--- trunk/Sources/phylmd/clmain.f 2016/06/08 12:23:41 202 +++ trunk/Sources/phylmd/clmain.f 2017/02/27 15:44:55 213 @@ -4,10 +4,10 @@ contains - SUBROUTINE clmain(dtime, pctsrf, t, q, u, v, jour, rmu0, ts, cdmmax, & + SUBROUTINE clmain(dtime, pctsrf, t, q, u, v, jour, mu0, ftsol, cdmmax, & cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, paprs, pplay, snow, & qsurf, evap, falbe, fluxlat, rain_fall, snow_f, solsw, sollw, fder, & - rlat, rugos, agesno, rugoro, d_t, d_q, d_u, d_v, d_ts, flux_t, flux_q, & + rugos, agesno, rugoro, d_t, d_q, d_u, d_v, d_ts, flux_t, flux_q, & flux_u, flux_v, cdragh, cdragm, q2, dflux_t, dflux_q, ycoefh, zu1, & zv1, t2m, q2m, u10m, v10m, pblh, capcl, oliqcl, cteicl, pblt, therm, & trmb1, trmb2, trmb3, plcl, fqcalving, ffonte, run_off_lic_0) @@ -53,8 +53,8 @@ REAL, INTENT(IN):: q(klon, klev) ! vapeur d'eau (kg/kg) REAL, INTENT(IN):: u(klon, klev), v(klon, klev) ! vitesse INTEGER, INTENT(IN):: jour ! jour de l'annee en cours - REAL, intent(in):: rmu0(klon) ! cosinus de l'angle solaire zenithal - REAL, INTENT(IN):: ts(klon, nbsrf) ! temperature du sol (en Kelvin) + REAL, intent(in):: mu0(klon) ! cosinus de l'angle solaire zenithal + REAL, INTENT(IN):: ftsol(klon, nbsrf) ! temp\'erature du sol (en K) REAL, INTENT(IN):: cdmmax, cdhmax ! seuils cdrm, cdrh REAL, INTENT(IN):: ksta, ksta_ter LOGICAL, INTENT(IN):: ok_kzmin @@ -82,10 +82,7 @@ REAL, INTENT(IN):: solsw(klon, nbsrf), sollw(klon, nbsrf) REAL, intent(in):: fder(klon) - REAL, INTENT(IN):: rlat(klon) ! latitude en degr\'es - REAL, intent(inout):: rugos(klon, nbsrf) ! longueur de rugosit\'e (en m) - real agesno(klon, nbsrf) REAL, INTENT(IN):: rugoro(klon) @@ -96,16 +93,17 @@ REAL, intent(out):: d_u(klon, klev), d_v(klon, klev) ! changement pour "u" et "v" - REAL, intent(out):: d_ts(klon, nbsrf) ! le changement pour "ts" + REAL, intent(out):: d_ts(klon, nbsrf) ! le changement pour ftsol + + REAL, intent(out):: flux_t(klon, nbsrf) + ! flux de chaleur sensible (Cp T) (W/m2) (orientation positive vers + ! le bas) à la surface - REAL flux_t(klon, klev, nbsrf), flux_q(klon, klev, nbsrf) - ! flux_t---output-R- flux de chaleur sensible (CpT) J/m**2/s (W/m**2) - ! (orientation positive vers le bas) - ! flux_q---output-R- flux de vapeur d'eau (kg/m**2/s) - - REAL flux_u(klon, klev, nbsrf), flux_v(klon, klev, nbsrf) - ! flux_u---output-R- tension du vent X: (kg m/s)/(m**2 s) ou Pascal - ! flux_v---output-R- tension du vent Y: (kg m/s)/(m**2 s) ou Pascal + REAL, intent(out):: flux_q(klon, nbsrf) + ! flux de vapeur d'eau (kg/m2/s) à la surface + + REAL, intent(out):: flux_u(klon, nbsrf), flux_v(klon, nbsrf) + ! tension du vent à la surface, en Pa REAL, INTENT(out):: cdragh(klon), cdragm(klon) real q2(klon, klev+1, nbsrf) @@ -154,11 +152,8 @@ REAL y_fqcalving(klon), y_ffonte(klon) real y_run_off_lic_0(klon) - REAL rugmer(klon) - REAL ytsoil(klon, nsoilmx) - REAL yts(klon), yrugos(klon), ypct(klon), yz0_new(klon) REAL yalb(klon) REAL yu1(klon), yv1(klon) @@ -183,8 +178,8 @@ REAL y_d_ts(klon) REAL y_d_t(klon, klev), y_d_q(klon, klev) REAL y_d_u(klon, klev), y_d_v(klon, klev) - REAL y_flux_t(klon, klev), y_flux_q(klon, klev) - REAL y_flux_u(klon, klev), y_flux_v(klon, klev) + REAL y_flux_t(klon), y_flux_q(klon) + REAL y_flux_u(klon), y_flux_v(klon) REAL y_dflux_t(klon), y_dflux_q(klon) REAL coefh(klon, klev), coefm(klon, klev) REAL yu(klon, klev), yv(klon, klev) @@ -278,11 +273,8 @@ yv = 0. yt = 0. yq = 0. - y_flux_u = 0. - y_flux_v = 0. y_dflux_t = 0. y_dflux_q = 0. - ytsoil = 999999. yrugoro = 0. d_ts = 0. yfluxlat = 0. @@ -329,7 +321,7 @@ DO j = 1, knon i = ni(j) ypct(j) = pctsrf(i, nsrf) - yts(j) = ts(i, nsrf) + yts(j) = ftsol(i, nsrf) ysnow(j) = snow(i, nsrf) yqsurf(j) = qsurf(i, nsrf) yalb(j) = falbe(i, nsrf) @@ -353,12 +345,7 @@ yqsol = 0. END IF - DO k = 1, nsoilmx - DO j = 1, knon - i = ni(j) - ytsoil(j, k) = ftsoil(i, k, nsrf) - END DO - END DO + ytsoil(:knon, :) = ftsoil(ni(:knon), :, nsrf) DO k = 1, klev DO j = 1, knon @@ -374,8 +361,8 @@ END DO ! calculer Cdrag et les coefficients d'echange - CALL coefkz(nsrf, knon, ypaprs, ypplay, ksta, ksta_ter, yts, yrugos, & - yu, yv, yt, yq, yqsurf, coefm(:knon, :), coefh(:knon, :)) + CALL coefkz(nsrf, ypaprs, ypplay, ksta, ksta_ter, yts, yrugos, yu, & + yv, yt, yq, yqsurf, coefm(:knon, :), coefh(:knon, :)) IF (iflag_pbl == 1) THEN CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0, ycoefh0) coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :)) @@ -445,18 +432,18 @@ ! calculer la diffusion des vitesses "u" et "v" CALL clvent(knon, dtime, yu1, yv1, coefm(:knon, :), yt, yu, ypaprs, & - ypplay, ydelp, y_d_u, y_flux_u) + ypplay, ydelp, y_d_u, y_flux_u(:knon)) CALL clvent(knon, dtime, yu1, yv1, coefm(:knon, :), yt, yv, ypaprs, & - ypplay, ydelp, y_d_v, y_flux_v) + ypplay, ydelp, y_d_v, y_flux_v(:knon)) ! calculer la diffusion de "q" et de "h" - CALL clqh(dtime, jour, firstcal, rlat, knon, nsrf, ni(:knon), & - ytsoil, yqsol, rmu0, yrugos, yrugoro, yu1, yv1, & - coefh(:knon, :), yt, yq, yts, ypaprs, ypplay, ydelp, yrads, & - yalb(:knon), ysnow, yqsurf, yrain_f, ysnow_f, yfder, yfluxlat, & + CALL clqh(dtime, jour, firstcal, nsrf, ni(:knon), ytsoil(:knon, :), & + yqsol, mu0, yrugos, yrugoro, yu1, yv1, coefh(:knon, :), yt, & + yq, yts(:knon), ypaprs, ypplay, ydelp, yrads, yalb(:knon), & + ysnow, yqsurf, yrain_f, ysnow_f, yfder, yfluxlat, & pctsrf_new_sic, yagesno(:knon), y_d_t, y_d_q, y_d_ts(:knon), & - yz0_new, y_flux_t, y_flux_q, y_dflux_t, y_dflux_q, & - y_fqcalving, y_ffonte, y_run_off_lic_0) + yz0_new, y_flux_t(:knon), y_flux_q(:knon), y_dflux_t, & + y_dflux_q, y_fqcalving, y_ffonte, y_run_off_lic_0) ! calculer la longueur de rugosite sur ocean yrugm = 0. @@ -481,16 +468,20 @@ coefm(j, k) = coefm(j, k)*ypct(j) y_d_t(j, k) = y_d_t(j, k)*ypct(j) y_d_q(j, k) = y_d_q(j, k)*ypct(j) - flux_t(i, k, nsrf) = y_flux_t(j, k) - flux_q(i, k, nsrf) = y_flux_q(j, k) - flux_u(i, k, nsrf) = y_flux_u(j, k) - flux_v(i, k, nsrf) = y_flux_v(j, k) y_d_u(j, k) = y_d_u(j, k)*ypct(j) y_d_v(j, k) = y_d_v(j, k)*ypct(j) END DO END DO - evap(:, nsrf) = -flux_q(:, 1, nsrf) + DO j = 1, knon + i = ni(j) + flux_t(i, nsrf) = y_flux_t(j) + flux_q(i, nsrf) = y_flux_q(j) + flux_u(i, nsrf) = y_flux_u(j) + flux_v(i, nsrf) = y_flux_v(j) + END DO + + evap(:, nsrf) = -flux_q(:, nsrf) falbe(:, nsrf) = 0. snow(:, nsrf) = 0. @@ -529,12 +520,7 @@ END IF ftsoil(:, :, nsrf) = 0. - DO k = 1, nsoilmx - DO j = 1, knon - i = ni(j) - ftsoil(i, k, nsrf) = ytsoil(j, k) - END DO - END DO + ftsoil(ni(:knon), :, nsrf) = ytsoil(:knon, :) DO j = 1, knon i = ni(j) @@ -580,12 +566,11 @@ ! u10m, v10m : composantes du vent a 10m sans spirale de Ekman u10m(i, nsrf) = (yu10m(j)*uzon(j))/sqrt(uzon(j)**2+vmer(j)**2) v10m(i, nsrf) = (yu10m(j)*vmer(j))/sqrt(uzon(j)**2+vmer(j)**2) - END DO - CALL hbtm(knon, ypaprs, ypplay, yt2m, yq2m, yustar, y_flux_t, & - y_flux_q, yu, yv, yt, yq, ypblh(:knon), ycapcl, yoliqcl, & - ycteicl, ypblt, ytherm, ytrmb1, ytrmb2, ytrmb3, ylcl) + CALL hbtm(ypaprs, ypplay, yt2m, yq2m, yustar, y_flux_t(:knon), & + y_flux_q(:knon), yu, yv, yt, yq, ypblh(:knon), ycapcl, & + yoliqcl, ycteicl, ypblt, ytherm, ytrmb1, ytrmb2, ytrmb3, ylcl) DO j = 1, knon i = ni(j)