--- trunk/Sources/phylmd/clmain.f 2016/05/09 19:56:28 191 +++ trunk/Sources/phylmd/clmain.f 2016/08/30 12:52:46 206 @@ -4,13 +4,13 @@ contains - SUBROUTINE clmain(dtime, pctsrf, pctsrf_new, t, q, u, v, jour, rmu0, ts, & - cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, paprs, pplay, & - snow, qsurf, evap, falbe, fluxlat, rain_fall, snow_f, solsw, sollw, & - fder, rlat, rugos, firstcal, agesno, rugoro, d_t, d_q, d_u, d_v, d_ts, & - flux_t, flux_q, flux_u, flux_v, cdragh, cdragm, q2, dflux_t, dflux_q, & - ycoefh, zu1, zv1, t2m, q2m, u10m, v10m, pblh, capcl, oliqcl, cteicl, & - pblt, therm, trmb1, trmb2, trmb3, plcl, fqcalving, ffonte, run_off_lic_0) + SUBROUTINE clmain(dtime, pctsrf, t, q, u, v, jour, rmu0, ts, cdmmax, & + cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, paprs, pplay, snow, & + qsurf, evap, falbe, fluxlat, rain_fall, snow_f, solsw, sollw, fder, & + rlat, rugos, agesno, rugoro, d_t, d_q, d_u, d_v, d_ts, flux_t, flux_q, & + flux_u, flux_v, cdragh, cdragm, q2, dflux_t, dflux_q, ycoefh, zu1, & + zv1, t2m, q2m, u10m, v10m, pblh, capcl, oliqcl, cteicl, pblt, therm, & + trmb1, trmb2, trmb3, plcl, fqcalving, ffonte, run_off_lic_0) ! From phylmd/clmain.F, version 1.6, 2005/11/16 14:47:19 ! Author: Z. X. Li (LMD/CNRS), date: 1993/08/18 @@ -30,23 +30,24 @@ use clvent_m, only: clvent use coefkz_m, only: coefkz use coefkzmin_m, only: coefkzmin - USE conf_gcm_m, ONLY: prt_level + USE conf_gcm_m, ONLY: prt_level, lmt_pas USE conf_phys_m, ONLY: iflag_pbl USE dimphy, ONLY: klev, klon, zmasq USE dimsoil, ONLY: nsoilmx use hbtm_m, only: hbtm USE indicesol, ONLY: epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf + USE interfoce_lim_m, ONLY: interfoce_lim use stdlevvar_m, only: stdlevvar USE suphec_m, ONLY: rd, rg, rkappa + use time_phylmdz, only: itap use ustarhb_m, only: ustarhb use vdif_kcay_m, only: vdif_kcay use yamada4_m, only: yamada4 REAL, INTENT(IN):: dtime ! interval du temps (secondes) - REAL, INTENT(inout):: pctsrf(klon, nbsrf) - ! la nouvelle repartition des surfaces sortie de l'interface - REAL, INTENT(out):: pctsrf_new(klon, nbsrf) + REAL, INTENT(inout):: pctsrf(klon, nbsrf) + ! tableau des pourcentages de surface de chaque maille REAL, INTENT(IN):: t(klon, klev) ! temperature (K) REAL, INTENT(IN):: q(klon, klev) ! vapeur d'eau (kg/kg) @@ -85,7 +86,6 @@ REAL, intent(inout):: rugos(klon, nbsrf) ! longueur de rugosit\'e (en m) - LOGICAL, INTENT(IN):: firstcal real agesno(klon, nbsrf) REAL, INTENT(IN):: rugoro(klon) @@ -98,14 +98,15 @@ REAL, intent(out):: d_ts(klon, nbsrf) ! le changement pour "ts" - REAL flux_t(klon, klev, nbsrf), flux_q(klon, klev, nbsrf) - ! flux_t---output-R- flux de chaleur sensible (CpT) J/m**2/s (W/m**2) - ! (orientation positive vers le bas) - ! flux_q---output-R- flux de vapeur d'eau (kg/m**2/s) - - REAL flux_u(klon, klev, nbsrf), flux_v(klon, klev, nbsrf) - ! flux_u---output-R- tension du vent X: (kg m/s)/(m**2 s) ou Pascal - ! flux_v---output-R- tension du vent Y: (kg m/s)/(m**2 s) ou Pascal + REAL, intent(out):: flux_t(klon, nbsrf) + ! flux de chaleur sensible (Cp T) (W/m2) (orientation positive vers + ! le bas) à la surface + + REAL, intent(out):: flux_q(klon, nbsrf) + ! flux de vapeur d'eau (kg/m2/s) à la surface + + REAL, intent(out):: flux_u(klon, nbsrf), flux_v(klon, nbsrf) + ! tension du vent à la surface, en Pa REAL, INTENT(out):: cdragh(klon), cdragm(klon) real q2(klon, klev+1, nbsrf) @@ -146,6 +147,12 @@ ! Local: + LOGICAL:: firstcal = .true. + + ! la nouvelle repartition des surfaces sortie de l'interface + REAL, save:: pctsrf_new_oce(klon) + REAL, save:: pctsrf_new_sic(klon) + REAL y_fqcalving(klon), y_ffonte(klon) real y_run_off_lic_0(klon) @@ -177,8 +184,8 @@ REAL y_d_ts(klon) REAL y_d_t(klon, klev), y_d_q(klon, klev) REAL y_d_u(klon, klev), y_d_v(klon, klev) - REAL y_flux_t(klon, klev), y_flux_q(klon, klev) - REAL y_flux_u(klon, klev), y_flux_v(klon, klev) + REAL y_flux_t(klon), y_flux_q(klon) + REAL y_flux_u(klon), y_flux_v(klon) REAL y_dflux_t(klon), y_dflux_q(klon) REAL coefh(klon, klev), coefm(klon, klev) REAL yu(klon, klev), yv(klon, klev) @@ -272,9 +279,6 @@ yv = 0. yt = 0. yq = 0. - pctsrf_new = 0. - y_flux_u = 0. - y_flux_v = 0. y_dflux_t = 0. y_dflux_q = 0. ytsoil = 999999. @@ -295,10 +299,16 @@ ! peut avoir potentiellement de la glace sur tout le domaine oc\'eanique ! (\`a affiner) - pctsrf_pot = pctsrf + pctsrf_pot(:, is_ter) = pctsrf(:, is_ter) + pctsrf_pot(:, is_lic) = pctsrf(:, is_lic) pctsrf_pot(:, is_oce) = 1. - zmasq pctsrf_pot(:, is_sic) = 1. - zmasq + ! Tester si c'est le moment de lire le fichier: + if (mod(itap - 1, lmt_pas) == 0) then + CALL interfoce_lim(jour, pctsrf_new_oce, pctsrf_new_sic) + endif + ! Boucler sur toutes les sous-fractions du sol: loop_surface: DO nsrf = 1, nbsrf @@ -434,17 +444,17 @@ ! calculer la diffusion des vitesses "u" et "v" CALL clvent(knon, dtime, yu1, yv1, coefm(:knon, :), yt, yu, ypaprs, & - ypplay, ydelp, y_d_u, y_flux_u) + ypplay, ydelp, y_d_u, y_flux_u(:knon)) CALL clvent(knon, dtime, yu1, yv1, coefm(:knon, :), yt, yv, ypaprs, & - ypplay, ydelp, y_d_v, y_flux_v) + ypplay, ydelp, y_d_v, y_flux_v(:knon)) ! calculer la diffusion de "q" et de "h" - CALL clqh(dtime, jour, firstcal, rlat, knon, nsrf, ni(:knon), & - pctsrf, ytsoil, yqsol, rmu0, yrugos, yrugoro, yu1, yv1, & - coefh(:knon, :), yt, yq, yts, ypaprs, ypplay, ydelp, yrads, & - yalb(:knon), ysnow, yqsurf, yrain_f, ysnow_f, yfder, yfluxlat, & - pctsrf_new, yagesno(:knon), y_d_t, y_d_q, y_d_ts(:knon), & - yz0_new, y_flux_t, y_flux_q, y_dflux_t, y_dflux_q, & + CALL clqh(dtime, jour, firstcal, rlat, nsrf, ni(:knon), ytsoil, & + yqsol, rmu0, yrugos, yrugoro, yu1, yv1, coefh(:knon, :), yt, & + yq, yts, ypaprs, ypplay, ydelp, yrads, yalb(:knon), ysnow, & + yqsurf, yrain_f, ysnow_f, yfder, yfluxlat, pctsrf_new_sic, & + yagesno(:knon), y_d_t, y_d_q, y_d_ts(:knon), yz0_new, & + y_flux_t(:knon), y_flux_q(:knon), y_dflux_t, y_dflux_q, & y_fqcalving, y_ffonte, y_run_off_lic_0) ! calculer la longueur de rugosite sur ocean @@ -470,16 +480,20 @@ coefm(j, k) = coefm(j, k)*ypct(j) y_d_t(j, k) = y_d_t(j, k)*ypct(j) y_d_q(j, k) = y_d_q(j, k)*ypct(j) - flux_t(i, k, nsrf) = y_flux_t(j, k) - flux_q(i, k, nsrf) = y_flux_q(j, k) - flux_u(i, k, nsrf) = y_flux_u(j, k) - flux_v(i, k, nsrf) = y_flux_v(j, k) y_d_u(j, k) = y_d_u(j, k)*ypct(j) y_d_v(j, k) = y_d_v(j, k)*ypct(j) END DO END DO - evap(:, nsrf) = -flux_q(:, 1, nsrf) + DO j = 1, knon + i = ni(j) + flux_t(i, nsrf) = y_flux_t(j) + flux_q(i, nsrf) = y_flux_q(j) + flux_u(i, nsrf) = y_flux_u(j) + flux_v(i, nsrf) = y_flux_v(j) + END DO + + evap(:, nsrf) = -flux_q(:, nsrf) falbe(:, nsrf) = 0. snow(:, nsrf) = 0. @@ -572,9 +586,9 @@ END DO - CALL hbtm(knon, ypaprs, ypplay, yt2m, yq2m, yustar, y_flux_t, & - y_flux_q, yu, yv, yt, yq, ypblh(:knon), ycapcl, yoliqcl, & - ycteicl, ypblt, ytherm, ytrmb1, ytrmb2, ytrmb3, ylcl) + CALL hbtm(ypaprs, ypplay, yt2m, yq2m, yustar, y_flux_t(:knon), & + y_flux_q(:knon), yu, yv, yt, yq, ypblh(:knon), ycapcl, & + yoliqcl, ycteicl, ypblt, ytherm, ytrmb1, ytrmb2, ytrmb3, ylcl) DO j = 1, knon i = ni(j) @@ -600,9 +614,11 @@ END DO loop_surface ! On utilise les nouvelles surfaces - rugos(:, is_oce) = rugmer - pctsrf = pctsrf_new + pctsrf(:, is_oce) = pctsrf_new_oce + pctsrf(:, is_sic) = pctsrf_new_sic + + firstcal = .false. END SUBROUTINE clmain