu0(klon) ! cosinus de l'angle solaire zenithal    
57        REAL, INTENT(IN):: ftsol(klon, nbsrf) ! temperature du sol (en Kelvin)
58        REAL, INTENT(IN):: cdmmax, cdhmax ! seuils cdrm, cdrh
59        REAL, INTENT(IN):: ksta, ksta_ter
60        LOGICAL, INTENT(IN):: ok_kzmin
61    
62        REAL, INTENT(inout):: ftsoil(klon, nsoilmx, nbsrf)
63        ! soil temperature of surface fraction
64    
65        REAL, INTENT(inout):: qsol(klon)
66        ! column-density of water in soil, in kg m-2
67    
68        REAL, INTENT(IN):: paprs(klon, klev+1) ! pression a intercouche (Pa)
69        REAL, INTENT(IN):: pplay(klon, klev) ! pression au milieu de couche (Pa)
70        REAL, INTENT(inout):: snow(klon, nbsrf)
71        REAL qsurf(klon, nbsrf)
72        REAL evap(klon, nbsrf)
73        REAL, intent(inout):: falbe(klon, nbsrf)
74    
75        REAL fluxlat(klon, nbsrf)
76    
77        REAL, intent(in):: rain_fall(klon)
78        ! liquid water mass flux (kg/m2/s), positive down
79    
80        REAL, intent(in):: snow_f(klon)
81        ! solid water mass flux (kg/m2/s), positive down
82    
83        REAL, INTENT(IN):: solsw(klon, nbsrf), sollw(klon, nbsrf)
84        REAL, intent(in):: fder(klon)
85        REAL, INTENT(IN):: rlat(klon) ! latitude en degr\'es
86    
87        REAL, intent(inout):: rugos(klon, nbsrf) ! longueur de rugosit\'e (en m)
88    
89        real agesno(klon, nbsrf)
90        REAL, INTENT(IN):: rugoro(klon)
91    
92        REAL d_t(klon, klev), d_q(klon, klev)
93        ! d_t------output-R- le changement pour "t"
94        ! d_q------output-R- le changement pour "q"
95    
96        REAL, intent(out):: d_u(klon, klev), d_v(klon, klev)
97        ! changement pour "u" et "v"
98    
99        REAL, intent(out):: d_ts(klon, nbsrf) ! le changement pour "ftsol"
100    
101        REAL, intent(out):: flux_t(klon, nbsrf)
102        ! flux de chaleur sensible (Cp T) (W/m2) (orientation positive vers
103        ! le bas) à la surface
104    
105        REAL, intent(out):: flux_q(klon, nbsrf)
106        ! flux de vapeur d'eau (kg/m2/s) à la surface
107    
108        REAL, intent(out):: flux_u(klon, nbsrf), flux_v(klon, nbsrf)
109        ! tension du vent à la surface, en Pa
110    
111        REAL, INTENT(out):: cdragh(klon), cdragm(klon)
112        real q2(klon, klev+1, nbsrf)
113    
114        REAL, INTENT(out):: dflux_t(klon), dflux_q(klon)
115        ! dflux_t derive du flux sensible
116        ! dflux_q derive du flux latent
117        ! IM "slab" ocean
118    
119        REAL, intent(out):: ycoefh(klon, klev)
120        REAL, intent(out):: zu1(klon)
121        REAL zv1(klon)
122        REAL t2m(klon, nbsrf), q2m(klon, nbsrf)
123        REAL u10m(klon, nbsrf), v10m(klon, nbsrf)
124    
125        ! Ionela Musat cf. Anne Mathieu : planetary boundary layer, hbtm
126        ! (Comme les autres diagnostics on cumule dans physiq ce qui
127        ! permet de sortir les grandeurs par sous-surface)
128        REAL pblh(klon, nbsrf) ! height of planetary boundary layer
129        REAL capcl(klon, nbsrf)
130        REAL oliqcl(klon, nbsrf)
131        REAL cteicl(klon, nbsrf)
132        REAL pblt(klon, nbsrf)
133        ! pblT------- T au nveau HCL
134        REAL therm(klon, nbsrf)
135        REAL trmb1(klon, nbsrf)
136        ! trmb1-------deep_cape
137        REAL trmb2(klon, nbsrf)
138        ! trmb2--------inhibition
139        REAL trmb3(klon, nbsrf)
140        ! trmb3-------Point Omega
141        REAL plcl(klon, nbsrf)
142        REAL fqcalving(klon, nbsrf), ffonte(klon, nbsrf)
143        ! ffonte----Flux thermique utilise pour fondre la neige
144        ! fqcalving-Flux d'eau "perdue" par la surface et necessaire pour limiter la
145        !           hauteur de neige, en kg/m2/s
146        REAL run_off_lic_0(klon)
147    
148        ! Local:
149    
150        LOGICAL:: firstcal = .true.
151    
152        ! la nouvelle repartition des surfaces sortie de l'interface
153        REAL, save:: pctsrf_new_oce(klon)
154        REAL, save:: pctsrf_new_sic(klon)
155    
156        REAL y_fqcalving(klon), y_ffonte(klon)
157        real y_run_off_lic_0(klon)
158        REAL rugmer(klon)
159        REAL ytsoil(klon, nsoilmx)
160        REAL yts(klon), yrugos(klon), ypct(klon), yz0_new(klon)
161        REAL yalb(klon)
162        REAL yu1(klon), yv1(klon)
163        ! on rajoute en output yu1 et yv1 qui sont les vents dans
164        ! la premiere couche
165        REAL ysnow(klon), yqsurf(klon), yagesno(klon)
166    
167        real yqsol(klon)
168        ! column-density of water in soil, in kg m-2
169    
170        REAL yrain_f(klon)
171        ! liquid water mass flux (kg/m2/s), positive down
172    
173        REAL ysnow_f(klon)
174        ! solid water mass flux (kg/m2/s), positive down
175    
176        REAL yfder(klon)
177        REAL yrugm(klon), yrads(klon), yrugoro(klon)
178    
179        REAL yfluxlat(klon)
180    
181        REAL y_d_ts(klon)
182        REAL y_d_t(klon, klev), y_d_q(klon, klev)
183        REAL y_d_u(klon, klev), y_d_v(klon, klev)
184        REAL y_flux_t(klon), y_flux_q(klon)
185        REAL y_flux_u(klon), y_flux_v(klon)
186        REAL y_dflux_t(klon), y_dflux_q(klon)
187        REAL coefh(klon, klev), coefm(klon, klev)
188        REAL yu(klon, klev), yv(klon, klev)
189        REAL yt(klon, klev), yq(klon, klev)
190        REAL ypaprs(klon, klev+1), ypplay(klon, klev), ydelp(klon, klev)
191    
192        REAL ycoefm0(klon, klev), ycoefh0(klon, klev)
193    
194        REAL yzlay(klon, klev), yzlev(klon, klev+1), yteta(klon, klev)
195        REAL ykmm(klon, klev+1), ykmn(klon, klev+1)
196        REAL ykmq(klon, klev+1)
197        REAL yq2(klon, klev+1)
198        REAL q2diag(klon, klev+1)
199    
200        REAL u1lay(klon), v1lay(klon)
201        REAL delp(klon, klev)
202        INTEGER i, k, nsrf
203    
204        INTEGER ni(klon), knon, j
205    
206        REAL pctsrf_pot(klon, nbsrf)
207        ! "pourcentage potentiel" pour tenir compte des \'eventuelles
208        ! apparitions ou disparitions de la glace de mer
209    
210        REAL zx_alf1, zx_alf2 ! valeur ambiante par extrapolation
211    
212        REAL yt2m(klon), yq2m(klon), yu10m(klon)
213        REAL yustar(klon)
214    
215        REAL yt10m(klon), yq10m(klon)
216        REAL ypblh(klon)
217        REAL ylcl(klon)
218        REAL ycapcl(klon)
219        REAL yoliqcl(klon)
220        REAL ycteicl(klon)
221        REAL ypblt(klon)
222        REAL ytherm(klon)
223        REAL ytrmb1(klon)
224        REAL ytrmb2(klon)
225        REAL ytrmb3(klon)
226        REAL uzon(klon), vmer(klon)
227        REAL tair1(klon), qair1(klon), tairsol(klon)
228        REAL psfce(klon), patm(klon)
229    
230        REAL qairsol(klon), zgeo1(klon)
231        REAL rugo1(klon)
232    
233        ! utiliser un jeu de fonctions simples              
234        LOGICAL zxli
235        PARAMETER (zxli=.FALSE.)
236    
237        !------------------------------------------------------------
238    
239        ytherm = 0.
240    
241        DO k = 1, klev ! epaisseur de couche
242           DO i = 1, klon
243              delp(i, k) = paprs(i, k) - paprs(i, k+1)
244           END DO
245        END DO
246        DO i = 1, klon ! vent de la premiere couche
247           zx_alf1 = 1.0
248           zx_alf2 = 1.0 - zx_alf1
249           u1lay(i) = u(i, 1)*zx_alf1 + u(i, 2)*zx_alf2
250           v1lay(i) = v(i, 1)*zx_alf1 + v(i, 2)*zx_alf2
251        END DO
252    
253        ! Initialization:
254        rugmer = 0.
255        cdragh = 0.
256        cdragm = 0.
257        dflux_t = 0.
258        dflux_q = 0.
259        zu1 = 0.
260        zv1 = 0.
261        ypct = 0.
262        yts = 0.
263        ysnow = 0.
264        yqsurf = 0.
265        yrain_f = 0.
266        ysnow_f = 0.
267        yfder = 0.
268        yrugos = 0.
269        yu1 = 0.
270        yv1 = 0.
271        yrads = 0.
272        ypaprs = 0.
273        ypplay = 0.
274        ydelp = 0.
275        yu = 0.
276        yv = 0.
277        yt = 0.
278        yq = 0.
279        y_dflux_t = 0.
280        y_dflux_q = 0.
281        ytsoil = 999999.
282        yrugoro = 0.
283        d_ts = 0.
284        yfluxlat = 0.
285        flux_t = 0.
286        flux_q = 0.
287        flux_u = 0.
288        flux_v = 0.
289        d_t = 0.
290        d_q = 0.
291        d_u = 0.
292        d_v = 0.
293        ycoefh = 0.
294    
295        ! Initialisation des "pourcentages potentiels". On consid\`ere ici qu'on
296        ! peut avoir potentiellement de la glace sur tout le domaine oc\'eanique
297        ! (\`a affiner)
298    
299        pctsrf_pot(:, is_ter) = pctsrf(:, is_ter)
300        pctsrf_pot(:, is_lic) = pctsrf(:, is_lic)
301        pctsrf_pot(:, is_oce) = 1. - zmasq
302        pctsrf_pot(:, is_sic) = 1. - zmasq
303    
304        ! Tester si c'est le moment de lire le fichier:
305        if (mod(itap - 1, lmt_pas) == 0) then
306           CALL interfoce_lim(jour, pctsrf_new_oce, pctsrf_new_sic)
307        endif
308    
309        ! Boucler sur toutes les sous-fractions du sol:
310    
311        loop_surface: DO nsrf = 1, nbsrf
312           ! Chercher les indices :
313           ni = 0
314           knon = 0
315           DO i = 1, klon
316              ! Pour d\'eterminer le domaine \`a traiter, on utilise les surfaces
317              ! "potentielles"
318              IF (pctsrf_pot(i, nsrf) > epsfra) THEN
319                 knon = knon + 1
320                 ni(knon) = i
321              END IF
322           END DO
323    
324           if_knon: IF (knon /= 0) then
325              DO j = 1, knon
326                 i = ni(j)
327                 ypct(j) = pctsrf(i, nsrf)
328                 yts(j) = ftsol(i, nsrf)
329                 ysnow(j) = snow(i, nsrf)
330                 yqsurf(j) = qsurf(i, nsrf)
331                 yalb(j) = falbe(i, nsrf)
332                 yrain_f(j) = rain_fall(i)
333                 ysnow_f(j) = snow_f(i)
334                 yagesno(j) = agesno(i, nsrf)
335                 yfder(j) = fder(i)
336                 yrugos(j) = rugos(i, nsrf)
337                 yrugoro(j) = rugoro(i)
338                 yu1(j) = u1lay(i)
339                 yv1(j) = v1lay(i)
340                 yrads(j) = solsw(i, nsrf) + sollw(i, nsrf)
341                 ypaprs(j, klev+1) = paprs(i, klev+1)
342                 y_run_off_lic_0(j) = run_off_lic_0(i)
343              END DO
344    
345              ! For continent, copy soil water content
346              IF (nsrf == is_ter) THEN
347                 yqsol(:knon) = qsol(ni(:knon))
348              ELSE
349                 yqsol = 0.
350              END IF
351    
352              DO k = 1, nsoilmx
353                 DO j = 1, knon
354                    i = ni(j)
355                    ytsoil(j, k) = ftsoil(i, k, nsrf)
356                 END DO
357              END DO
358    
359              DO k = 1, klev
360                 DO j = 1, knon
361                    i = ni(j)
362                    ypaprs(j, k) = paprs(i, k)
363                    ypplay(j, k) = pplay(i, k)
364                    ydelp(j, k) = delp(i, k)
365                    yu(j, k) = u(i, k)
366                    yv(j, k) = v(i, k)
367                    yt(j, k) = t(i, k)
368                    yq(j, k) = q(i, k)
369                 END DO
370              END DO
371    
372              ! calculer Cdrag et les coefficients d'echange
373              CALL coefkz(nsrf, knon, ypaprs, ypplay, ksta, ksta_ter, yts, yrugos, &
374                   yu, yv, yt, yq, yqsurf, coefm(:knon, :), coefh(:knon, :))
375              IF (iflag_pbl == 1) THEN
376                 CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0, ycoefh0)
377                 coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :))
378                 coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, :))
379              END IF
380    
381              ! on met un seuil pour coefm et coefh
382              IF (nsrf == is_oce) THEN
383                 coefm(:knon, 1) = min(coefm(:knon, 1), cdmmax)
384                 coefh(:knon, 1) = min(coefh(:knon, 1), cdhmax)
385              END IF
386    
387              IF (ok_kzmin) THEN
388                 ! Calcul d'une diffusion minimale pour les conditions tres stables
389                 CALL coefkzmin(knon, ypaprs, ypplay, yu, yv, yt, yq, &
390                      coefm(:knon, 1), ycoefm0, ycoefh0)
391                 coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :))
392                 coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, :))
393              END IF
394    
395              IF (iflag_pbl >= 3) THEN
396                 ! Mellor et Yamada adapt\'e \`a Mars, Richard Fournier et
397                 ! Fr\'ed\'eric Hourdin
398                 yzlay(:knon, 1) = rd * yt(:knon, 1) / (0.5 * (ypaprs(:knon, 1) &
399                      + ypplay(:knon, 1))) &
400                      * (ypaprs(:knon, 1) - ypplay(:knon, 1)) / rg
401                 DO k = 2, klev
402                    yzlay(1:knon, k) = yzlay(1:knon, k-1) &
403                         + rd * 0.5 * (yt(1:knon, k-1) + yt(1:knon, k)) &
404                         / ypaprs(1:knon, k) &
405                         * (ypplay(1:knon, k-1) - ypplay(1:knon, k)) / rg
406                 END DO
407                 DO k = 1, klev
408                    yteta(1:knon, k) = yt(1:knon, k)*(ypaprs(1:knon, 1) &
409                         / ypplay(1:knon, k))**rkappa * (1.+0.61*yq(1:knon, k))
410                 END DO
411                 yzlev(1:knon, 1) = 0.
412                 yzlev(:knon, klev+1) = 2. * yzlay(:knon, klev) &
413                      - yzlay(:knon, klev - 1)
414                 DO k = 2, klev
415                    yzlev(1:knon, k) = 0.5*(yzlay(1:knon, k)+yzlay(1:knon, k-1))
416                 END DO
417                 DO k = 1, klev + 1
418                    DO j = 1, knon
419                       i = ni(j)
420                       yq2(j, k) = q2(i, k, nsrf)
421                    END DO
422                 END DO
423    
424                 CALL ustarhb(knon, yu, yv, coefm(:knon, 1), yustar)
425                 IF (prt_level > 9) PRINT *, 'USTAR = ', yustar
426    
427                 ! iflag_pbl peut \^etre utilis\'e comme longueur de m\'elange
428    
429                 IF (iflag_pbl >= 11) THEN
430                    CALL vdif_kcay(knon, dtime, rg, ypaprs, yzlev, yzlay, yu, yv, &
431                         yteta, coefm(:knon, 1), yq2, q2diag, ykmm, ykmn, yustar, &
432                         iflag_pbl)
433                 ELSE
434                    CALL yamada4(knon, dtime, rg, yzlev, yzlay, yu, yv, yteta, &
435                         coefm(:knon, 1), yq2, ykmm, ykmn, ykmq, yustar, iflag_pbl)
436                 END IF
437    
438                 coefm(:knon, 2:) = ykmm(:knon, 2:klev)
439                 coefh(:knon, 2:) = ykmn(:knon, 2:klev)
440              END IF
441    
442              ! calculer la diffusion des vitesses "u" et "v"
443              CALL clvent(knon, dtime, yu1, yv1, coefm(:knon, :), yt, yu, ypaprs, &
444                   ypplay, ydelp, y_d_u, y_flux_u(:knon))
445              CALL clvent(knon, dtime, yu1, yv1, coefm(:knon, :), yt, yv, ypaprs, &
446                   ypplay, ydelp, y_d_v, y_flux_v(:knon))
447    
448              ! calculer la diffusion de "q" et de "h"
449              CALL clqh(dtime, jour, firstcal, rlat, nsrf, ni(:knon), ytsoil, &
450                   yqsol, rmu0, yrugos, yrugoro, yu1, yv1, coefh(:knon, :), yt, &
451                   yq, yts(:knon), ypaprs, ypplay, ydelp, yrads, yalb(:knon), &
452                   ysnow, yqsurf, yrain_f, ysnow_f, yfder, yfluxlat, &
453                   pctsrf_new_sic, yagesno(:knon), y_d_t, y_d_q, y_d_ts(:knon), &
454                   yz0_new, y_flux_t(:knon), y_flux_q(:knon), y_dflux_t, &
455                   y_dflux_q, y_fqcalving, y_ffonte, y_run_off_lic_0)
456    
457              ! calculer la longueur de rugosite sur ocean
458              yrugm = 0.
459              IF (nsrf == is_oce) THEN
460                 DO j = 1, knon
461                    yrugm(j) = 0.018*coefm(j, 1)*(yu1(j)**2+yv1(j)**2)/rg + &
462                         0.11*14E-6/sqrt(coefm(j, 1)*(yu1(j)**2+yv1(j)**2))
463                    yrugm(j) = max(1.5E-05, yrugm(j))
464                 END DO
465              END IF
466              DO j = 1, knon
467                 y_dflux_t(j) = y_dflux_t(j)*ypct(j)
468                 y_dflux_q(j) = y_dflux_q(j)*ypct(j)
469                 yu1(j) = yu1(j)*ypct(j)
470                 yv1(j) = yv1(j)*ypct(j)
471              END DO
472    
473              DO k = 1, klev
474                 DO j = 1, knon
475                    i = ni(j)
476                    coefh(j, k) = coefh(j, k)*ypct(j)
477                    coefm(j, k) = coefm(j, k)*ypct(j)
478                    y_d_t(j, k) = y_d_t(j, k)*ypct(j)
479                    y_d_q(j, k) = y_d_q(j, k)*ypct(j)
480                    y_d_u(j, k) = y_d_u(j, k)*ypct(j)
481                    y_d_v(j, k) = y_d_v(j, k)*ypct(j)
482                 END DO
483              END DO
484    
485              DO j = 1, knon
486                 i = ni(j)
487                 flux_t(i, nsrf) = y_flux_t(j)
488                 flux_q(i, nsrf) = y_flux_q(j)
489                 flux_u(i, nsrf) = y_flux_u(j)
490                 flux_v(i, nsrf) = y_flux_v(j)
491              END DO
492    
493              evap(:, nsrf) = -flux_q(:, nsrf)
494    
495              falbe(:, nsrf) = 0.
496              snow(:, nsrf) = 0.
497              qsurf(:, nsrf) = 0.
498              rugos(:, nsrf) = 0.
499              fluxlat(:, nsrf) = 0.
500              DO j = 1, knon
501                 i = ni(j)
502                 d_ts(i, nsrf) = y_d_ts(j)
503                 falbe(i, nsrf) = yalb(j)
504                 snow(i, nsrf) = ysnow(j)
505                 qsurf(i, nsrf) = yqsurf(j)
506                 rugos(i, nsrf) = yz0_new(j)
507                 fluxlat(i, nsrf) = yfluxlat(j)
508                 IF (nsrf == is_oce) THEN
509                    rugmer(i) = yrugm(j)
510                    rugos(i, nsrf) = yrugm(j)
511                 END IF
512                 agesno(i, nsrf) = yagesno(j)
513                 fqcalving(i, nsrf) = y_fqcalving(j)
514                 ffonte(i, nsrf) = y_ffonte(j)
515                 cdragh(i) = cdragh(i) + coefh(j, 1)
516                 cdragm(i) = cdragm(i) + coefm(j, 1)
517                 dflux_t(i) = dflux_t(i) + y_dflux_t(j)
518                 dflux_q(i) = dflux_q(i) + y_dflux_q(j)
519                 zu1(i) = zu1(i) + yu1(j)
520                 zv1(i) = zv1(i) + yv1(j)
521              END DO
522              IF (nsrf == is_ter) THEN
523                 qsol(ni(:knon)) = yqsol(:knon)
524              else IF (nsrf == is_lic) THEN
525                 DO j = 1, knon
526                    i = ni(j)
527                    run_off_lic_0(i) = y_run_off_lic_0(j)
528                 END DO
529              END IF
530    
531              ftsoil(:, :, nsrf) = 0.
532              DO k = 1, nsoilmx
533                 DO j = 1, knon
534                    i = ni(j)
535                    ftsoil(i, k, nsrf) = ytsoil(j, k)
536                 END DO
537              END DO
538    
539              DO j = 1, knon
540                 i = ni(j)
541                 DO k = 1, klev
542                    d_t(i, k) = d_t(i, k) + y_d_t(j, k)
543                    d_q(i, k) = d_q(i, k) + y_d_q(j, k)
544                    d_u(i, k) = d_u(i, k) + y_d_u(j, k)
545                    d_v(i, k) = d_v(i, k) + y_d_v(j, k)
546                    ycoefh(i, k) = ycoefh(i, k) + coefh(j, k)
547                 END DO
548              END DO
549    
550              ! diagnostic t, q a 2m et u, v a 10m
551    
552              DO j = 1, knon
553                 i = ni(j)
554                 uzon(j) = yu(j, 1) + y_d_u(j, 1)
555                 vmer(j) = yv(j, 1) + y_d_v(j, 1)
556                 tair1(j) = yt(j, 1) + y_d_t(j, 1)
557                 qair1(j) = yq(j, 1) + y_d_q(j, 1)
558                 zgeo1(j) = rd*tair1(j)/(0.5*(ypaprs(j, 1)+ypplay(j, &
559                      1)))*(ypaprs(j, 1)-ypplay(j, 1))
560                 tairsol(j) = yts(j) + y_d_ts(j)
561                 rugo1(j) = yrugos(j)
562                 IF (nsrf == is_oce) THEN
563                    rugo1(j) = rugos(i, nsrf)
564                 END IF
565                 psfce(j) = ypaprs(j, 1)
566                 patm(j) = ypplay(j, 1)
567    
568                 qairsol(j) = yqsurf(j)
569              END DO
570    
571              CALL stdlevvar(klon, knon, nsrf, zxli, uzon, vmer, tair1, qair1, &
572                   zgeo1, tairsol, qairsol, rugo1, psfce, patm, yt2m, yq2m, &
573                   yt10m, yq10m, yu10m, yustar)
574    
575              DO j = 1, knon
576                 i = ni(j)
577                 t2m(i, nsrf) = yt2m(j)
578                 q2m(i, nsrf) = yq2m(j)
579    
580                 ! u10m, v10m : composantes du vent a 10m sans spirale de Ekman
581                 u10m(i, nsrf) = (yu10m(j)*uzon(j))/sqrt(uzon(j)**2+vmer(j)**2)
582                 v10m(i, nsrf) = (yu10m(j)*vmer(j))/sqrt(uzon(j)**2+vmer(j)**2)
583    
584              END DO
585    
586              CALL hbtm(ypaprs, ypplay, yt2m, yq2m, yustar, y_flux_t(:knon), &
587                   y_flux_q(:knon), yu, yv, yt, yq, ypblh(:knon), ycapcl, &
588                   yoliqcl, ycteicl, ypblt, ytherm, ytrmb1, ytrmb2, ytrmb3, ylcl)
589    
590              DO j = 1, knon
591                 i = ni(j)
592                 pblh(i, nsrf) = ypblh(j)
593                 plcl(i, nsrf) = ylcl(j)
594                 capcl(i, nsrf) = ycapcl(j)
595                 oliqcl(i, nsrf) = yoliqcl(j)
596                 cteicl(i, nsrf) = ycteicl(j)
597                 pblt(i, nsrf) = ypblt(j)
598                 therm(i, nsrf) = ytherm(j)
599                 trmb1(i, nsrf) = ytrmb1(j)
600                 trmb2(i, nsrf) = ytrmb2(j)
601                 trmb3(i, nsrf) = ytrmb3(j)
602              END DO
603    
604              DO j = 1, knon
605                 DO k = 1, klev + 1
606                    i = ni(j)
607                    q2(i, k, nsrf) = yq2(j, k)
608                 END DO
609              END DO
610           end IF if_knon
611        END DO loop_surface
612    
613        ! On utilise les nouvelles surfaces
614        rugos(:, is_oce) = rugmer
615        pctsrf(:, is_oce) = pctsrf_new_oce
616        pctsrf(:, is_sic) = pctsrf_new_sic
617    
618    rugos(:, is_oce) = rugmer      firstcal = .false.
   pctsrf = pctsrf_new  
619    
620  END SUBROUTINE clmain    END SUBROUTINE clmain
621    
622    end module clmain_m

Legend:
Removed from v.30  
changed lines
  Added in v.207

  ViewVC Help
Powered by ViewVC 1.1.21