--- trunk/Sources/phylmd/clmain.f 2015/04/29 15:47:56 134 +++ trunk/Sources/phylmd/clmain.f 2016/12/07 16:44:53 208 @@ -4,14 +4,13 @@ contains - SUBROUTINE clmain(dtime, itap, pctsrf, pctsrf_new, t, q, u, v, jour, rmu0, & - co2_ppm, ts, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, & - paprs, pplay, snow, qsurf, evap, albe, alblw, fluxlat, rain_fall, & - snow_f, solsw, sollw, fder, rlat, rugos, debut, agesno, rugoro, d_t, & - d_q, d_u, d_v, d_ts, flux_t, flux_q, flux_u, flux_v, cdragh, cdragm, & - q2, dflux_t, dflux_q, ycoefh, zu1, zv1, t2m, q2m, u10m, v10m, pblh, & - capcl, oliqcl, cteicl, pblt, therm, trmb1, trmb2, trmb3, plcl, & - fqcalving, ffonte, run_off_lic_0, flux_o, flux_g, tslab) + SUBROUTINE clmain(dtime, pctsrf, t, q, u, v, jour, rmu0, ftsol, cdmmax, & + cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, paprs, pplay, snow, & + qsurf, evap, falbe, fluxlat, rain_fall, snow_f, solsw, sollw, fder, & + rlat, rugos, agesno, rugoro, d_t, d_q, d_u, d_v, d_ts, flux_t, flux_q, & + flux_u, flux_v, cdragh, cdragm, q2, dflux_t, dflux_q, ycoefh, zu1, & + zv1, t2m, q2m, u10m, v10m, pblh, capcl, oliqcl, cteicl, pblt, therm, & + trmb1, trmb2, trmb3, plcl, fqcalving, ffonte, run_off_lic_0) ! From phylmd/clmain.F, version 1.6, 2005/11/16 14:47:19 ! Author: Z. X. Li (LMD/CNRS), date: 1993/08/18 @@ -19,45 +18,43 @@ ! Tout ce qui a trait aux traceurs est dans "phytrac". Le calcul ! de la couche limite pour les traceurs se fait avec "cltrac" et - ! ne tient pas compte de la différentiation des sous-fractions de - ! sol. + ! ne tient pas compte de la diff\'erentiation des sous-fractions + ! de sol. - ! Pour pouvoir extraire les coefficients d'échanges et le vent - ! dans la première couche, trois champs ont été créés : "ycoefh", - ! "zu1" et "zv1". Nous avons moyenné les valeurs de ces trois - ! champs sur les quatre sous-surfaces du modèle. + ! Pour pouvoir extraire les coefficients d'\'echanges et le vent + ! dans la premi\`ere couche, trois champs ont \'et\'e cr\'e\'es : "ycoefh", + ! "zu1" et "zv1". Nous avons moyenn\'e les valeurs de ces trois + ! champs sur les quatre sous-surfaces du mod\`ele. use clqh_m, only: clqh use clvent_m, only: clvent use coefkz_m, only: coefkz use coefkzmin_m, only: coefkzmin - USE conf_gcm_m, ONLY: prt_level + USE conf_gcm_m, ONLY: prt_level, lmt_pas USE conf_phys_m, ONLY: iflag_pbl - USE dimens_m, ONLY: iim, jjm USE dimphy, ONLY: klev, klon, zmasq USE dimsoil, ONLY: nsoilmx use hbtm_m, only: hbtm USE indicesol, ONLY: epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf + USE interfoce_lim_m, ONLY: interfoce_lim use stdlevvar_m, only: stdlevvar USE suphec_m, ONLY: rd, rg, rkappa + use time_phylmdz, only: itap use ustarhb_m, only: ustarhb use vdif_kcay_m, only: vdif_kcay use yamada4_m, only: yamada4 REAL, INTENT(IN):: dtime ! interval du temps (secondes) - INTEGER, INTENT(IN):: itap ! numero du pas de temps - REAL, INTENT(inout):: pctsrf(klon, nbsrf) - ! la nouvelle repartition des surfaces sortie de l'interface - REAL, INTENT(out):: pctsrf_new(klon, nbsrf) + REAL, INTENT(inout):: pctsrf(klon, nbsrf) + ! tableau des pourcentages de surface de chaque maille REAL, INTENT(IN):: t(klon, klev) ! temperature (K) REAL, INTENT(IN):: q(klon, klev) ! vapeur d'eau (kg/kg) REAL, INTENT(IN):: u(klon, klev), v(klon, klev) ! vitesse INTEGER, INTENT(IN):: jour ! jour de l'annee en cours REAL, intent(in):: rmu0(klon) ! cosinus de l'angle solaire zenithal - REAL, intent(in):: co2_ppm ! taux CO2 atmosphere - REAL, INTENT(IN):: ts(klon, nbsrf) ! temperature du sol (en Kelvin) + REAL, INTENT(IN):: ftsol(klon, nbsrf) ! temp\'erature du sol (en K) REAL, INTENT(IN):: cdmmax, cdhmax ! seuils cdrm, cdrh REAL, INTENT(IN):: ksta, ksta_ter LOGICAL, INTENT(IN):: ok_kzmin @@ -70,11 +67,10 @@ REAL, INTENT(IN):: paprs(klon, klev+1) ! pression a intercouche (Pa) REAL, INTENT(IN):: pplay(klon, klev) ! pression au milieu de couche (Pa) - REAL snow(klon, nbsrf) + REAL, INTENT(inout):: snow(klon, nbsrf) REAL qsurf(klon, nbsrf) REAL evap(klon, nbsrf) - REAL albe(klon, nbsrf) - REAL alblw(klon, nbsrf) + REAL, intent(inout):: falbe(klon, nbsrf) REAL fluxlat(klon, nbsrf) @@ -85,13 +81,11 @@ ! solid water mass flux (kg/m2/s), positive down REAL, INTENT(IN):: solsw(klon, nbsrf), sollw(klon, nbsrf) - REAL fder(klon) - REAL, INTENT(IN):: rlat(klon) ! latitude en degrés + REAL, intent(in):: fder(klon) + REAL, INTENT(IN):: rlat(klon) ! latitude en degr\'es - REAL rugos(klon, nbsrf) - ! rugos----input-R- longeur de rugosite (en m) + REAL, intent(inout):: rugos(klon, nbsrf) ! longueur de rugosit\'e (en m) - LOGICAL, INTENT(IN):: debut real agesno(klon, nbsrf) REAL, INTENT(IN):: rugoro(klon) @@ -102,16 +96,17 @@ REAL, intent(out):: d_u(klon, klev), d_v(klon, klev) ! changement pour "u" et "v" - REAL, intent(out):: d_ts(klon, nbsrf) ! le changement pour "ts" + REAL, intent(out):: d_ts(klon, nbsrf) ! le changement pour ftsol + + REAL, intent(out):: flux_t(klon, nbsrf) + ! flux de chaleur sensible (Cp T) (W/m2) (orientation positive vers + ! le bas) à la surface + + REAL, intent(out):: flux_q(klon, nbsrf) + ! flux de vapeur d'eau (kg/m2/s) à la surface - REAL flux_t(klon, klev, nbsrf), flux_q(klon, klev, nbsrf) - ! flux_t---output-R- flux de chaleur sensible (CpT) J/m**2/s (W/m**2) - ! (orientation positive vers le bas) - ! flux_q---output-R- flux de vapeur d'eau (kg/m**2/s) - - REAL flux_u(klon, klev, nbsrf), flux_v(klon, klev, nbsrf) - ! flux_u---output-R- tension du vent X: (kg m/s)/(m**2 s) ou Pascal - ! flux_v---output-R- tension du vent Y: (kg m/s)/(m**2 s) ou Pascal + REAL, intent(out):: flux_u(klon, nbsrf), flux_v(klon, nbsrf) + ! tension du vent à la surface, en Pa REAL, INTENT(out):: cdragh(klon), cdragm(klon) real q2(klon, klev+1, nbsrf) @@ -119,7 +114,7 @@ REAL, INTENT(out):: dflux_t(klon), dflux_q(klon) ! dflux_t derive du flux sensible ! dflux_q derive du flux latent - !IM "slab" ocean + ! IM "slab" ocean REAL, intent(out):: ycoefh(klon, klev) REAL, intent(out):: zu1(klon) @@ -127,10 +122,10 @@ REAL t2m(klon, nbsrf), q2m(klon, nbsrf) REAL u10m(klon, nbsrf), v10m(klon, nbsrf) - !IM cf. AM : pbl, hbtm (Comme les autres diagnostics on cumule ds - ! physiq ce qui permet de sortir les grdeurs par sous surface) - REAL pblh(klon, nbsrf) - ! pblh------- HCL + ! Ionela Musat cf. Anne Mathieu : planetary boundary layer, hbtm + ! (Comme les autres diagnostics on cumule dans physiq ce qui + ! permet de sortir les grandeurs par sous-surface) + REAL pblh(klon, nbsrf) ! height of planetary boundary layer REAL capcl(klon, nbsrf) REAL oliqcl(klon, nbsrf) REAL cteicl(klon, nbsrf) @@ -150,29 +145,20 @@ ! hauteur de neige, en kg/m2/s REAL run_off_lic_0(klon) - REAL flux_o(klon), flux_g(klon) - !IM "slab" ocean - ! flux_g---output-R- flux glace (pour OCEAN='slab ') - ! flux_o---output-R- flux ocean (pour OCEAN='slab ') - - REAL tslab(klon) - ! tslab-in/output-R temperature du slab ocean (en Kelvin) - ! uniqmnt pour slab - ! Local: - REAL y_flux_o(klon), y_flux_g(klon) - real ytslab(klon) + LOGICAL:: firstcal = .true. + + ! la nouvelle repartition des surfaces sortie de l'interface + REAL, save:: pctsrf_new_oce(klon) + REAL, save:: pctsrf_new_sic(klon) + REAL y_fqcalving(klon), y_ffonte(klon) real y_run_off_lic_0(klon) - REAL rugmer(klon) - REAL ytsoil(klon, nsoilmx) - REAL yts(klon), yrugos(klon), ypct(klon), yz0_new(klon) REAL yalb(klon) - REAL yalblw(klon) REAL yu1(klon), yv1(klon) ! on rajoute en output yu1 et yv1 qui sont les vents dans ! la premiere couche @@ -187,7 +173,6 @@ REAL ysnow_f(klon) ! solid water mass flux (kg/m2/s), positive down - REAL ysollw(klon), ysolsw(klon) REAL yfder(klon) REAL yrugm(klon), yrads(klon), yrugoro(klon) @@ -196,8 +181,8 @@ REAL y_d_ts(klon) REAL y_d_t(klon, klev), y_d_q(klon, klev) REAL y_d_u(klon, klev), y_d_v(klon, klev) - REAL y_flux_t(klon, klev), y_flux_q(klon, klev) - REAL y_flux_u(klon, klev), y_flux_v(klon, klev) + REAL y_flux_t(klon), y_flux_q(klon) + REAL y_flux_u(klon), y_flux_v(klon) REAL y_dflux_t(klon), y_dflux_q(klon) REAL coefh(klon, klev), coefm(klon, klev) REAL yu(klon, klev), yv(klon, klev) @@ -219,18 +204,13 @@ INTEGER ni(klon), knon, j REAL pctsrf_pot(klon, nbsrf) - ! "pourcentage potentiel" pour tenir compte des éventuelles + ! "pourcentage potentiel" pour tenir compte des \'eventuelles ! apparitions ou disparitions de la glace de mer - REAL zx_alf1, zx_alf2 !valeur ambiante par extrapola. + REAL zx_alf1, zx_alf2 ! valeur ambiante par extrapolation REAL yt2m(klon), yq2m(klon), yu10m(klon) REAL yustar(klon) - ! -- LOOP - REAL yu10mx(klon) - REAL yu10my(klon) - REAL ywindsp(klon) - ! -- LOOP REAL yt10m(klon), yq10m(klon) REAL ypblh(klon) @@ -282,13 +262,9 @@ yts = 0. ysnow = 0. yqsurf = 0. - yalb = 0. - yalblw = 0. yrain_f = 0. ysnow_f = 0. yfder = 0. - ysolsw = 0. - ysollw = 0. yrugos = 0. yu1 = 0. yv1 = 0. @@ -300,16 +276,9 @@ yv = 0. yt = 0. yq = 0. - pctsrf_new = 0. - y_flux_u = 0. - y_flux_v = 0. y_dflux_t = 0. y_dflux_q = 0. - ytsoil = 999999. yrugoro = 0. - yu10mx = 0. - yu10my = 0. - ywindsp = 0. d_ts = 0. yfluxlat = 0. flux_t = 0. @@ -322,14 +291,20 @@ d_v = 0. ycoefh = 0. - ! Initialisation des "pourcentages potentiels". On considère ici qu'on - ! peut avoir potentiellement de la glace sur tout le domaine océanique - ! (à affiner) + ! Initialisation des "pourcentages potentiels". On consid\`ere ici qu'on + ! peut avoir potentiellement de la glace sur tout le domaine oc\'eanique + ! (\`a affiner) - pctsrf_pot = pctsrf + pctsrf_pot(:, is_ter) = pctsrf(:, is_ter) + pctsrf_pot(:, is_lic) = pctsrf(:, is_lic) pctsrf_pot(:, is_oce) = 1. - zmasq pctsrf_pot(:, is_sic) = 1. - zmasq + ! Tester si c'est le moment de lire le fichier: + if (mod(itap - 1, lmt_pas) == 0) then + CALL interfoce_lim(jour, pctsrf_new_oce, pctsrf_new_sic) + endif + ! Boucler sur toutes les sous-fractions du sol: loop_surface: DO nsrf = 1, nbsrf @@ -337,7 +312,7 @@ ni = 0 knon = 0 DO i = 1, klon - ! Pour déterminer le domaine à traiter, on utilise les surfaces + ! Pour d\'eterminer le domaine \`a traiter, on utilise les surfaces ! "potentielles" IF (pctsrf_pot(i, nsrf) > epsfra) THEN knon = knon + 1 @@ -349,28 +324,21 @@ DO j = 1, knon i = ni(j) ypct(j) = pctsrf(i, nsrf) - yts(j) = ts(i, nsrf) - ytslab(i) = tslab(i) + yts(j) = ftsol(i, nsrf) ysnow(j) = snow(i, nsrf) yqsurf(j) = qsurf(i, nsrf) - yalb(j) = albe(i, nsrf) - yalblw(j) = alblw(i, nsrf) + yalb(j) = falbe(i, nsrf) yrain_f(j) = rain_fall(i) ysnow_f(j) = snow_f(i) yagesno(j) = agesno(i, nsrf) yfder(j) = fder(i) - ysolsw(j) = solsw(i, nsrf) - ysollw(j) = sollw(i, nsrf) yrugos(j) = rugos(i, nsrf) yrugoro(j) = rugoro(i) yu1(j) = u1lay(i) yv1(j) = v1lay(i) - yrads(j) = ysolsw(j) + ysollw(j) + yrads(j) = solsw(i, nsrf) + sollw(i, nsrf) ypaprs(j, klev+1) = paprs(i, klev+1) y_run_off_lic_0(j) = run_off_lic_0(i) - yu10mx(j) = u10m(i, nsrf) - yu10my(j) = v10m(i, nsrf) - ywindsp(j) = sqrt(yu10mx(j)*yu10mx(j)+yu10my(j)*yu10my(j)) END DO ! For continent, copy soil water content @@ -380,12 +348,7 @@ yqsol = 0. END IF - DO k = 1, nsoilmx - DO j = 1, knon - i = ni(j) - ytsoil(j, k) = ftsoil(i, k, nsrf) - END DO - END DO + ytsoil(:knon, :) = ftsoil(ni(:knon), :, nsrf) DO k = 1, klev DO j = 1, knon @@ -401,8 +364,8 @@ END DO ! calculer Cdrag et les coefficients d'echange - CALL coefkz(nsrf, knon, ypaprs, ypplay, ksta, ksta_ter, yts, yrugos, & - yu, yv, yt, yq, yqsurf, coefm(:knon, :), coefh(:knon, :)) + CALL coefkz(nsrf, ypaprs, ypplay, ksta, ksta_ter, yts, yrugos, yu, & + yv, yt, yq, yqsurf, coefm(:knon, :), coefh(:knon, :)) IF (iflag_pbl == 1) THEN CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0, ycoefh0) coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :)) @@ -424,8 +387,8 @@ END IF IF (iflag_pbl >= 3) THEN - ! Mellor et Yamada adapté à Mars, Richard Fournier et - ! Frédéric Hourdin + ! Mellor et Yamada adapt\'e \`a Mars, Richard Fournier et + ! Fr\'ed\'eric Hourdin yzlay(:knon, 1) = rd * yt(:knon, 1) / (0.5 * (ypaprs(:knon, 1) & + ypplay(:knon, 1))) & * (ypaprs(:knon, 1) - ypplay(:knon, 1)) / rg @@ -455,12 +418,12 @@ CALL ustarhb(knon, yu, yv, coefm(:knon, 1), yustar) IF (prt_level > 9) PRINT *, 'USTAR = ', yustar - ! iflag_pbl peut être utilisé comme longueur de mélange + ! iflag_pbl peut \^etre utilis\'e comme longueur de m\'elange IF (iflag_pbl >= 11) THEN - CALL vdif_kcay(knon, dtime, rg, rd, ypaprs, yt, yzlev, yzlay, & - yu, yv, yteta, coefm(:knon, 1), yq2, q2diag, ykmm, ykmn, & - yustar, iflag_pbl) + CALL vdif_kcay(knon, dtime, rg, ypaprs, yzlev, yzlay, yu, yv, & + yteta, coefm(:knon, 1), yq2, q2diag, ykmm, ykmn, yustar, & + iflag_pbl) ELSE CALL yamada4(knon, dtime, rg, yzlev, yzlay, yu, yv, yteta, & coefm(:knon, 1), yq2, ykmm, ykmn, ykmq, yustar, iflag_pbl) @@ -472,19 +435,18 @@ ! calculer la diffusion des vitesses "u" et "v" CALL clvent(knon, dtime, yu1, yv1, coefm(:knon, :), yt, yu, ypaprs, & - ypplay, ydelp, y_d_u, y_flux_u) + ypplay, ydelp, y_d_u, y_flux_u(:knon)) CALL clvent(knon, dtime, yu1, yv1, coefm(:knon, :), yt, yv, ypaprs, & - ypplay, ydelp, y_d_v, y_flux_v) + ypplay, ydelp, y_d_v, y_flux_v(:knon)) ! calculer la diffusion de "q" et de "h" - CALL clqh(dtime, itap, jour, debut, rlat, knon, nsrf, ni(:knon), & - pctsrf, ytsoil, yqsol, rmu0, co2_ppm, yrugos, yrugoro, yu1, & - yv1, coefh(:knon, :), yt, yq, yts, ypaprs, ypplay, ydelp, & - yrads, yalb, yalblw, ysnow, yqsurf, yrain_f, ysnow_f, yfder, & - ysolsw, yfluxlat, pctsrf_new, yagesno, y_d_t, y_d_q, & - y_d_ts(:knon), yz0_new, y_flux_t, y_flux_q, y_dflux_t, & - y_dflux_q, y_fqcalving, y_ffonte, y_run_off_lic_0, y_flux_o, & - y_flux_g) + CALL clqh(dtime, jour, firstcal, rlat, nsrf, ni(:knon), & + ytsoil(:knon, :), yqsol, rmu0, yrugos, yrugoro, yu1, yv1, & + coefh(:knon, :), yt, yq, yts(:knon), ypaprs, ypplay, ydelp, & + yrads, yalb(:knon), ysnow, yqsurf, yrain_f, ysnow_f, yfder, & + yfluxlat, pctsrf_new_sic, yagesno(:knon), y_d_t, y_d_q, & + y_d_ts(:knon), yz0_new, y_flux_t(:knon), y_flux_q(:knon), & + y_dflux_t, y_dflux_q, y_fqcalving, y_ffonte, y_run_off_lic_0) ! calculer la longueur de rugosite sur ocean yrugm = 0. @@ -509,19 +471,22 @@ coefm(j, k) = coefm(j, k)*ypct(j) y_d_t(j, k) = y_d_t(j, k)*ypct(j) y_d_q(j, k) = y_d_q(j, k)*ypct(j) - flux_t(i, k, nsrf) = y_flux_t(j, k) - flux_q(i, k, nsrf) = y_flux_q(j, k) - flux_u(i, k, nsrf) = y_flux_u(j, k) - flux_v(i, k, nsrf) = y_flux_v(j, k) y_d_u(j, k) = y_d_u(j, k)*ypct(j) y_d_v(j, k) = y_d_v(j, k)*ypct(j) END DO END DO - evap(:, nsrf) = -flux_q(:, 1, nsrf) + DO j = 1, knon + i = ni(j) + flux_t(i, nsrf) = y_flux_t(j) + flux_q(i, nsrf) = y_flux_q(j) + flux_u(i, nsrf) = y_flux_u(j) + flux_v(i, nsrf) = y_flux_v(j) + END DO - albe(:, nsrf) = 0. - alblw(:, nsrf) = 0. + evap(:, nsrf) = -flux_q(:, nsrf) + + falbe(:, nsrf) = 0. snow(:, nsrf) = 0. qsurf(:, nsrf) = 0. rugos(:, nsrf) = 0. @@ -529,8 +494,7 @@ DO j = 1, knon i = ni(j) d_ts(i, nsrf) = y_d_ts(j) - albe(i, nsrf) = yalb(j) - alblw(i, nsrf) = yalblw(j) + falbe(i, nsrf) = yalb(j) snow(i, nsrf) = ysnow(j) qsurf(i, nsrf) = yqsurf(j) rugos(i, nsrf) = yz0_new(j) @@ -559,12 +523,7 @@ END IF ftsoil(:, :, nsrf) = 0. - DO k = 1, nsoilmx - DO j = 1, knon - i = ni(j) - ftsoil(i, k, nsrf) = ytsoil(j, k) - END DO - END DO + ftsoil(ni(:knon), :, nsrf) = ytsoil(:knon, :) DO j = 1, knon i = ni(j) @@ -610,12 +569,11 @@ ! u10m, v10m : composantes du vent a 10m sans spirale de Ekman u10m(i, nsrf) = (yu10m(j)*uzon(j))/sqrt(uzon(j)**2+vmer(j)**2) v10m(i, nsrf) = (yu10m(j)*vmer(j))/sqrt(uzon(j)**2+vmer(j)**2) - END DO - CALL hbtm(knon, ypaprs, ypplay, yt2m, yt10m, yq2m, yq10m, yustar, & - y_flux_t, y_flux_q, yu, yv, yt, yq, ypblh, ycapcl, yoliqcl, & - ycteicl, ypblt, ytherm, ytrmb1, ytrmb2, ytrmb3, ylcl) + CALL hbtm(ypaprs, ypplay, yt2m, yq2m, yustar, y_flux_t(:knon), & + y_flux_q(:knon), yu, yv, yt, yq, ypblh(:knon), ycapcl, & + yoliqcl, ycteicl, ypblt, ytherm, ytrmb1, ytrmb2, ytrmb3, ylcl) DO j = 1, knon i = ni(j) @@ -637,38 +595,15 @@ q2(i, k, nsrf) = yq2(j, k) END DO END DO - !IM "slab" ocean - IF (nsrf == is_oce) THEN - DO j = 1, knon - ! on projette sur la grille globale - i = ni(j) - IF (pctsrf_new(i, is_oce)>epsfra) THEN - flux_o(i) = y_flux_o(j) - ELSE - flux_o(i) = 0. - END IF - END DO - END IF - - IF (nsrf == is_sic) THEN - DO j = 1, knon - i = ni(j) - ! On pondère lorsque l'on fait le bilan au sol : - IF (pctsrf_new(i, is_sic)>epsfra) THEN - flux_g(i) = y_flux_g(j) - ELSE - flux_g(i) = 0. - END IF - END DO - - END IF end IF if_knon END DO loop_surface ! On utilise les nouvelles surfaces - rugos(:, is_oce) = rugmer - pctsrf = pctsrf_new + pctsrf(:, is_oce) = pctsrf_new_oce + pctsrf(:, is_sic) = pctsrf_new_sic + + firstcal = .false. END SUBROUTINE clmain