/[lmdze]/trunk/Sources/phylmd/clmain.f
ViewVC logotype

Diff of /trunk/Sources/phylmd/clmain.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/libf/phylmd/clmain.f90 revision 40 by guez, Tue Feb 22 13:49:36 2011 UTC trunk/Sources/phylmd/clmain.f revision 242 by guez, Mon Nov 13 12:12:41 2017 UTC
# Line 4  module clmain_m Line 4  module clmain_m
4    
5  contains  contains
6    
7    SUBROUTINE clmain(dtime, itap, date0, pctsrf, pctsrf_new, t, q, u, v,&    SUBROUTINE clmain(dtime, pctsrf, t, q, u, v, julien, mu0, ftsol, cdmmax, &
8         jour, rmu0, co2_ppm, ok_veget, ocean, npas, nexca, ts,&         cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, paprs, pplay, fsnow, &
9         soil_model, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil,&         qsurf, evap, falbe, fluxlat, rain_fall, snow_f, fsolsw, fsollw, frugs, &
10         qsol, paprs, pplay, snow, qsurf, evap, albe, alblw, fluxlat,&         agesno, rugoro, d_t, d_q, d_u, d_v, d_ts, flux_t, flux_q, flux_u, &
11         rain_f, snow_f, solsw, sollw, sollwdown, fder, rlon, rlat, cufi,&         flux_v, cdragh, cdragm, q2, dflux_t, dflux_q, ycoefh, t2m, q2m, &
12         cvfi, rugos, debut, lafin, agesno, rugoro, d_t, d_q, d_u, d_v,&         u10m_srf, v10m_srf, pblh, capcl, oliqcl, cteicl, pblt, therm, trmb1, &
13         d_ts, flux_t, flux_q, flux_u, flux_v, cdragh, cdragm, q2,&         trmb2, trmb3, plcl, fqcalving, ffonte, run_off_lic_0)
14         dflux_t, dflux_q, zcoefh, zu1, zv1, t2m, q2m, u10m, v10m, pblh,&  
15         capcl, oliqcl, cteicl, pblt, therm, trmb1, trmb2, trmb3, plcl,&      ! From phylmd/clmain.F, version 1.6, 2005/11/16 14:47:19
16         fqcalving, ffonte, run_off_lic_0, flux_o, flux_g, tslab, seaice)      ! Author: Z. X. Li (LMD/CNRS), date: 1993/08/18
17        ! Objet : interface de couche limite (diffusion verticale)
18      ! From phylmd/clmain.F, version 1.6 2005/11/16 14:47:19  
19      ! Author: Z.X. Li (LMD/CNRS), date: 1993/08/18      ! Tout ce qui a trait aux traceurs est dans "phytrac". Le calcul
20      ! Objet : interface de "couche limite" (diffusion verticale)      ! de la couche limite pour les traceurs se fait avec "cltrac" et
21        ! ne tient pas compte de la diff\'erentiation des sous-fractions
22      ! Tout ce qui a trait aux traceurs est dans "phytrac" maintenant.      ! de sol.
23      ! Pour l'instant le calcul de la couche limite pour les traceurs  
24      ! se fait avec "cltrac" et ne tient pas compte de la différentiation      use clqh_m, only: clqh
25      ! des sous-fractions de sol.      use clvent_m, only: clvent
26        use coefkz_m, only: coefkz
27      ! Pour pouvoir extraire les coefficients d'échanges et le vent      use coefkzmin_m, only: coefkzmin
28      ! dans la première couche, trois champs supplémentaires ont été      use coefkz2_m, only: coefkz2
29      ! créés : "zcoefh", "zu1" et "zv1". Pour l'instant nous avons      USE conf_gcm_m, ONLY: lmt_pas
30      ! moyenné les valeurs de ces trois champs sur les 4 sous-surfaces      USE conf_phys_m, ONLY: iflag_pbl
31      ! du modèle. Dans l'avenir, si les informations des sous-surfaces      USE dimphy, ONLY: klev, klon, zmasq
32      ! doivent être prises en compte, il faudra sortir ces mêmes champs      USE dimsoil, ONLY: nsoilmx
33      ! en leur ajoutant une dimension, c'est-à-dire "nbsrf" (nombre de      use hbtm_m, only: hbtm
34      ! sous-surfaces).      USE indicesol, ONLY: epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf
35        USE interfoce_lim_m, ONLY: interfoce_lim
36      ! Arguments:      use stdlevvar_m, only: stdlevvar
37      ! dtime----input-R- interval du temps (secondes)      USE suphec_m, ONLY: rd, rg, rkappa
38      ! itap-----input-I- numero du pas de temps      use time_phylmdz, only: itap
39      ! date0----input-R- jour initial      use ustarhb_m, only: ustarhb
40      ! t--------input-R- temperature (K)      use yamada4_m, only: yamada4
41      ! q--------input-R- vapeur d'eau (kg/kg)  
42      ! u--------input-R- vitesse u      REAL, INTENT(IN):: dtime ! interval du temps (secondes)
43      ! v--------input-R- vitesse v  
44      ! ts-------input-R- temperature du sol (en Kelvin)      REAL, INTENT(inout):: pctsrf(klon, nbsrf)
45      ! paprs----input-R- pression a intercouche (Pa)      ! tableau des pourcentages de surface de chaque maille
46      ! pplay----input-R- pression au milieu de couche (Pa)  
47      ! radsol---input-R- flux radiatif net (positif vers le sol) en W/m**2      REAL, INTENT(IN):: t(klon, klev) ! temperature (K)
48      ! rlat-----input-R- latitude en degree      REAL, INTENT(IN):: q(klon, klev) ! vapeur d'eau (kg / kg)
49      ! rugos----input-R- longeur de rugosite (en m)      REAL, INTENT(IN):: u(klon, klev), v(klon, klev) ! vitesse
50      ! cufi-----input-R- resolution des mailles en x (m)      INTEGER, INTENT(IN):: julien ! jour de l'annee en cours
51      ! cvfi-----input-R- resolution des mailles en y (m)      REAL, intent(in):: mu0(klon) ! cosinus de l'angle solaire zenithal    
52        REAL, INTENT(IN):: ftsol(:, :) ! (klon, nbsrf) temp\'erature du sol (en K)
53        REAL, INTENT(IN):: cdmmax, cdhmax ! seuils cdrm, cdrh
54        REAL, INTENT(IN):: ksta, ksta_ter
55        LOGICAL, INTENT(IN):: ok_kzmin
56    
57        REAL, INTENT(inout):: ftsoil(klon, nsoilmx, nbsrf)
58        ! soil temperature of surface fraction
59    
60        REAL, INTENT(inout):: qsol(:) ! (klon)
61        ! column-density of water in soil, in kg m-2
62    
63        REAL, INTENT(IN):: paprs(klon, klev + 1) ! pression a intercouche (Pa)
64        REAL, INTENT(IN):: pplay(klon, klev) ! pression au milieu de couche (Pa)
65        REAL, INTENT(inout):: fsnow(:, :) ! (klon, nbsrf) \'epaisseur neigeuse
66        REAL qsurf(klon, nbsrf)
67        REAL evap(klon, nbsrf)
68        REAL, intent(inout):: falbe(klon, nbsrf)
69        REAL, intent(out):: fluxlat(:, :) ! (klon, nbsrf)
70    
71        REAL, intent(in):: rain_fall(klon)
72        ! liquid water mass flux (kg / m2 / s), positive down
73    
74        REAL, intent(in):: snow_f(klon)
75        ! solid water mass flux (kg / m2 / s), positive down
76    
77        REAL, INTENT(IN):: fsolsw(klon, nbsrf), fsollw(klon, nbsrf)
78        REAL, intent(inout):: frugs(klon, nbsrf) ! longueur de rugosit\'e (en m)
79        real agesno(klon, nbsrf)
80        REAL, INTENT(IN):: rugoro(klon)
81    
82        REAL d_t(klon, klev), d_q(klon, klev)
83      ! d_t------output-R- le changement pour "t"      ! d_t------output-R- le changement pour "t"
84      ! d_q------output-R- le changement pour "q"      ! d_q------output-R- le changement pour "q"
85      ! d_u------output-R- le changement pour "u"  
86      ! d_v------output-R- le changement pour "v"      REAL, intent(out):: d_u(klon, klev), d_v(klon, klev)
87      ! d_ts-----output-R- le changement pour "ts"      ! changement pour "u" et "v"
88      ! flux_t---output-R- flux de chaleur sensible (CpT) J/m**2/s (W/m**2)  
89      !                    (orientation positive vers le bas)      REAL, intent(out):: d_ts(:, :) ! (klon, nbsrf) variation of ftsol
90      ! flux_q---output-R- flux de vapeur d'eau (kg/m**2/s)  
91      ! flux_u---output-R- tension du vent X: (kg m/s)/(m**2 s) ou Pascal      REAL, intent(out):: flux_t(klon, nbsrf)
92      ! flux_v---output-R- tension du vent Y: (kg m/s)/(m**2 s) ou Pascal      ! flux de chaleur sensible (Cp T) (W / m2) (orientation positive vers
93        ! le bas) à la surface
94    
95        REAL, intent(out):: flux_q(klon, nbsrf)
96        ! flux de vapeur d'eau (kg / m2 / s) à la surface
97    
98        REAL, intent(out):: flux_u(klon, nbsrf), flux_v(klon, nbsrf)
99        ! tension du vent (flux turbulent de vent) à la surface, en Pa
100    
101        REAL, INTENT(out):: cdragh(klon), cdragm(klon)
102        real q2(klon, klev + 1, nbsrf)
103    
104        REAL, INTENT(out):: dflux_t(klon), dflux_q(klon)
105      ! dflux_t derive du flux sensible      ! dflux_t derive du flux sensible
106      ! dflux_q derive du flux latent      ! dflux_q derive du flux latent
107      !IM "slab" ocean      ! IM "slab" ocean
     ! flux_g---output-R-  flux glace (pour OCEAN='slab  ')  
     ! flux_o---output-R-  flux ocean (pour OCEAN='slab  ')  
   
     ! tslab-in/output-R temperature du slab ocean (en Kelvin)  
     ! uniqmnt pour slab  
108    
109      ! seaice---output-R-  glace de mer (kg/m2) (pour OCEAN='slab  ')      REAL, intent(out):: ycoefh(:, 2:) ! (klon, 2:klev)
110      !cc      ! Pour pouvoir extraire les coefficients d'\'echange, le champ
111      ! ffonte----Flux thermique utilise pour fondre la neige      ! "ycoefh" a \'et\'e cr\'e\'e. Nous avons moyenn\'e les valeurs de
112      ! fqcalving-Flux d'eau "perdue" par la surface et necessaire pour limiter la      ! ce champ sur les quatre sous-surfaces du mod\`ele.
113      !           hauteur de neige, en kg/m2/s  
114      ! on rajoute en output yu1 et yv1 qui sont les vents dans      REAL, INTENT(inout):: t2m(klon, nbsrf), q2m(klon, nbsrf)
115      ! la premiere couche  
116      ! ces 4 variables sont maintenant traites dans phytrac      REAL, INTENT(inout):: u10m_srf(:, :), v10m_srf(:, :) ! (klon, nbsrf)
117      ! itr--------input-I- nombre de traceurs      ! composantes du vent \`a 10m sans spirale d'Ekman
118      ! tr---------input-R- q. de traceurs  
119      ! flux_surf--input-R- flux de traceurs a la surface      ! Ionela Musat. Cf. Anne Mathieu : planetary boundary layer, hbtm.
120      ! d_tr-------output-R tendance de traceurs      ! Comme les autres diagnostics on cumule dans physiq ce qui permet
121      !IM cf. AM : PBL      ! de sortir les grandeurs par sous-surface.
122        REAL pblh(klon, nbsrf) ! height of planetary boundary layer
123        REAL capcl(klon, nbsrf)
124        REAL oliqcl(klon, nbsrf)
125        REAL cteicl(klon, nbsrf)
126        REAL, INTENT(inout):: pblt(klon, nbsrf) ! T au nveau HCL
127        REAL therm(klon, nbsrf)
128        REAL trmb1(klon, nbsrf)
129      ! trmb1-------deep_cape      ! trmb1-------deep_cape
130        REAL trmb2(klon, nbsrf)
131      ! trmb2--------inhibition      ! trmb2--------inhibition
132        REAL trmb3(klon, nbsrf)
133      ! trmb3-------Point Omega      ! trmb3-------Point Omega
134      ! Cape(klon)-------Cape du thermique      REAL plcl(klon, nbsrf)
     ! EauLiq(klon)-------Eau liqu integr du thermique  
     ! ctei(klon)-------Critere d'instab d'entrainmt des nuages de CL  
     ! lcl------- Niveau de condensation  
     ! pblh------- HCL  
     ! pblT------- T au nveau HCL  
   
     USE histcom, ONLY : histbeg_totreg, histdef, histend, histsync  
     use histwrite_m, only: histwrite  
     use calendar, ONLY : ymds2ju  
     USE dimens_m, ONLY : iim, jjm  
     USE indicesol, ONLY : epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf  
     USE dimphy, ONLY : klev, klon, zmasq  
     USE dimsoil, ONLY : nsoilmx  
     USE temps, ONLY : annee_ref, itau_phy  
     USE dynetat0_m, ONLY : day_ini  
     USE iniprint, ONLY : prt_level  
     USE suphec_m, ONLY : rd, rg, rkappa  
     USE conf_phys_m, ONLY : iflag_pbl  
     USE gath_cpl, ONLY : gath2cpl  
     use hbtm_m, only: hbtm  
   
     REAL, INTENT (IN) :: dtime  
     REAL date0  
     INTEGER, INTENT (IN) :: itap  
     REAL t(klon, klev), q(klon, klev)  
     REAL u(klon, klev), v(klon, klev)  
     REAL, INTENT (IN) :: paprs(klon, klev+1)  
     REAL, INTENT (IN) :: pplay(klon, klev)  
     REAL, INTENT (IN) :: rlon(klon), rlat(klon)  
     REAL cufi(klon), cvfi(klon)  
     REAL d_t(klon, klev), d_q(klon, klev)  
     REAL d_u(klon, klev), d_v(klon, klev)  
     REAL flux_t(klon, klev, nbsrf), flux_q(klon, klev, nbsrf)  
     REAL dflux_t(klon), dflux_q(klon)  
     !IM "slab" ocean  
     REAL flux_o(klon), flux_g(klon)  
     REAL y_flux_o(klon), y_flux_g(klon)  
     REAL tslab(klon), ytslab(klon)  
     REAL seaice(klon), y_seaice(klon)  
     REAL y_fqcalving(klon), y_ffonte(klon)  
135      REAL fqcalving(klon, nbsrf), ffonte(klon, nbsrf)      REAL fqcalving(klon, nbsrf), ffonte(klon, nbsrf)
136      REAL run_off_lic_0(klon), y_run_off_lic_0(klon)      ! ffonte----Flux thermique utilise pour fondre la neige
137        ! fqcalving-Flux d'eau "perdue" par la surface et necessaire pour limiter la
138      REAL flux_u(klon, klev, nbsrf), flux_v(klon, klev, nbsrf)      !           hauteur de neige, en kg / m2 / s
139      REAL rugmer(klon), agesno(klon, nbsrf)      REAL run_off_lic_0(klon)
     REAL, INTENT (IN) :: rugoro(klon)  
     REAL cdragh(klon), cdragm(klon)  
     ! jour de l'annee en cours                  
     INTEGER jour  
     REAL rmu0(klon) ! cosinus de l'angle solaire zenithal      
     ! taux CO2 atmosphere                      
     REAL co2_ppm  
     LOGICAL, INTENT (IN) :: debut  
     LOGICAL, INTENT (IN) :: lafin  
     LOGICAL ok_veget  
     CHARACTER (len=*), INTENT (IN) :: ocean  
     INTEGER npas, nexca  
   
     REAL pctsrf(klon, nbsrf)  
     REAL ts(klon, nbsrf)  
     REAL d_ts(klon, nbsrf)  
     REAL snow(klon, nbsrf)  
     REAL qsurf(klon, nbsrf)  
     REAL evap(klon, nbsrf)  
     REAL albe(klon, nbsrf)  
     REAL alblw(klon, nbsrf)  
140    
141      REAL fluxlat(klon, nbsrf)      ! Local:
142    
143      REAL rain_f(klon), snow_f(klon)      LOGICAL:: firstcal = .true.
     REAL fder(klon)  
144    
     REAL sollw(klon, nbsrf), solsw(klon, nbsrf), sollwdown(klon)  
     REAL rugos(klon, nbsrf)  
145      ! la nouvelle repartition des surfaces sortie de l'interface      ! la nouvelle repartition des surfaces sortie de l'interface
146      REAL pctsrf_new(klon, nbsrf)      REAL, save:: pctsrf_new_oce(klon)
147        REAL, save:: pctsrf_new_sic(klon)
     REAL zcoefh(klon, klev)  
     REAL zu1(klon)  
     REAL zv1(klon)  
148    
149      !$$$ PB ajout pour soil      REAL y_fqcalving(klon), y_ffonte(klon)
150      LOGICAL, INTENT (IN) :: soil_model      real y_run_off_lic_0(klon)
151      !IM ajout seuils cdrm, cdrh      REAL rugmer(klon)
     REAL cdmmax, cdhmax  
   
     REAL ksta, ksta_ter  
     LOGICAL ok_kzmin  
   
     REAL ftsoil(klon, nsoilmx, nbsrf)  
152      REAL ytsoil(klon, nsoilmx)      REAL ytsoil(klon, nsoilmx)
     REAL qsol(klon)  
   
     EXTERNAL clqh, clvent, coefkz, calbeta, cltrac  
   
153      REAL yts(klon), yrugos(klon), ypct(klon), yz0_new(klon)      REAL yts(klon), yrugos(klon), ypct(klon), yz0_new(klon)
154      REAL yalb(klon)      REAL yalb(klon)
155      REAL yalblw(klon)      REAL snow(klon), yqsurf(klon), yagesno(klon)
156      REAL yu1(klon), yv1(klon)      real yqsol(klon) ! column-density of water in soil, in kg m-2
157      REAL ysnow(klon), yqsurf(klon), yagesno(klon), yqsol(klon)      REAL yrain_f(klon) ! liquid water mass flux (kg / m2 / s), positive down
158      REAL yrain_f(klon), ysnow_f(klon)      REAL ysnow_f(klon) ! solid water mass flux (kg / m2 / s), positive down
     REAL ysollw(klon), ysolsw(klon), ysollwdown(klon)  
     REAL yfder(klon), ytaux(klon), ytauy(klon)  
159      REAL yrugm(klon), yrads(klon), yrugoro(klon)      REAL yrugm(klon), yrads(klon), yrugoro(klon)
   
160      REAL yfluxlat(klon)      REAL yfluxlat(klon)
   
161      REAL y_d_ts(klon)      REAL y_d_ts(klon)
162      REAL y_d_t(klon, klev), y_d_q(klon, klev)      REAL y_d_t(klon, klev), y_d_q(klon, klev)
163      REAL y_d_u(klon, klev), y_d_v(klon, klev)      REAL y_d_u(klon, klev), y_d_v(klon, klev)
164      REAL y_flux_t(klon, klev), y_flux_q(klon, klev)      REAL y_flux_t(klon), y_flux_q(klon)
165      REAL y_flux_u(klon, klev), y_flux_v(klon, klev)      REAL y_flux_u(klon), y_flux_v(klon)
166      REAL y_dflux_t(klon), y_dflux_q(klon)      REAL y_dflux_t(klon), y_dflux_q(klon)
167      REAL ycoefh(klon, klev), ycoefm(klon, klev)      REAL coefh(klon, 2:klev), coefm(klon, 2:klev)
168        real ycdragh(klon), ycdragm(klon)
169      REAL yu(klon, klev), yv(klon, klev)      REAL yu(klon, klev), yv(klon, klev)
170      REAL yt(klon, klev), yq(klon, klev)      REAL yt(klon, klev), yq(klon, klev)
171      REAL ypaprs(klon, klev+1), ypplay(klon, klev), ydelp(klon, klev)      REAL ypaprs(klon, klev + 1), ypplay(klon, klev), ydelp(klon, klev)
172        REAL ycoefm0(klon, 2:klev), ycoefh0(klon, 2:klev)
173      LOGICAL ok_nonloc      REAL yzlay(klon, klev), zlev(klon, klev + 1), yteta(klon, klev)
174      PARAMETER (ok_nonloc=.FALSE.)      REAL ykmm(klon, klev + 1), ykmn(klon, klev + 1)
175      REAL ycoefm0(klon, klev), ycoefh0(klon, klev)      REAL yq2(klon, klev + 1)
   
     !IM 081204 hcl_Anne ? BEG  
     REAL yzlay(klon, klev), yzlev(klon, klev+1), yteta(klon, klev)  
     REAL ykmm(klon, klev+1), ykmn(klon, klev+1)  
     REAL ykmq(klon, klev+1)  
     REAL yq2(klon, klev+1), q2(klon, klev+1, nbsrf)  
     REAL q2diag(klon, klev+1)  
     !IM 081204 hcl_Anne ? END  
   
     REAL u1lay(klon), v1lay(klon)  
176      REAL delp(klon, klev)      REAL delp(klon, klev)
177      INTEGER i, k, nsrf      INTEGER i, k, nsrf
   
178      INTEGER ni(klon), knon, j      INTEGER ni(klon), knon, j
179    
180      REAL pctsrf_pot(klon, nbsrf)      REAL pctsrf_pot(klon, nbsrf)
181      ! "pourcentage potentiel" pour tenir compte des éventuelles      ! "pourcentage potentiel" pour tenir compte des \'eventuelles
182      ! apparitions ou disparitions de la glace de mer      ! apparitions ou disparitions de la glace de mer
183    
184      REAL zx_alf1, zx_alf2 !valeur ambiante par extrapola.      REAL yt2m(klon), yq2m(klon), wind10m(klon)
185        REAL ustar(klon)
     ! maf pour sorties IOISPL en cas de debugagage  
   
     CHARACTER (80) cldebug  
     SAVE cldebug  
     CHARACTER (8) cl_surf(nbsrf)  
     SAVE cl_surf  
     INTEGER nhoridbg, nidbg  
     SAVE nhoridbg, nidbg  
     INTEGER ndexbg(iim*(jjm+1))  
     REAL zx_lon(iim, jjm+1), zx_lat(iim, jjm+1), zjulian  
     REAL tabindx(klon)  
     REAL debugtab(iim, jjm+1)  
     LOGICAL first_appel  
     SAVE first_appel  
     DATA first_appel/ .TRUE./  
     LOGICAL :: debugindex = .FALSE.  
     INTEGER idayref  
     REAL t2m(klon, nbsrf), q2m(klon, nbsrf)  
     REAL u10m(klon, nbsrf), v10m(klon, nbsrf)  
   
     REAL yt2m(klon), yq2m(klon), yu10m(klon)  
     REAL yustar(klon)  
     ! -- LOOP  
     REAL yu10mx(klon)  
     REAL yu10my(klon)  
     REAL ywindsp(klon)  
     ! -- LOOP  
186    
187      REAL yt10m(klon), yq10m(klon)      REAL yt10m(klon), yq10m(klon)
     !IM cf. AM : pbl, hbtm (Comme les autres diagnostics on cumule ds  
     ! physiq ce qui permet de sortir les grdeurs par sous surface)  
     REAL pblh(klon, nbsrf)  
     REAL plcl(klon, nbsrf)  
     REAL capcl(klon, nbsrf)  
     REAL oliqcl(klon, nbsrf)  
     REAL cteicl(klon, nbsrf)  
     REAL pblt(klon, nbsrf)  
     REAL therm(klon, nbsrf)  
     REAL trmb1(klon, nbsrf)  
     REAL trmb2(klon, nbsrf)  
     REAL trmb3(klon, nbsrf)  
188      REAL ypblh(klon)      REAL ypblh(klon)
189      REAL ylcl(klon)      REAL ylcl(klon)
190      REAL ycapcl(klon)      REAL ycapcl(klon)
# Line 279  contains Line 195  contains
195      REAL ytrmb1(klon)      REAL ytrmb1(klon)
196      REAL ytrmb2(klon)      REAL ytrmb2(klon)
197      REAL ytrmb3(klon)      REAL ytrmb3(klon)
198      REAL y_cd_h(klon), y_cd_m(klon)      REAL u1(klon), v1(klon)
     REAL uzon(klon), vmer(klon)  
199      REAL tair1(klon), qair1(klon), tairsol(klon)      REAL tair1(klon), qair1(klon), tairsol(klon)
200      REAL psfce(klon), patm(klon)      REAL psfce(klon), patm(klon)
201    
202      REAL qairsol(klon), zgeo1(klon)      REAL qairsol(klon), zgeo1(klon)
203      REAL rugo1(klon)      REAL rugo1(klon)
204    
     ! utiliser un jeu de fonctions simples                
     LOGICAL zxli  
     PARAMETER (zxli=.FALSE.)  
   
     REAL zt, zqs, zdelta, zcor  
     REAL t_coup  
     PARAMETER (t_coup=273.15)  
   
     CHARACTER (len=20) :: modname = 'clmain'  
   
205      !------------------------------------------------------------      !------------------------------------------------------------
206    
207      ytherm = 0.      ytherm = 0.
208    
     IF (debugindex .AND. first_appel) THEN  
        first_appel = .FALSE.  
   
        ! initialisation sorties netcdf  
   
        idayref = day_ini  
        CALL ymds2ju(annee_ref, 1, idayref, 0., zjulian)  
        CALL gr_fi_ecrit(1, klon, iim, jjm+1, rlon, zx_lon)  
        DO i = 1, iim  
           zx_lon(i, 1) = rlon(i+1)  
           zx_lon(i, jjm+1) = rlon(i+1)  
        END DO  
        CALL gr_fi_ecrit(1, klon, iim, jjm+1, rlat, zx_lat)  
        cldebug = 'sous_index'  
        CALL histbeg_totreg(cldebug, zx_lon(:, 1), zx_lat(1, :), 1, &  
             iim, 1, jjm+1, itau_phy, zjulian, dtime, nhoridbg, nidbg)  
        ! no vertical axis  
        cl_surf(1) = 'ter'  
        cl_surf(2) = 'lic'  
        cl_surf(3) = 'oce'  
        cl_surf(4) = 'sic'  
        DO nsrf = 1, nbsrf  
           CALL histdef(nidbg, cl_surf(nsrf), cl_surf(nsrf), '-', iim, jjm+1, &  
                nhoridbg, 1, 1, 1, -99, 'inst', dtime, dtime)  
        END DO  
        CALL histend(nidbg)  
        CALL histsync(nidbg)  
     END IF  
   
209      DO k = 1, klev ! epaisseur de couche      DO k = 1, klev ! epaisseur de couche
210         DO i = 1, klon         DO i = 1, klon
211            delp(i, k) = paprs(i, k) - paprs(i, k+1)            delp(i, k) = paprs(i, k) - paprs(i, k + 1)
212         END DO         END DO
213      END DO      END DO
     DO i = 1, klon ! vent de la premiere couche  
        zx_alf1 = 1.0  
        zx_alf2 = 1.0 - zx_alf1  
        u1lay(i) = u(i, 1)*zx_alf1 + u(i, 2)*zx_alf2  
        v1lay(i) = v(i, 1)*zx_alf1 + v(i, 2)*zx_alf2  
     END DO  
214    
215      ! Initialization:      ! Initialization:
216      rugmer = 0.      rugmer = 0.
# Line 348  contains Line 218  contains
218      cdragm = 0.      cdragm = 0.
219      dflux_t = 0.      dflux_t = 0.
220      dflux_q = 0.      dflux_q = 0.
     zu1 = 0.  
     zv1 = 0.  
221      ypct = 0.      ypct = 0.
     yts = 0.  
     ysnow = 0.  
222      yqsurf = 0.      yqsurf = 0.
     yalb = 0.  
     yalblw = 0.  
223      yrain_f = 0.      yrain_f = 0.
224      ysnow_f = 0.      ysnow_f = 0.
     yfder = 0.  
     ytaux = 0.  
     ytauy = 0.  
     ysolsw = 0.  
     ysollw = 0.  
     ysollwdown = 0.  
225      yrugos = 0.      yrugos = 0.
     yu1 = 0.  
     yv1 = 0.  
     yrads = 0.  
226      ypaprs = 0.      ypaprs = 0.
227      ypplay = 0.      ypplay = 0.
228      ydelp = 0.      ydelp = 0.
# Line 375  contains Line 230  contains
230      yv = 0.      yv = 0.
231      yt = 0.      yt = 0.
232      yq = 0.      yq = 0.
     pctsrf_new = 0.  
     y_flux_u = 0.  
     y_flux_v = 0.  
     !$$ PB  
233      y_dflux_t = 0.      y_dflux_t = 0.
234      y_dflux_q = 0.      y_dflux_q = 0.
     ytsoil = 999999.  
235      yrugoro = 0.      yrugoro = 0.
     ! -- LOOP  
     yu10mx = 0.  
     yu10my = 0.  
     ywindsp = 0.  
     ! -- LOOP  
236      d_ts = 0.      d_ts = 0.
     !§§§ PB  
     yfluxlat = 0.  
237      flux_t = 0.      flux_t = 0.
238      flux_q = 0.      flux_q = 0.
239      flux_u = 0.      flux_u = 0.
240      flux_v = 0.      flux_v = 0.
241        fluxlat = 0.
242      d_t = 0.      d_t = 0.
243      d_q = 0.      d_q = 0.
244      d_u = 0.      d_u = 0.
245      d_v = 0.      d_v = 0.
246      zcoefh = 0.      ycoefh = 0.
   
     ! Boucler sur toutes les sous-fractions du sol:  
247    
248      ! Initialisation des "pourcentages potentiels". On considère ici qu'on      ! Initialisation des "pourcentages potentiels". On consid\`ere ici qu'on
249      ! peut avoir potentiellement de la glace sur tout le domaine océanique      ! peut avoir potentiellement de la glace sur tout le domaine oc\'eanique
250      ! (à affiner)      ! (\`a affiner)
251    
252      pctsrf_pot = pctsrf      pctsrf_pot(:, is_ter) = pctsrf(:, is_ter)
253        pctsrf_pot(:, is_lic) = pctsrf(:, is_lic)
254      pctsrf_pot(:, is_oce) = 1. - zmasq      pctsrf_pot(:, is_oce) = 1. - zmasq
255      pctsrf_pot(:, is_sic) = 1. - zmasq      pctsrf_pot(:, is_sic) = 1. - zmasq
256    
257      DO nsrf = 1, nbsrf      ! Tester si c'est le moment de lire le fichier:
258         ! chercher les indices:      if (mod(itap - 1, lmt_pas) == 0) then
259           CALL interfoce_lim(julien, pctsrf_new_oce, pctsrf_new_sic)
260        endif
261    
262        ! Boucler sur toutes les sous-fractions du sol:
263    
264        loop_surface: DO nsrf = 1, nbsrf
265           ! Chercher les indices :
266         ni = 0         ni = 0
267         knon = 0         knon = 0
268         DO i = 1, klon         DO i = 1, klon
269            ! Pour déterminer le domaine à traiter, on utilise les surfaces            ! Pour d\'eterminer le domaine \`a traiter, on utilise les surfaces
270            ! "potentielles"            ! "potentielles"
271            IF (pctsrf_pot(i, nsrf) > epsfra) THEN            IF (pctsrf_pot(i, nsrf) > epsfra) THEN
272               knon = knon + 1               knon = knon + 1
# Line 424  contains Line 274  contains
274            END IF            END IF
275         END DO         END DO
276    
277         ! variables pour avoir une sortie IOIPSL des INDEX         if_knon: IF (knon /= 0) then
        IF (debugindex) THEN  
           tabindx = 0.  
           DO i = 1, knon  
              tabindx(i) = real(i)  
           END DO  
           debugtab = 0.  
           ndexbg = 0  
           CALL gath2cpl(tabindx, debugtab, klon, knon, iim, jjm, ni)  
           CALL histwrite(nidbg, cl_surf(nsrf), itap, debugtab)  
        END IF  
   
        IF (knon==0) CYCLE  
   
        DO j = 1, knon  
           i = ni(j)  
           ypct(j) = pctsrf(i, nsrf)  
           yts(j) = ts(i, nsrf)  
           ytslab(i) = tslab(i)  
           ysnow(j) = snow(i, nsrf)  
           yqsurf(j) = qsurf(i, nsrf)  
           yalb(j) = albe(i, nsrf)  
           yalblw(j) = alblw(i, nsrf)  
           yrain_f(j) = rain_f(i)  
           ysnow_f(j) = snow_f(i)  
           yagesno(j) = agesno(i, nsrf)  
           yfder(j) = fder(i)  
           ytaux(j) = flux_u(i, 1, nsrf)  
           ytauy(j) = flux_v(i, 1, nsrf)  
           ysolsw(j) = solsw(i, nsrf)  
           ysollw(j) = sollw(i, nsrf)  
           ysollwdown(j) = sollwdown(i)  
           yrugos(j) = rugos(i, nsrf)  
           yrugoro(j) = rugoro(i)  
           yu1(j) = u1lay(i)  
           yv1(j) = v1lay(i)  
           yrads(j) = ysolsw(j) + ysollw(j)  
           ypaprs(j, klev+1) = paprs(i, klev+1)  
           y_run_off_lic_0(j) = run_off_lic_0(i)  
           yu10mx(j) = u10m(i, nsrf)  
           yu10my(j) = v10m(i, nsrf)  
           ywindsp(j) = sqrt(yu10mx(j)*yu10mx(j)+yu10my(j)*yu10my(j))  
        END DO  
   
        !     IF bucket model for continent, copy soil water content  
        IF (nsrf==is_ter .AND. .NOT. ok_veget) THEN  
278            DO j = 1, knon            DO j = 1, knon
279               i = ni(j)               i = ni(j)
280               yqsol(j) = qsol(i)               ypct(j) = pctsrf(i, nsrf)
281                 yts(j) = ftsol(i, nsrf)
282                 snow(j) = fsnow(i, nsrf)
283                 yqsurf(j) = qsurf(i, nsrf)
284                 yalb(j) = falbe(i, nsrf)
285                 yrain_f(j) = rain_fall(i)
286                 ysnow_f(j) = snow_f(i)
287                 yagesno(j) = agesno(i, nsrf)
288                 yrugos(j) = frugs(i, nsrf)
289                 yrugoro(j) = rugoro(i)
290                 yrads(j) = fsolsw(i, nsrf) + fsollw(i, nsrf)
291                 ypaprs(j, klev + 1) = paprs(i, klev + 1)
292                 y_run_off_lic_0(j) = run_off_lic_0(i)
293            END DO            END DO
        ELSE  
           yqsol = 0.  
        END IF  
        !$$$ PB ajour pour soil  
        DO k = 1, nsoilmx  
           DO j = 1, knon  
              i = ni(j)  
              ytsoil(j, k) = ftsoil(i, k, nsrf)  
           END DO  
        END DO  
        DO k = 1, klev  
           DO j = 1, knon  
              i = ni(j)  
              ypaprs(j, k) = paprs(i, k)  
              ypplay(j, k) = pplay(i, k)  
              ydelp(j, k) = delp(i, k)  
              yu(j, k) = u(i, k)  
              yv(j, k) = v(i, k)  
              yt(j, k) = t(i, k)  
              yq(j, k) = q(i, k)  
           END DO  
        END DO  
294    
295         ! calculer Cdrag et les coefficients d'echange            ! For continent, copy soil water content
296         CALL coefkz(nsrf, knon, ypaprs, ypplay, ksta, ksta_ter, yts,&            IF (nsrf == is_ter) yqsol(:knon) = qsol(ni(:knon))
             yrugos, yu, yv, yt, yq, yqsurf, ycoefm, ycoefh)  
        !IM 081204 BEG  
        !CR test  
        IF (iflag_pbl==1) THEN  
           !IM 081204 END  
           CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0, ycoefh0)  
           DO k = 1, klev  
              DO i = 1, knon  
                 ycoefm(i, k) = max(ycoefm(i, k), ycoefm0(i, k))  
                 ycoefh(i, k) = max(ycoefh(i, k), ycoefh0(i, k))  
              END DO  
           END DO  
        END IF  
297    
298         !IM cf JLD : on seuille ycoefm et ycoefh            ytsoil(:knon, :) = ftsoil(ni(:knon), :, nsrf)
        IF (nsrf==is_oce) THEN  
           DO j = 1, knon  
              !           ycoefm(j, 1)=min(ycoefm(j, 1), 1.1E-3)  
              ycoefm(j, 1) = min(ycoefm(j, 1), cdmmax)  
              !           ycoefh(j, 1)=min(ycoefh(j, 1), 1.1E-3)  
              ycoefh(j, 1) = min(ycoefh(j, 1), cdhmax)  
           END DO  
        END IF  
   
        !IM: 261103  
        IF (ok_kzmin) THEN  
           !IM cf FH: 201103 BEG  
           !   Calcul d'une diffusion minimale pour les conditions tres stables.  
           CALL coefkzmin(knon, ypaprs, ypplay, yu, yv, yt, yq, ycoefm, &  
                ycoefm0, ycoefh0)  
299    
           IF (1==1) THEN  
              DO k = 1, klev  
                 DO i = 1, knon  
                    ycoefm(i, k) = max(ycoefm(i, k), ycoefm0(i, k))  
                    ycoefh(i, k) = max(ycoefh(i, k), ycoefh0(i, k))  
                 END DO  
              END DO  
           END IF  
           !IM cf FH: 201103 END  
           !IM: 261103  
        END IF !ok_kzmin  
   
        IF (iflag_pbl>=3) THEN  
           ! MELLOR ET YAMADA adapté à Mars, Richard Fournier et Frédéric Hourdin  
           yzlay(1:knon, 1) = rd*yt(1:knon, 1)/(0.5*(ypaprs(1:knon, &  
                1)+ypplay(1:knon, 1)))*(ypaprs(1:knon, 1)-ypplay(1:knon, 1))/rg  
           DO k = 2, klev  
              yzlay(1:knon, k) = yzlay(1:knon, k-1) &  
                   + rd * 0.5 * (yt(1:knon, k-1) + yt(1:knon, k)) &  
                   / ypaprs(1:knon, k) &  
                   * (ypplay(1:knon, k-1) - ypplay(1:knon, k)) / rg  
           END DO  
300            DO k = 1, klev            DO k = 1, klev
              yteta(1:knon, k) = yt(1:knon, k)*(ypaprs(1:knon, 1) &  
                   / ypplay(1:knon, k))**rkappa * (1.+0.61*yq(1:knon, k))  
           END DO  
           yzlev(1:knon, 1) = 0.  
           yzlev(1:knon, klev+1) = 2.*yzlay(1:knon, klev) - yzlay(1:knon, klev-1)  
           DO k = 2, klev  
              yzlev(1:knon, k) = 0.5*(yzlay(1:knon, k)+yzlay(1:knon, k-1))  
           END DO  
           DO k = 1, klev + 1  
301               DO j = 1, knon               DO j = 1, knon
302                  i = ni(j)                  i = ni(j)
303                  yq2(j, k) = q2(i, k, nsrf)                  ypaprs(j, k) = paprs(i, k)
304                    ypplay(j, k) = pplay(i, k)
305                    ydelp(j, k) = delp(i, k)
306                    yu(j, k) = u(i, k)
307                    yv(j, k) = v(i, k)
308                    yt(j, k) = t(i, k)
309                    yq(j, k) = q(i, k)
310               END DO               END DO
311            END DO            END DO
312    
313            !   Bug introduit volontairement pour converger avec les resultats            ! calculer Cdrag et les coefficients d'echange
314            !  du papier sur les thermiques.            CALL coefkz(nsrf, ypaprs, ypplay, ksta, ksta_ter, yts(:knon), &
315            IF (1==1) THEN                 yrugos, yu, yv, yt, yq, yqsurf(:knon), coefm(:knon, :), &
316               y_cd_m(1:knon) = ycoefm(1:knon, 1)                 coefh(:knon, :), ycdragm(:knon), ycdragh(:knon))
317               y_cd_h(1:knon) = ycoefh(1:knon, 1)  
318            ELSE            IF (iflag_pbl == 1) THEN
319               y_cd_h(1:knon) = ycoefm(1:knon, 1)               CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0(:knon, :), &
320               y_cd_m(1:knon) = ycoefh(1:knon, 1)                    ycoefh0(:knon, :))
321                 coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :))
322                 coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, :))
323                 ycdragm(:knon) = max(ycdragm(:knon), 0.)
324                 ycdragh(:knon) = max(ycdragh(:knon), 0.)
325            END IF            END IF
           CALL ustarhb(knon, yu, yv, y_cd_m, yustar)  
326    
327            IF (prt_level>9) THEN            ! on met un seuil pour ycdragm et ycdragh
328               PRINT *, 'USTAR = ', yustar            IF (nsrf == is_oce) THEN
329                 ycdragm(:knon) = min(ycdragm(:knon), cdmmax)
330                 ycdragh(:knon) = min(ycdragh(:knon), cdhmax)
331            END IF            END IF
332    
333            !   iflag_pbl peut etre utilise comme longuer de melange            IF (ok_kzmin) THEN
334                 ! Calcul d'une diffusion minimale pour les conditions tres stables
335            IF (iflag_pbl>=11) THEN               CALL coefkzmin(knon, ypaprs, ypplay, yu, yv, yt, yq, &
336               CALL vdif_kcay(knon, dtime, rg, rd, ypaprs, yt, yzlev, yzlay, &                    ycdragm(:knon), ycoefh0(:knon, :))
337                    yu, yv, yteta, y_cd_m, yq2, q2diag, ykmm, ykmn, yustar, &               ycoefm0(:knon, :) = ycoefh0(:knon, :)
338                    iflag_pbl)               coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :))
339            ELSE               coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, :))
              CALL yamada4(knon, dtime, rg, rd, ypaprs, yt, yzlev, yzlay, yu, &  
                   yv, yteta, y_cd_m, yq2, ykmm, ykmn, ykmq, yustar, iflag_pbl)  
340            END IF            END IF
341    
342            ycoefm(1:knon, 1) = y_cd_m(1:knon)            IF (iflag_pbl >= 6) THEN
343            ycoefh(1:knon, 1) = y_cd_h(1:knon)               ! Mellor et Yamada adapt\'e \`a Mars, Richard Fournier et
344            ycoefm(1:knon, 2:klev) = ykmm(1:knon, 2:klev)               ! Fr\'ed\'eric Hourdin
345            ycoefh(1:knon, 2:klev) = ykmn(1:knon, 2:klev)               yzlay(:knon, 1) = rd * yt(:knon, 1) / (0.5 * (ypaprs(:knon, 1) &
346         END IF                    + ypplay(:knon, 1))) &
347                      * (ypaprs(:knon, 1) - ypplay(:knon, 1)) / rg
348         ! calculer la diffusion des vitesses "u" et "v"  
349         CALL clvent(knon, dtime, yu1, yv1, ycoefm, yt, yu, ypaprs, ypplay, &               DO k = 2, klev
350              ydelp, y_d_u, y_flux_u)                  yzlay(:knon, k) = yzlay(:knon, k-1) &
351         CALL clvent(knon, dtime, yu1, yv1, ycoefm, yt, yv, ypaprs, ypplay, &                       + rd * 0.5 * (yt(1:knon, k-1) + yt(1:knon, k)) &
352              ydelp, y_d_v, y_flux_v)                       / ypaprs(1:knon, k) &
353                         * (ypplay(1:knon, k-1) - ypplay(1:knon, k)) / rg
354         ! pour le couplage               END DO
        ytaux = y_flux_u(:, 1)  
        ytauy = y_flux_v(:, 1)  
   
        ! calculer la diffusion de "q" et de "h"  
        CALL clqh(dtime, itap, date0, jour, debut, lafin, rlon, rlat,&  
             cufi, cvfi, knon, nsrf, ni, pctsrf, soil_model, ytsoil,&  
             yqsol, ok_veget, ocean, npas, nexca, rmu0, co2_ppm, yrugos,&  
             yrugoro, yu1, yv1, ycoefh, yt, yq, yts, ypaprs, ypplay,&  
             ydelp, yrads, yalb, yalblw, ysnow, yqsurf, yrain_f, ysnow_f, &  
             yfder, ytaux, ytauy, ywindsp, ysollw, ysollwdown, ysolsw,&  
             yfluxlat, pctsrf_new, yagesno, y_d_t, y_d_q, y_d_ts,&  
             yz0_new, y_flux_t, y_flux_q, y_dflux_t, y_dflux_q,&  
             y_fqcalving, y_ffonte, y_run_off_lic_0, y_flux_o, y_flux_g,&  
             ytslab, y_seaice)  
   
        ! calculer la longueur de rugosite sur ocean  
        yrugm = 0.  
        IF (nsrf==is_oce) THEN  
           DO j = 1, knon  
              yrugm(j) = 0.018*ycoefm(j, 1)*(yu1(j)**2+yv1(j)**2)/rg + &  
                   0.11*14E-6/sqrt(ycoefm(j, 1)*(yu1(j)**2+yv1(j)**2))  
              yrugm(j) = max(1.5E-05, yrugm(j))  
           END DO  
        END IF  
        DO j = 1, knon  
           y_dflux_t(j) = y_dflux_t(j)*ypct(j)  
           y_dflux_q(j) = y_dflux_q(j)*ypct(j)  
           yu1(j) = yu1(j)*ypct(j)  
           yv1(j) = yv1(j)*ypct(j)  
        END DO  
355    
356         DO k = 1, klev               DO k = 1, klev
357            DO j = 1, knon                  yteta(1:knon, k) = yt(1:knon, k) * (ypaprs(1:knon, 1) &
358               i = ni(j)                       / ypplay(1:knon, k))**rkappa * (1. + 0.61 * yq(1:knon, k))
359               ycoefh(j, k) = ycoefh(j, k)*ypct(j)               END DO
360               ycoefm(j, k) = ycoefm(j, k)*ypct(j)  
361               y_d_t(j, k) = y_d_t(j, k)*ypct(j)               zlev(:knon, 1) = 0.
362               y_d_q(j, k) = y_d_q(j, k)*ypct(j)               zlev(:knon, klev + 1) = 2. * yzlay(:knon, klev) &
363               !§§§ PB                    - yzlay(:knon, klev - 1)
364               flux_t(i, k, nsrf) = y_flux_t(j, k)  
365               flux_q(i, k, nsrf) = y_flux_q(j, k)               DO k = 2, klev
366               flux_u(i, k, nsrf) = y_flux_u(j, k)                  zlev(:knon, k) = 0.5 * (yzlay(:knon, k) + yzlay(:knon, k-1))
367               flux_v(i, k, nsrf) = y_flux_v(j, k)               END DO
              !$$$ PB        y_flux_t(j, k) = y_flux_t(j, k) * ypct(j)  
              !$$$ PB        y_flux_q(j, k) = y_flux_q(j, k) * ypct(j)  
              y_d_u(j, k) = y_d_u(j, k)*ypct(j)  
              y_d_v(j, k) = y_d_v(j, k)*ypct(j)  
              !$$$ PB        y_flux_u(j, k) = y_flux_u(j, k) * ypct(j)  
              !$$$ PB        y_flux_v(j, k) = y_flux_v(j, k) * ypct(j)  
           END DO  
        END DO  
368    
369         evap(:, nsrf) = -flux_q(:, 1, nsrf)               DO k = 1, klev + 1
370                    DO j = 1, knon
371                       i = ni(j)
372                       yq2(j, k) = q2(i, k, nsrf)
373                    END DO
374                 END DO
375    
376         albe(:, nsrf) = 0.               ustar(:knon) = ustarhb(yu(:knon, 1), yv(:knon, 1), ycdragm(:knon))
377         alblw(:, nsrf) = 0.               CALL yamada4(dtime, rg, zlev(:knon, :), yzlay(:knon, :), &
378         snow(:, nsrf) = 0.                    yu(:knon, :), yv(:knon, :), yteta(:knon, :), yq2(:knon, :), &
379         qsurf(:, nsrf) = 0.                    ykmm(:knon, :), ykmn(:knon, :), ustar(:knon))
380         rugos(:, nsrf) = 0.               coefm(:knon, :) = ykmm(:knon, 2:klev)
381         fluxlat(:, nsrf) = 0.               coefh(:knon, :) = ykmn(:knon, 2:klev)
382         DO j = 1, knon            END IF
383            i = ni(j)  
384            d_ts(i, nsrf) = y_d_ts(j)            CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), coefm(:knon, :), &
385            albe(i, nsrf) = yalb(j)                 ycdragm(:knon), yt(:knon, :), yu(:knon, :), ypaprs(:knon, :), &
386            alblw(i, nsrf) = yalblw(j)                 ypplay(:knon, :), ydelp(:knon, :), y_d_u(:knon, :), &
387            snow(i, nsrf) = ysnow(j)                 y_flux_u(:knon))
388            qsurf(i, nsrf) = yqsurf(j)            CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), coefm(:knon, :), &
389            rugos(i, nsrf) = yz0_new(j)                 ycdragm(:knon), yt(:knon, :), yv(:knon, :), ypaprs(:knon, :), &
390            fluxlat(i, nsrf) = yfluxlat(j)                 ypplay(:knon, :), ydelp(:knon, :), y_d_v(:knon, :), &
391            !$$$ pb         rugmer(i) = yrugm(j)                 y_flux_v(:knon))
392            IF (nsrf==is_oce) THEN  
393               rugmer(i) = yrugm(j)            ! calculer la diffusion de "q" et de "h"
394               rugos(i, nsrf) = yrugm(j)            CALL clqh(dtime, julien, firstcal, nsrf, ni(:knon), &
395                   ytsoil(:knon, :), yqsol(:knon), mu0, yrugos, yrugoro, &
396                   yu(:knon, 1), yv(:knon, 1), coefh(:knon, :), ycdragh(:knon), &
397                   yt, yq, yts(:knon), ypaprs, ypplay, ydelp, yrads(:knon), &
398                   yalb(:knon), snow(:knon), yqsurf, yrain_f, ysnow_f, &
399                   yfluxlat(:knon), pctsrf_new_sic, yagesno(:knon), y_d_t, y_d_q, &
400                   y_d_ts(:knon), yz0_new, y_flux_t(:knon), y_flux_q(:knon), &
401                   y_dflux_t(:knon), y_dflux_q(:knon), y_fqcalving, y_ffonte, &
402                   y_run_off_lic_0)
403    
404              ! calculer la longueur de rugosite sur ocean
405              yrugm = 0.
406              IF (nsrf == is_oce) THEN
407                 DO j = 1, knon
408                    yrugm(j) = 0.018 * ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2) &
409                         / rg + 0.11 * 14E-6 &
410                         / sqrt(ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2))
411                    yrugm(j) = max(1.5E-05, yrugm(j))
412                 END DO
413            END IF            END IF
           !IM cf JLD ??  
           agesno(i, nsrf) = yagesno(j)  
           fqcalving(i, nsrf) = y_fqcalving(j)  
           ffonte(i, nsrf) = y_ffonte(j)  
           cdragh(i) = cdragh(i) + ycoefh(j, 1)  
           cdragm(i) = cdragm(i) + ycoefm(j, 1)  
           dflux_t(i) = dflux_t(i) + y_dflux_t(j)  
           dflux_q(i) = dflux_q(i) + y_dflux_q(j)  
           zu1(i) = zu1(i) + yu1(j)  
           zv1(i) = zv1(i) + yv1(j)  
        END DO  
        IF (nsrf==is_ter) THEN  
414            DO j = 1, knon            DO j = 1, knon
415               i = ni(j)               y_dflux_t(j) = y_dflux_t(j) * ypct(j)
416               qsol(i) = yqsol(j)               y_dflux_q(j) = y_dflux_q(j) * ypct(j)
417            END DO            END DO
418         END IF  
419         IF (nsrf==is_lic) THEN            DO k = 2, klev
420            DO j = 1, knon               DO j = 1, knon
421               i = ni(j)                  i = ni(j)
422               run_off_lic_0(i) = y_run_off_lic_0(j)                  coefh(j, k) = coefh(j, k) * ypct(j)
423                    coefm(j, k) = coefm(j, k) * ypct(j)
424                 END DO
425            END DO            END DO
        END IF  
        !$$$ PB ajout pour soil  
        ftsoil(:, :, nsrf) = 0.  
        DO k = 1, nsoilmx  
426            DO j = 1, knon            DO j = 1, knon
427               i = ni(j)               i = ni(j)
428               ftsoil(i, k, nsrf) = ytsoil(j, k)               ycdragh(j) = ycdragh(j) * ypct(j)
429                 ycdragm(j) = ycdragm(j) * ypct(j)
430            END DO            END DO
        END DO  
   
        DO j = 1, knon  
           i = ni(j)  
431            DO k = 1, klev            DO k = 1, klev
432               d_t(i, k) = d_t(i, k) + y_d_t(j, k)               DO j = 1, knon
433               d_q(i, k) = d_q(i, k) + y_d_q(j, k)                  i = ni(j)
434               !$$$ PB        flux_t(i, k) = flux_t(i, k) + y_flux_t(j, k)                  y_d_t(j, k) = y_d_t(j, k) * ypct(j)
435               !$$$         flux_q(i, k) = flux_q(i, k) + y_flux_q(j, k)                  y_d_q(j, k) = y_d_q(j, k) * ypct(j)
436               d_u(i, k) = d_u(i, k) + y_d_u(j, k)                  y_d_u(j, k) = y_d_u(j, k) * ypct(j)
437               d_v(i, k) = d_v(i, k) + y_d_v(j, k)                  y_d_v(j, k) = y_d_v(j, k) * ypct(j)
438               !$$$  PB       flux_u(i, k) = flux_u(i, k) + y_flux_u(j, k)               END DO
              !$$$         flux_v(i, k) = flux_v(i, k) + y_flux_v(j, k)  
              zcoefh(i, k) = zcoefh(i, k) + ycoefh(j, k)  
439            END DO            END DO
        END DO  
   
        !cc diagnostic t, q a 2m et u, v a 10m  
440    
441         DO j = 1, knon            flux_t(ni(:knon), nsrf) = y_flux_t(:knon)
442            i = ni(j)            flux_q(ni(:knon), nsrf) = y_flux_q(:knon)
443            uzon(j) = yu(j, 1) + y_d_u(j, 1)            flux_u(ni(:knon), nsrf) = y_flux_u(:knon)
444            vmer(j) = yv(j, 1) + y_d_v(j, 1)            flux_v(ni(:knon), nsrf) = y_flux_v(:knon)
445            tair1(j) = yt(j, 1) + y_d_t(j, 1)  
446            qair1(j) = yq(j, 1) + y_d_q(j, 1)            evap(:, nsrf) = -flux_q(:, nsrf)
447            zgeo1(j) = rd*tair1(j)/(0.5*(ypaprs(j, 1)+ypplay(j, &  
448                 1)))*(ypaprs(j, 1)-ypplay(j, 1))            falbe(:, nsrf) = 0.
449            tairsol(j) = yts(j) + y_d_ts(j)            fsnow(:, nsrf) = 0.
450            rugo1(j) = yrugos(j)            qsurf(:, nsrf) = 0.
451            IF (nsrf==is_oce) THEN            frugs(:, nsrf) = 0.
452               rugo1(j) = rugos(i, nsrf)            DO j = 1, knon
453                 i = ni(j)
454                 d_ts(i, nsrf) = y_d_ts(j)
455                 falbe(i, nsrf) = yalb(j)
456                 fsnow(i, nsrf) = snow(j)
457                 qsurf(i, nsrf) = yqsurf(j)
458                 frugs(i, nsrf) = yz0_new(j)
459                 fluxlat(i, nsrf) = yfluxlat(j)
460                 IF (nsrf == is_oce) THEN
461                    rugmer(i) = yrugm(j)
462                    frugs(i, nsrf) = yrugm(j)
463                 END IF
464                 agesno(i, nsrf) = yagesno(j)
465                 fqcalving(i, nsrf) = y_fqcalving(j)
466                 ffonte(i, nsrf) = y_ffonte(j)
467                 cdragh(i) = cdragh(i) + ycdragh(j)
468                 cdragm(i) = cdragm(i) + ycdragm(j)
469                 dflux_t(i) = dflux_t(i) + y_dflux_t(j)
470                 dflux_q(i) = dflux_q(i) + y_dflux_q(j)
471              END DO
472              IF (nsrf == is_ter) THEN
473                 qsol(ni(:knon)) = yqsol(:knon)
474              else IF (nsrf == is_lic) THEN
475                 DO j = 1, knon
476                    i = ni(j)
477                    run_off_lic_0(i) = y_run_off_lic_0(j)
478                 END DO
479            END IF            END IF
           psfce(j) = ypaprs(j, 1)  
           patm(j) = ypplay(j, 1)  
480    
481            qairsol(j) = yqsurf(j)            ftsoil(:, :, nsrf) = 0.
482         END DO            ftsoil(ni(:knon), :, nsrf) = ytsoil(:knon, :)
483    
484         CALL stdlevvar(klon, knon, nsrf, zxli, uzon, vmer, tair1, qair1, zgeo1, &            DO j = 1, knon
485              tairsol, qairsol, rugo1, psfce, patm, yt2m, yq2m, yt10m, yq10m, &               i = ni(j)
486              yu10m, yustar)               DO k = 1, klev
487         !IM 081204 END                  d_t(i, k) = d_t(i, k) + y_d_t(j, k)
488                    d_q(i, k) = d_q(i, k) + y_d_q(j, k)
489         DO j = 1, knon                  d_u(i, k) = d_u(i, k) + y_d_u(j, k)
490            i = ni(j)                  d_v(i, k) = d_v(i, k) + y_d_v(j, k)
491            t2m(i, nsrf) = yt2m(j)               END DO
492            q2m(i, nsrf) = yq2m(j)            END DO
   
           ! u10m, v10m : composantes du vent a 10m sans spirale de Ekman  
           u10m(i, nsrf) = (yu10m(j)*uzon(j))/sqrt(uzon(j)**2+vmer(j)**2)  
           v10m(i, nsrf) = (yu10m(j)*vmer(j))/sqrt(uzon(j)**2+vmer(j)**2)  
493    
494         END DO            ycoefh(ni(:knon), :) = ycoefh(ni(:knon), :) + coefh(:knon, :)
495    
496         DO i = 1, knon            ! diagnostic t, q a 2m et u, v a 10m
           y_cd_h(i) = ycoefh(i, 1)  
           y_cd_m(i) = ycoefm(i, 1)  
        END DO  
        CALL hbtm(knon, ypaprs, ypplay, yt2m, yt10m, yq2m, yq10m, yustar, &  
             y_flux_t, y_flux_q, yu, yv, yt, yq, ypblh, ycapcl, yoliqcl, &  
             ycteicl, ypblt, ytherm, ytrmb1, ytrmb2, ytrmb3, ylcl)  
   
        DO j = 1, knon  
           i = ni(j)  
           pblh(i, nsrf) = ypblh(j)  
           plcl(i, nsrf) = ylcl(j)  
           capcl(i, nsrf) = ycapcl(j)  
           oliqcl(i, nsrf) = yoliqcl(j)  
           cteicl(i, nsrf) = ycteicl(j)  
           pblt(i, nsrf) = ypblt(j)  
           therm(i, nsrf) = ytherm(j)  
           trmb1(i, nsrf) = ytrmb1(j)  
           trmb2(i, nsrf) = ytrmb2(j)  
           trmb3(i, nsrf) = ytrmb3(j)  
        END DO  
497    
498         DO j = 1, knon            DO j = 1, knon
           DO k = 1, klev + 1  
499               i = ni(j)               i = ni(j)
500               q2(i, k, nsrf) = yq2(j, k)               u1(j) = yu(j, 1) + y_d_u(j, 1)
501                 v1(j) = yv(j, 1) + y_d_v(j, 1)
502                 tair1(j) = yt(j, 1) + y_d_t(j, 1)
503                 qair1(j) = yq(j, 1) + y_d_q(j, 1)
504                 zgeo1(j) = rd * tair1(j) / (0.5 * (ypaprs(j, 1) + ypplay(j, &
505                      1))) * (ypaprs(j, 1)-ypplay(j, 1))
506                 tairsol(j) = yts(j) + y_d_ts(j)
507                 rugo1(j) = yrugos(j)
508                 IF (nsrf == is_oce) THEN
509                    rugo1(j) = frugs(i, nsrf)
510                 END IF
511                 psfce(j) = ypaprs(j, 1)
512                 patm(j) = ypplay(j, 1)
513    
514                 qairsol(j) = yqsurf(j)
515            END DO            END DO
516         END DO  
517         !IM "slab" ocean            CALL stdlevvar(klon, knon, nsrf, u1(:knon), v1(:knon), tair1(:knon), &
518         IF (nsrf==is_oce) THEN                 qair1, zgeo1, tairsol, qairsol, rugo1, psfce, patm, yt2m, &
519                   yq2m, yt10m, yq10m, wind10m(:knon), ustar)
520    
521            DO j = 1, knon            DO j = 1, knon
              ! on projette sur la grille globale  
522               i = ni(j)               i = ni(j)
523               IF (pctsrf_new(i, is_oce)>epsfra) THEN               t2m(i, nsrf) = yt2m(j)
524                  flux_o(i) = y_flux_o(j)               q2m(i, nsrf) = yq2m(j)
525               ELSE  
526                  flux_o(i) = 0.               u10m_srf(i, nsrf) = (wind10m(j) * u1(j)) &
527               END IF                    / sqrt(u1(j)**2 + v1(j)**2)
528                 v10m_srf(i, nsrf) = (wind10m(j) * v1(j)) &
529                      / sqrt(u1(j)**2 + v1(j)**2)
530            END DO            END DO
        END IF  
531    
532         IF (nsrf==is_sic) THEN            CALL hbtm(ypaprs, ypplay, yt2m, yq2m, ustar(:knon), y_flux_t(:knon), &
533                   y_flux_q(:knon), yu, yv, yt, yq, ypblh(:knon), ycapcl, &
534                   yoliqcl, ycteicl, ypblt, ytherm, ytrmb1, ytrmb2, ytrmb3, ylcl)
535    
536            DO j = 1, knon            DO j = 1, knon
537               i = ni(j)               i = ni(j)
538               ! On pondère lorsque l'on fait le bilan au sol :               pblh(i, nsrf) = ypblh(j)
539               ! flux_g(i) = y_flux_g(j)*ypct(j)               plcl(i, nsrf) = ylcl(j)
540               IF (pctsrf_new(i, is_sic)>epsfra) THEN               capcl(i, nsrf) = ycapcl(j)
541                  flux_g(i) = y_flux_g(j)               oliqcl(i, nsrf) = yoliqcl(j)
542               ELSE               cteicl(i, nsrf) = ycteicl(j)
543                  flux_g(i) = 0.               pblt(i, nsrf) = ypblt(j)
544               END IF               therm(i, nsrf) = ytherm(j)
545                 trmb1(i, nsrf) = ytrmb1(j)
546                 trmb2(i, nsrf) = ytrmb2(j)
547                 trmb3(i, nsrf) = ytrmb3(j)
548            END DO            END DO
549    
550         END IF            DO j = 1, knon
551         !nsrf.EQ.is_sic                                                           DO k = 1, klev + 1
552         IF (ocean=='slab  ') THEN                  i = ni(j)
553            IF (nsrf==is_oce) THEN                  q2(i, k, nsrf) = yq2(j, k)
554               tslab(1:klon) = ytslab(1:klon)               END DO
555               seaice(1:klon) = y_seaice(1:klon)            END DO
556               !nsrf                                                               else
557            END IF            fsnow(:, nsrf) = 0.
558            !OCEAN                                                               end IF if_knon
559         END IF      END DO loop_surface
     END DO  
560    
561      ! On utilise les nouvelles surfaces      ! On utilise les nouvelles surfaces
562      ! A rajouter: conservation de l'albedo      frugs(:, is_oce) = rugmer
563        pctsrf(:, is_oce) = pctsrf_new_oce
564        pctsrf(:, is_sic) = pctsrf_new_sic
565    
566      rugos(:, is_oce) = rugmer      firstcal = .false.
     pctsrf = pctsrf_new  
567    
568    END SUBROUTINE clmain    END SUBROUTINE clmain
569    

Legend:
Removed from v.40  
changed lines
  Added in v.242

  ViewVC Help
Powered by ViewVC 1.1.21