/[lmdze]/trunk/Sources/phylmd/clmain.f
ViewVC logotype

Diff of /trunk/Sources/phylmd/clmain.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 221 by guez, Thu Apr 20 14:44:47 2017 UTC revision 248 by guez, Fri Jan 5 16:40:13 2018 UTC
# Line 6  contains Line 6  contains
6    
7    SUBROUTINE clmain(dtime, pctsrf, t, q, u, v, julien, mu0, ftsol, cdmmax, &    SUBROUTINE clmain(dtime, pctsrf, t, q, u, v, julien, mu0, ftsol, cdmmax, &
8         cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, paprs, pplay, fsnow, &         cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, paprs, pplay, fsnow, &
9         qsurf, evap, falbe, fluxlat, rain_fall, snow_f, solsw, sollw, fder, &         qsurf, evap, falbe, fluxlat, rain_fall, snow_f, fsolsw, fsollw, frugs, &
10         rugos, agesno, rugoro, d_t, d_q, d_u, d_v, d_ts, flux_t, flux_q, &         agesno, rugoro, d_t, d_q, d_u, d_v, d_ts, flux_t, flux_q, flux_u, &
11         flux_u, flux_v, cdragh, cdragm, q2, dflux_t, dflux_q, ycoefh, zu1, &         flux_v, cdragh, cdragm, q2, dflux_t, dflux_q, coefh, t2m, q2m, &
12         zv1, t2m, q2m, u10m, v10m, pblh, capcl, oliqcl, cteicl, pblt, therm, &         u10m_srf, v10m_srf, pblh, capcl, oliqcl, cteicl, pblt, therm, trmb1, &
13         trmb1, trmb2, trmb3, plcl, fqcalving, ffonte, run_off_lic_0)         trmb2, trmb3, plcl, fqcalving, ffonte, run_off_lic_0)
14    
15      ! From phylmd/clmain.F, version 1.6, 2005/11/16 14:47:19      ! From phylmd/clmain.F, version 1.6, 2005/11/16 14:47:19
16      ! Author: Z. X. Li (LMD/CNRS), date: 1993/08/18      ! Author: Z. X. Li (LMD/CNRS), date: 1993/08/18
# Line 21  contains Line 21  contains
21      ! ne tient pas compte de la diff\'erentiation des sous-fractions      ! ne tient pas compte de la diff\'erentiation des sous-fractions
22      ! de sol.      ! de sol.
23    
24      ! Pour pouvoir extraire les coefficients d'\'echanges et le vent      use clcdrag_m, only: clcdrag
     ! dans la premi\`ere couche, trois champs ont \'et\'e cr\'e\'es : "ycoefh",  
     ! "zu1" et "zv1". Nous avons moyenn\'e les valeurs de ces trois  
     ! champs sur les quatre sous-surfaces du mod\`ele.  
   
25      use clqh_m, only: clqh      use clqh_m, only: clqh
26      use clvent_m, only: clvent      use clvent_m, only: clvent
27      use coefkz_m, only: coefkz      use coefkz_m, only: coefkz
28      use coefkzmin_m, only: coefkzmin      use coefkzmin_m, only: coefkzmin
29      USE conf_gcm_m, ONLY: prt_level, lmt_pas      use coefkz2_m, only: coefkz2
30        USE conf_gcm_m, ONLY: lmt_pas
31      USE conf_phys_m, ONLY: iflag_pbl      USE conf_phys_m, ONLY: iflag_pbl
32      USE dimphy, ONLY: klev, klon, zmasq      USE dimphy, ONLY: klev, klon, zmasq
33      USE dimsoil, ONLY: nsoilmx      USE dimsoil, ONLY: nsoilmx
# Line 41  contains Line 38  contains
38      USE suphec_m, ONLY: rd, rg, rkappa      USE suphec_m, ONLY: rd, rg, rkappa
39      use time_phylmdz, only: itap      use time_phylmdz, only: itap
40      use ustarhb_m, only: ustarhb      use ustarhb_m, only: ustarhb
     use vdif_kcay_m, only: vdif_kcay  
41      use yamada4_m, only: yamada4      use yamada4_m, only: yamada4
42    
43      REAL, INTENT(IN):: dtime ! interval du temps (secondes)      REAL, INTENT(IN):: dtime ! interval du temps (secondes)
# Line 50  contains Line 46  contains
46      ! tableau des pourcentages de surface de chaque maille      ! tableau des pourcentages de surface de chaque maille
47    
48      REAL, INTENT(IN):: t(klon, klev) ! temperature (K)      REAL, INTENT(IN):: t(klon, klev) ! temperature (K)
49      REAL, INTENT(IN):: q(klon, klev) ! vapeur d'eau (kg/kg)      REAL, INTENT(IN):: q(klon, klev) ! vapeur d'eau (kg / kg)
50      REAL, INTENT(IN):: u(klon, klev), v(klon, klev) ! vitesse      REAL, INTENT(IN):: u(klon, klev), v(klon, klev) ! vitesse
51      INTEGER, INTENT(IN):: julien ! jour de l'annee en cours      INTEGER, INTENT(IN):: julien ! jour de l'annee en cours
52      REAL, intent(in):: mu0(klon) ! cosinus de l'angle solaire zenithal          REAL, intent(in):: mu0(klon) ! cosinus de l'angle solaire zenithal    
53      REAL, INTENT(IN):: ftsol(klon, nbsrf) ! temp\'erature du sol (en K)      REAL, INTENT(IN):: ftsol(:, :) ! (klon, nbsrf) temp\'erature du sol (en K)
54      REAL, INTENT(IN):: cdmmax, cdhmax ! seuils cdrm, cdrh      REAL, INTENT(IN):: cdmmax, cdhmax ! seuils cdrm, cdrh
55      REAL, INTENT(IN):: ksta, ksta_ter      REAL, INTENT(IN):: ksta, ksta_ter
56      LOGICAL, INTENT(IN):: ok_kzmin      LOGICAL, INTENT(IN):: ok_kzmin
# Line 62  contains Line 58  contains
58      REAL, INTENT(inout):: ftsoil(klon, nsoilmx, nbsrf)      REAL, INTENT(inout):: ftsoil(klon, nsoilmx, nbsrf)
59      ! soil temperature of surface fraction      ! soil temperature of surface fraction
60    
61      REAL, INTENT(inout):: qsol(klon)      REAL, INTENT(inout):: qsol(:) ! (klon)
62      ! column-density of water in soil, in kg m-2      ! column-density of water in soil, in kg m-2
63    
64      REAL, INTENT(IN):: paprs(klon, klev+1) ! pression a intercouche (Pa)      REAL, INTENT(IN):: paprs(klon, klev + 1) ! pression a intercouche (Pa)
65      REAL, INTENT(IN):: pplay(klon, klev) ! pression au milieu de couche (Pa)      REAL, INTENT(IN):: pplay(klon, klev) ! pression au milieu de couche (Pa)
66      REAL, INTENT(inout):: fsnow(:, :) ! (klon, nbsrf) \'epaisseur neigeuse      REAL, INTENT(inout):: fsnow(:, :) ! (klon, nbsrf) \'epaisseur neigeuse
67      REAL qsurf(klon, nbsrf)      REAL qsurf(klon, nbsrf)
# Line 74  contains Line 70  contains
70      REAL, intent(out):: fluxlat(:, :) ! (klon, nbsrf)      REAL, intent(out):: fluxlat(:, :) ! (klon, nbsrf)
71    
72      REAL, intent(in):: rain_fall(klon)      REAL, intent(in):: rain_fall(klon)
73      ! liquid water mass flux (kg/m2/s), positive down      ! liquid water mass flux (kg / m2 / s), positive down
74    
75      REAL, intent(in):: snow_f(klon)      REAL, intent(in):: snow_f(klon)
76      ! solid water mass flux (kg/m2/s), positive down      ! solid water mass flux (kg / m2 / s), positive down
77    
78      REAL, INTENT(IN):: solsw(klon, nbsrf), sollw(klon, nbsrf)      REAL, INTENT(IN):: fsolsw(klon, nbsrf), fsollw(klon, nbsrf)
79      REAL, intent(in):: fder(klon)      REAL, intent(inout):: frugs(klon, nbsrf) ! longueur de rugosit\'e (en m)
     REAL, intent(inout):: rugos(klon, nbsrf) ! longueur de rugosit\'e (en m)  
80      real agesno(klon, nbsrf)      real agesno(klon, nbsrf)
81      REAL, INTENT(IN):: rugoro(klon)      REAL, INTENT(IN):: rugoro(klon)
82    
# Line 95  contains Line 90  contains
90      REAL, intent(out):: d_ts(:, :) ! (klon, nbsrf) variation of ftsol      REAL, intent(out):: d_ts(:, :) ! (klon, nbsrf) variation of ftsol
91    
92      REAL, intent(out):: flux_t(klon, nbsrf)      REAL, intent(out):: flux_t(klon, nbsrf)
93      ! flux de chaleur sensible (Cp T) (W/m2) (orientation positive vers      ! flux de chaleur sensible (Cp T) (W / m2) (orientation positive vers
94      ! le bas) à la surface      ! le bas) à la surface
95    
96      REAL, intent(out):: flux_q(klon, nbsrf)      REAL, intent(out):: flux_q(klon, nbsrf)
97      ! flux de vapeur d'eau (kg/m2/s) à la surface      ! flux de vapeur d'eau (kg / m2 / s) à la surface
98    
99      REAL, intent(out):: flux_u(klon, nbsrf), flux_v(klon, nbsrf)      REAL, intent(out):: flux_u(klon, nbsrf), flux_v(klon, nbsrf)
100      ! tension du vent à la surface, en Pa      ! tension du vent (flux turbulent de vent) à la surface, en Pa
101    
102      REAL, INTENT(out):: cdragh(klon), cdragm(klon)      REAL, INTENT(out):: cdragh(klon), cdragm(klon)
103      real q2(klon, klev+1, nbsrf)      real q2(klon, klev + 1, nbsrf)
104    
105      REAL, INTENT(out):: dflux_t(klon), dflux_q(klon)      REAL, INTENT(out):: dflux_t(klon), dflux_q(klon)
106      ! dflux_t derive du flux sensible      ! dflux_t derive du flux sensible
107      ! dflux_q derive du flux latent      ! dflux_q derive du flux latent
108      ! IM "slab" ocean      ! IM "slab" ocean
109    
110      REAL, intent(out):: ycoefh(klon, klev)      REAL, intent(out):: coefh(:, 2:) ! (klon, 2:klev)
111      REAL, intent(out):: zu1(klon)      ! Pour pouvoir extraire les coefficients d'\'echange, le champ
112      REAL zv1(klon)      ! "coefh" a \'et\'e cr\'e\'e. Nous avons moyenn\'e les valeurs de
113        ! ce champ sur les quatre sous-surfaces du mod\`ele.
114    
115      REAL, INTENT(inout):: t2m(klon, nbsrf), q2m(klon, nbsrf)      REAL, INTENT(inout):: t2m(klon, nbsrf), q2m(klon, nbsrf)
     REAL u10m(klon, nbsrf), v10m(klon, nbsrf)  
116    
117      ! Ionela Musat cf. Anne Mathieu : planetary boundary layer, hbtm      REAL, INTENT(inout):: u10m_srf(:, :), v10m_srf(:, :) ! (klon, nbsrf)
118      ! (Comme les autres diagnostics on cumule dans physiq ce qui      ! composantes du vent \`a 10m sans spirale d'Ekman
119      ! permet de sortir les grandeurs par sous-surface)  
120        ! Ionela Musat. Cf. Anne Mathieu : planetary boundary layer, hbtm.
121        ! Comme les autres diagnostics on cumule dans physiq ce qui permet
122        ! de sortir les grandeurs par sous-surface.
123      REAL pblh(klon, nbsrf) ! height of planetary boundary layer      REAL pblh(klon, nbsrf) ! height of planetary boundary layer
124      REAL capcl(klon, nbsrf)      REAL capcl(klon, nbsrf)
125      REAL oliqcl(klon, nbsrf)      REAL oliqcl(klon, nbsrf)
# Line 137  contains Line 136  contains
136      REAL fqcalving(klon, nbsrf), ffonte(klon, nbsrf)      REAL fqcalving(klon, nbsrf), ffonte(klon, nbsrf)
137      ! ffonte----Flux thermique utilise pour fondre la neige      ! ffonte----Flux thermique utilise pour fondre la neige
138      ! fqcalving-Flux d'eau "perdue" par la surface et necessaire pour limiter la      ! fqcalving-Flux d'eau "perdue" par la surface et necessaire pour limiter la
139      !           hauteur de neige, en kg/m2/s      !           hauteur de neige, en kg / m2 / s
140      REAL run_off_lic_0(klon)      REAL run_off_lic_0(klon)
141    
142      ! Local:      ! Local:
# Line 152  contains Line 151  contains
151      real y_run_off_lic_0(klon)      real y_run_off_lic_0(klon)
152      REAL rugmer(klon)      REAL rugmer(klon)
153      REAL ytsoil(klon, nsoilmx)      REAL ytsoil(klon, nsoilmx)
154      REAL yts(klon), yrugos(klon), ypct(klon), yz0_new(klon)      REAL yts(klon), ypct(klon), yz0_new(klon)
155        real yrugos(klon) ! longeur de rugosite (en m)
156      REAL yalb(klon)      REAL yalb(klon)
   
     REAL yu1(klon), yv1(klon)  
     ! On ajoute en output yu1 et yv1 qui sont les vents dans  
     ! la premi\`ere couche.  
       
157      REAL snow(klon), yqsurf(klon), yagesno(klon)      REAL snow(klon), yqsurf(klon), yagesno(klon)
158        real yqsol(klon) ! column-density of water in soil, in kg m-2
159      real yqsol(klon)      REAL yrain_f(klon) ! liquid water mass flux (kg / m2 / s), positive down
160      ! column-density of water in soil, in kg m-2      REAL ysnow_f(klon) ! solid water mass flux (kg / m2 / s), positive down
   
     REAL yrain_f(klon)  
     ! liquid water mass flux (kg/m2/s), positive down  
   
     REAL ysnow_f(klon)  
     ! solid water mass flux (kg/m2/s), positive down  
   
     REAL yfder(klon)  
161      REAL yrugm(klon), yrads(klon), yrugoro(klon)      REAL yrugm(klon), yrads(klon), yrugoro(klon)
162      REAL yfluxlat(klon)      REAL yfluxlat(klon)
163      REAL y_d_ts(klon)      REAL y_d_ts(klon)
# Line 179  contains Line 166  contains
166      REAL y_flux_t(klon), y_flux_q(klon)      REAL y_flux_t(klon), y_flux_q(klon)
167      REAL y_flux_u(klon), y_flux_v(klon)      REAL y_flux_u(klon), y_flux_v(klon)
168      REAL y_dflux_t(klon), y_dflux_q(klon)      REAL y_dflux_t(klon), y_dflux_q(klon)
169      REAL coefh(klon, klev), coefm(klon, klev)      REAL ycoefh(klon, 2:klev), ycoefm(klon, 2:klev)
170        real ycdragh(klon), ycdragm(klon)
171      REAL yu(klon, klev), yv(klon, klev)      REAL yu(klon, klev), yv(klon, klev)
172      REAL yt(klon, klev), yq(klon, klev)      REAL yt(klon, klev), yq(klon, klev)
173      REAL ypaprs(klon, klev+1), ypplay(klon, klev), ydelp(klon, klev)      REAL ypaprs(klon, klev + 1), ypplay(klon, klev), ydelp(klon, klev)
174        REAL ycoefm0(klon, 2:klev), ycoefh0(klon, 2:klev)
175      REAL ycoefm0(klon, klev), ycoefh0(klon, klev)      REAL yzlay(klon, klev), zlev(klon, klev + 1), yteta(klon, klev)
176        REAL yq2(klon, klev + 1)
     REAL yzlay(klon, klev), yzlev(klon, klev+1), yteta(klon, klev)  
     REAL ykmm(klon, klev+1), ykmn(klon, klev+1)  
     REAL ykmq(klon, klev+1)  
     REAL yq2(klon, klev+1)  
     REAL q2diag(klon, klev+1)  
   
     REAL u1lay(klon), v1lay(klon)  
177      REAL delp(klon, klev)      REAL delp(klon, klev)
178      INTEGER i, k, nsrf      INTEGER i, k, nsrf
   
179      INTEGER ni(klon), knon, j      INTEGER ni(klon), knon, j
180    
181      REAL pctsrf_pot(klon, nbsrf)      REAL pctsrf_pot(klon, nbsrf)
182      ! "pourcentage potentiel" pour tenir compte des \'eventuelles      ! "pourcentage potentiel" pour tenir compte des \'eventuelles
183      ! apparitions ou disparitions de la glace de mer      ! apparitions ou disparitions de la glace de mer
184    
185      REAL zx_alf1, zx_alf2 ! valeur ambiante par extrapolation      REAL yt2m(klon), yq2m(klon), wind10m(klon)
186        REAL ustar(klon)
     REAL yt2m(klon), yq2m(klon), yu10m(klon)  
     REAL yustar(klon)  
187    
188      REAL yt10m(klon), yq10m(klon)      REAL yt10m(klon), yq10m(klon)
189      REAL ypblh(klon)      REAL ypblh(klon)
# Line 218  contains Line 196  contains
196      REAL ytrmb1(klon)      REAL ytrmb1(klon)
197      REAL ytrmb2(klon)      REAL ytrmb2(klon)
198      REAL ytrmb3(klon)      REAL ytrmb3(klon)
199      REAL uzon(klon), vmer(klon)      REAL u1(klon), v1(klon)
200      REAL tair1(klon), qair1(klon), tairsol(klon)      REAL tair1(klon), qair1(klon), tairsol(klon)
201      REAL psfce(klon), patm(klon)      REAL psfce(klon), patm(klon)
202    
203      REAL qairsol(klon), zgeo1(klon)      REAL qairsol(klon), zgeo1(klon)
204      REAL rugo1(klon)      REAL rugo1(klon)
205        REAL zgeop(klon, klev)
     ! utiliser un jeu de fonctions simples                
     LOGICAL zxli  
     PARAMETER (zxli=.FALSE.)  
206    
207      !------------------------------------------------------------      !------------------------------------------------------------
208    
# Line 235  contains Line 210  contains
210    
211      DO k = 1, klev ! epaisseur de couche      DO k = 1, klev ! epaisseur de couche
212         DO i = 1, klon         DO i = 1, klon
213            delp(i, k) = paprs(i, k) - paprs(i, k+1)            delp(i, k) = paprs(i, k) - paprs(i, k + 1)
214         END DO         END DO
215      END DO      END DO
     DO i = 1, klon ! vent de la premiere couche  
        zx_alf1 = 1.0  
        zx_alf2 = 1.0 - zx_alf1  
        u1lay(i) = u(i, 1)*zx_alf1 + u(i, 2)*zx_alf2  
        v1lay(i) = v(i, 1)*zx_alf1 + v(i, 2)*zx_alf2  
     END DO  
216    
217      ! Initialization:      ! Initialization:
218      rugmer = 0.      rugmer = 0.
# Line 251  contains Line 220  contains
220      cdragm = 0.      cdragm = 0.
221      dflux_t = 0.      dflux_t = 0.
222      dflux_q = 0.      dflux_q = 0.
     zu1 = 0.  
     zv1 = 0.  
223      ypct = 0.      ypct = 0.
224      yqsurf = 0.      yqsurf = 0.
225      yrain_f = 0.      yrain_f = 0.
226      ysnow_f = 0.      ysnow_f = 0.
     yfder = 0.  
227      yrugos = 0.      yrugos = 0.
     yu1 = 0.  
     yv1 = 0.  
     yrads = 0.  
228      ypaprs = 0.      ypaprs = 0.
229      ypplay = 0.      ypplay = 0.
230      ydelp = 0.      ydelp = 0.
# Line 282  contains Line 245  contains
245      d_q = 0.      d_q = 0.
246      d_u = 0.      d_u = 0.
247      d_v = 0.      d_v = 0.
248      ycoefh = 0.      coefh = 0.
249    
250      ! Initialisation des "pourcentages potentiels". On consid\`ere ici qu'on      ! Initialisation des "pourcentages potentiels". On consid\`ere ici qu'on
251      ! peut avoir potentiellement de la glace sur tout le domaine oc\'eanique      ! peut avoir potentiellement de la glace sur tout le domaine oc\'eanique
# Line 324  contains Line 287  contains
287               yrain_f(j) = rain_fall(i)               yrain_f(j) = rain_fall(i)
288               ysnow_f(j) = snow_f(i)               ysnow_f(j) = snow_f(i)
289               yagesno(j) = agesno(i, nsrf)               yagesno(j) = agesno(i, nsrf)
290               yfder(j) = fder(i)               yrugos(j) = frugs(i, nsrf)
              yrugos(j) = rugos(i, nsrf)  
291               yrugoro(j) = rugoro(i)               yrugoro(j) = rugoro(i)
292               yu1(j) = u1lay(i)               yrads(j) = fsolsw(i, nsrf) + fsollw(i, nsrf)
293               yv1(j) = v1lay(i)               ypaprs(j, klev + 1) = paprs(i, klev + 1)
              yrads(j) = solsw(i, nsrf) + sollw(i, nsrf)  
              ypaprs(j, klev+1) = paprs(i, klev+1)  
294               y_run_off_lic_0(j) = run_off_lic_0(i)               y_run_off_lic_0(j) = run_off_lic_0(i)
295            END DO            END DO
296    
297            ! For continent, copy soil water content            ! For continent, copy soil water content
298            IF (nsrf == is_ter) THEN            IF (nsrf == is_ter) yqsol(:knon) = qsol(ni(:knon))
              yqsol(:knon) = qsol(ni(:knon))  
           ELSE  
              yqsol = 0.  
           END IF  
299    
300            ytsoil(:knon, :) = ftsoil(ni(:knon), :, nsrf)            ytsoil(:knon, :) = ftsoil(ni(:knon), :, nsrf)
301    
# Line 356  contains Line 312  contains
312               END DO               END DO
313            END DO            END DO
314    
315            ! calculer Cdrag et les coefficients d'echange            ! Calculer les géopotentiels de chaque couche:
316            CALL coefkz(nsrf, ypaprs, ypplay, ksta, ksta_ter, yts(:knon), &  
317                 yrugos, yu, yv, yt, yq, yqsurf(:knon), coefm(:knon, :), &            zgeop(:knon, 1) = RD * yt(:knon, 1) / (0.5 * (ypaprs(:knon, 1) &
318                 coefh(:knon, :))                 + ypplay(:knon, 1))) * (ypaprs(:knon, 1) - ypplay(:knon, 1))
319    
320              DO k = 2, klev
321                 zgeop(:knon, k) = zgeop(:knon, k - 1) + RD * 0.5 &
322                      * (yt(:knon, k - 1) + yt(:knon, k)) / ypaprs(:knon, k) &
323                      * (ypplay(:knon, k - 1) - ypplay(:knon, k))
324              ENDDO
325    
326              CALL clcdrag(nsrf, yu(:knon, 1), yv(:knon, 1), yt(:knon, 1), &
327                   yq(:knon, 1), zgeop(:knon, 1), yts(:knon), yqsurf(:knon), &
328                   yrugos(:knon), ycdragm(:knon), ycdragh(:knon))
329    
330              CALL coefkz(nsrf, ypaprs(:knon, :), ypplay(:knon, :), ksta, &
331                   ksta_ter, yts(:knon), yu(:knon, :), yv(:knon, :), yt(:knon, :), &
332                   yq(:knon, :), zgeop(:knon, :), ycoefm(:knon, :), &
333                   ycoefh(:knon, :))
334    
335            IF (iflag_pbl == 1) THEN            IF (iflag_pbl == 1) THEN
336               CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0, ycoefh0)               CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0(:knon, :), &
337               coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :))                    ycoefh0(:knon, :))
338               coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, :))               ycoefm(:knon, :) = max(ycoefm(:knon, :), ycoefm0(:knon, :))
339                 ycoefh(:knon, :) = max(ycoefh(:knon, :), ycoefh0(:knon, :))
340                 ycdragm(:knon) = max(ycdragm(:knon), 0.)
341                 ycdragh(:knon) = max(ycdragh(:knon), 0.)
342            END IF            END IF
343    
344            ! on met un seuil pour coefm et coefh            ! on met un seuil pour ycdragm et ycdragh
345            IF (nsrf == is_oce) THEN            IF (nsrf == is_oce) THEN
346               coefm(:knon, 1) = min(coefm(:knon, 1), cdmmax)               ycdragm(:knon) = min(ycdragm(:knon), cdmmax)
347               coefh(:knon, 1) = min(coefh(:knon, 1), cdhmax)               ycdragh(:knon) = min(ycdragh(:knon), cdhmax)
348            END IF            END IF
349    
350            IF (ok_kzmin) THEN            IF (ok_kzmin) THEN
351               ! Calcul d'une diffusion minimale pour les conditions tres stables               ! Calcul d'une diffusion minimale pour les conditions tres stables
352               CALL coefkzmin(knon, ypaprs, ypplay, yu, yv, yt, yq, &               CALL coefkzmin(knon, ypaprs, ypplay, yu, yv, yt, yq, &
353                    coefm(:knon, 1), ycoefm0, ycoefh0)                    ycdragm(:knon), ycoefh0(:knon, :))
354               coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :))               ycoefm0(:knon, :) = ycoefh0(:knon, :)
355               coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, :))               ycoefm(:knon, :) = max(ycoefm(:knon, :), ycoefm0(:knon, :))
356                 ycoefh(:knon, :) = max(ycoefh(:knon, :), ycoefh0(:knon, :))
357            END IF            END IF
358    
359            IF (iflag_pbl >= 3) THEN            IF (iflag_pbl >= 6) THEN
360               ! Mellor et Yamada adapt\'e \`a Mars, Richard Fournier et               ! Mellor et Yamada adapt\'e \`a Mars, Richard Fournier et
361               ! Fr\'ed\'eric Hourdin               ! Fr\'ed\'eric Hourdin
362               yzlay(:knon, 1) = rd * yt(:knon, 1) / (0.5 * (ypaprs(:knon, 1) &               yzlay(:knon, 1) = rd * yt(:knon, 1) / (0.5 * (ypaprs(:knon, 1) &
363                    + ypplay(:knon, 1))) &                    + ypplay(:knon, 1))) &
364                    * (ypaprs(:knon, 1) - ypplay(:knon, 1)) / rg                    * (ypaprs(:knon, 1) - ypplay(:knon, 1)) / rg
365    
366               DO k = 2, klev               DO k = 2, klev
367                  yzlay(1:knon, k) = yzlay(1:knon, k-1) &                  yzlay(:knon, k) = yzlay(:knon, k-1) &
368                       + rd * 0.5 * (yt(1:knon, k-1) + yt(1:knon, k)) &                       + rd * 0.5 * (yt(1:knon, k-1) + yt(1:knon, k)) &
369                       / ypaprs(1:knon, k) &                       / ypaprs(1:knon, k) &
370                       * (ypplay(1:knon, k-1) - ypplay(1:knon, k)) / rg                       * (ypplay(1:knon, k-1) - ypplay(1:knon, k)) / rg
371               END DO               END DO
372    
373               DO k = 1, klev               DO k = 1, klev
374                  yteta(1:knon, k) = yt(1:knon, k)*(ypaprs(1:knon, 1) &                  yteta(1:knon, k) = yt(1:knon, k) * (ypaprs(1:knon, 1) &
375                       / ypplay(1:knon, k))**rkappa * (1.+0.61*yq(1:knon, k))                       / ypplay(1:knon, k))**rkappa * (1. + 0.61 * yq(1:knon, k))
376               END DO               END DO
377               yzlev(1:knon, 1) = 0.  
378               yzlev(:knon, klev+1) = 2. * yzlay(:knon, klev) &               zlev(:knon, 1) = 0.
379                 zlev(:knon, klev + 1) = 2. * yzlay(:knon, klev) &
380                    - yzlay(:knon, klev - 1)                    - yzlay(:knon, klev - 1)
381    
382               DO k = 2, klev               DO k = 2, klev
383                  yzlev(1:knon, k) = 0.5*(yzlay(1:knon, k)+yzlay(1:knon, k-1))                  zlev(:knon, k) = 0.5 * (yzlay(:knon, k) + yzlay(:knon, k-1))
384               END DO               END DO
385    
386               DO k = 1, klev + 1               DO k = 1, klev + 1
387                  DO j = 1, knon                  DO j = 1, knon
388                     i = ni(j)                     i = ni(j)
# Line 409  contains Line 390  contains
390                  END DO                  END DO
391               END DO               END DO
392    
393               CALL ustarhb(knon, yu, yv, coefm(:knon, 1), yustar)               ustar(:knon) = ustarhb(yu(:knon, 1), yv(:knon, 1), ycdragm(:knon))
394               IF (prt_level > 9) PRINT *, 'USTAR = ', yustar               CALL yamada4(dtime, rg, zlev(:knon, :), yzlay(:knon, :), &
395                      yu(:knon, :), yv(:knon, :), yteta(:knon, :), yq2(:knon, :), &
396               ! iflag_pbl peut \^etre utilis\'e comme longueur de m\'elange                    ycoefm(:knon, :), ycoefh(:knon, :), ustar(:knon))
   
              IF (iflag_pbl >= 11) THEN  
                 CALL vdif_kcay(knon, dtime, rg, ypaprs, yzlev, yzlay, yu, yv, &  
                      yteta, coefm(:knon, 1), yq2, q2diag, ykmm, ykmn, yustar, &  
                      iflag_pbl)  
              ELSE  
                 CALL yamada4(knon, dtime, rg, yzlev, yzlay, yu, yv, yteta, &  
                      coefm(:knon, 1), yq2, ykmm, ykmn, ykmq, yustar, iflag_pbl)  
              END IF  
   
              coefm(:knon, 2:) = ykmm(:knon, 2:klev)  
              coefh(:knon, 2:) = ykmn(:knon, 2:klev)  
397            END IF            END IF
398    
399            ! calculer la diffusion des vitesses "u" et "v"            CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), ycoefm(:knon, :), &
400            CALL clvent(knon, dtime, yu1, yv1, coefm(:knon, :), yt, yu, ypaprs, &                 ycdragm(:knon), yt(:knon, :), yu(:knon, :), ypaprs(:knon, :), &
401                 ypplay, ydelp, y_d_u, y_flux_u(:knon))                 ypplay(:knon, :), ydelp(:knon, :), y_d_u(:knon, :), &
402            CALL clvent(knon, dtime, yu1, yv1, coefm(:knon, :), yt, yv, ypaprs, &                 y_flux_u(:knon))
403                 ypplay, ydelp, y_d_v, y_flux_v(:knon))            CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), ycoefm(:knon, :), &
404                   ycdragm(:knon), yt(:knon, :), yv(:knon, :), ypaprs(:knon, :), &
405                   ypplay(:knon, :), ydelp(:knon, :), y_d_v(:knon, :), &
406                   y_flux_v(:knon))
407    
408            ! calculer la diffusion de "q" et de "h"            ! calculer la diffusion de "q" et de "h"
409            CALL clqh(dtime, julien, firstcal, nsrf, ni(:knon), &            CALL clqh(dtime, julien, firstcal, nsrf, ni(:knon), &
410                 ytsoil(:knon, :), yqsol, mu0, yrugos, yrugoro, yu1, yv1, &                 ytsoil(:knon, :), yqsol(:knon), mu0, yrugos, yrugoro, &
411                 coefh(:knon, :), yt, yq, yts(:knon), ypaprs, ypplay, ydelp, &                 yu(:knon, 1), yv(:knon, 1), ycoefh(:knon, :), ycdragh(:knon), &
412                 yrads, yalb(:knon), snow(:knon), yqsurf, yrain_f, ysnow_f, &                 yt, yq, yts(:knon), ypaprs, ypplay, ydelp, yrads(:knon), &
413                 yfder, yfluxlat(:knon), pctsrf_new_sic, yagesno(:knon), y_d_t, &                 yalb(:knon), snow(:knon), yqsurf, yrain_f, ysnow_f, &
414                 y_d_q, y_d_ts(:knon), yz0_new, y_flux_t(:knon), &                 yfluxlat(:knon), pctsrf_new_sic, yagesno(:knon), y_d_t, y_d_q, &
415                 y_flux_q(:knon), y_dflux_t, y_dflux_q, y_fqcalving, y_ffonte, &                 y_d_ts(:knon), yz0_new, y_flux_t(:knon), y_flux_q(:knon), &
416                   y_dflux_t(:knon), y_dflux_q(:knon), y_fqcalving, y_ffonte, &
417                 y_run_off_lic_0)                 y_run_off_lic_0)
418    
419            ! calculer la longueur de rugosite sur ocean            ! calculer la longueur de rugosite sur ocean
420            yrugm = 0.            yrugm = 0.
421            IF (nsrf == is_oce) THEN            IF (nsrf == is_oce) THEN
422               DO j = 1, knon               DO j = 1, knon
423                  yrugm(j) = 0.018*coefm(j, 1)*(yu1(j)**2+yv1(j)**2)/rg + &                  yrugm(j) = 0.018 * ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2) &
424                       0.11*14E-6/sqrt(coefm(j, 1)*(yu1(j)**2+yv1(j)**2))                       / rg + 0.11 * 14E-6 &
425                         / sqrt(ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2))
426                  yrugm(j) = max(1.5E-05, yrugm(j))                  yrugm(j) = max(1.5E-05, yrugm(j))
427               END DO               END DO
428            END IF            END IF
429            DO j = 1, knon            DO j = 1, knon
430               y_dflux_t(j) = y_dflux_t(j)*ypct(j)               y_dflux_t(j) = y_dflux_t(j) * ypct(j)
431               y_dflux_q(j) = y_dflux_q(j)*ypct(j)               y_dflux_q(j) = y_dflux_q(j) * ypct(j)
              yu1(j) = yu1(j)*ypct(j)  
              yv1(j) = yv1(j)*ypct(j)  
432            END DO            END DO
433    
434            DO k = 1, klev            DO k = 1, klev
435               DO j = 1, knon               DO j = 1, knon
436                  i = ni(j)                  i = ni(j)
437                  coefh(j, k) = coefh(j, k)*ypct(j)                  y_d_t(j, k) = y_d_t(j, k) * ypct(j)
438                  coefm(j, k) = coefm(j, k)*ypct(j)                  y_d_q(j, k) = y_d_q(j, k) * ypct(j)
439                  y_d_t(j, k) = y_d_t(j, k)*ypct(j)                  y_d_u(j, k) = y_d_u(j, k) * ypct(j)
440                  y_d_q(j, k) = y_d_q(j, k)*ypct(j)                  y_d_v(j, k) = y_d_v(j, k) * ypct(j)
                 y_d_u(j, k) = y_d_u(j, k)*ypct(j)  
                 y_d_v(j, k) = y_d_v(j, k)*ypct(j)  
441               END DO               END DO
442            END DO            END DO
443    
# Line 481  contains Line 451  contains
451            falbe(:, nsrf) = 0.            falbe(:, nsrf) = 0.
452            fsnow(:, nsrf) = 0.            fsnow(:, nsrf) = 0.
453            qsurf(:, nsrf) = 0.            qsurf(:, nsrf) = 0.
454            rugos(:, nsrf) = 0.            frugs(:, nsrf) = 0.
455            DO j = 1, knon            DO j = 1, knon
456               i = ni(j)               i = ni(j)
457               d_ts(i, nsrf) = y_d_ts(j)               d_ts(i, nsrf) = y_d_ts(j)
458               falbe(i, nsrf) = yalb(j)               falbe(i, nsrf) = yalb(j)
459               fsnow(i, nsrf) = snow(j)               fsnow(i, nsrf) = snow(j)
460               qsurf(i, nsrf) = yqsurf(j)               qsurf(i, nsrf) = yqsurf(j)
461               rugos(i, nsrf) = yz0_new(j)               frugs(i, nsrf) = yz0_new(j)
462               fluxlat(i, nsrf) = yfluxlat(j)               fluxlat(i, nsrf) = yfluxlat(j)
463               IF (nsrf == is_oce) THEN               IF (nsrf == is_oce) THEN
464                  rugmer(i) = yrugm(j)                  rugmer(i) = yrugm(j)
465                  rugos(i, nsrf) = yrugm(j)                  frugs(i, nsrf) = yrugm(j)
466               END IF               END IF
467               agesno(i, nsrf) = yagesno(j)               agesno(i, nsrf) = yagesno(j)
468               fqcalving(i, nsrf) = y_fqcalving(j)               fqcalving(i, nsrf) = y_fqcalving(j)
469               ffonte(i, nsrf) = y_ffonte(j)               ffonte(i, nsrf) = y_ffonte(j)
470               cdragh(i) = cdragh(i) + coefh(j, 1)               cdragh(i) = cdragh(i) + ycdragh(j) * ypct(j)
471               cdragm(i) = cdragm(i) + coefm(j, 1)               cdragm(i) = cdragm(i) + ycdragm(j) * ypct(j)
472               dflux_t(i) = dflux_t(i) + y_dflux_t(j)               dflux_t(i) = dflux_t(i) + y_dflux_t(j)
473               dflux_q(i) = dflux_q(i) + y_dflux_q(j)               dflux_q(i) = dflux_q(i) + y_dflux_q(j)
              zu1(i) = zu1(i) + yu1(j)  
              zv1(i) = zv1(i) + yv1(j)  
474            END DO            END DO
475            IF (nsrf == is_ter) THEN            IF (nsrf == is_ter) THEN
476               qsol(ni(:knon)) = yqsol(:knon)               qsol(ni(:knon)) = yqsol(:knon)
# Line 523  contains Line 491  contains
491                  d_q(i, k) = d_q(i, k) + y_d_q(j, k)                  d_q(i, k) = d_q(i, k) + y_d_q(j, k)
492                  d_u(i, k) = d_u(i, k) + y_d_u(j, k)                  d_u(i, k) = d_u(i, k) + y_d_u(j, k)
493                  d_v(i, k) = d_v(i, k) + y_d_v(j, k)                  d_v(i, k) = d_v(i, k) + y_d_v(j, k)
                 ycoefh(i, k) = ycoefh(i, k) + coefh(j, k)  
494               END DO               END DO
495            END DO            END DO
496    
497              forall (k = 2:klev) coefh(ni(:knon), k) &
498                   = coefh(ni(:knon), k) + ycoefh(:knon, k) * ypct(:knon)
499    
500            ! diagnostic t, q a 2m et u, v a 10m            ! diagnostic t, q a 2m et u, v a 10m
501    
502            DO j = 1, knon            DO j = 1, knon
503               i = ni(j)               i = ni(j)
504               uzon(j) = yu(j, 1) + y_d_u(j, 1)               u1(j) = yu(j, 1) + y_d_u(j, 1)
505               vmer(j) = yv(j, 1) + y_d_v(j, 1)               v1(j) = yv(j, 1) + y_d_v(j, 1)
506               tair1(j) = yt(j, 1) + y_d_t(j, 1)               tair1(j) = yt(j, 1) + y_d_t(j, 1)
507               qair1(j) = yq(j, 1) + y_d_q(j, 1)               qair1(j) = yq(j, 1) + y_d_q(j, 1)
508               zgeo1(j) = rd*tair1(j)/(0.5*(ypaprs(j, 1)+ypplay(j, &               zgeo1(j) = rd * tair1(j) / (0.5 * (ypaprs(j, 1) + ypplay(j, &
509                    1)))*(ypaprs(j, 1)-ypplay(j, 1))                    1))) * (ypaprs(j, 1)-ypplay(j, 1))
510               tairsol(j) = yts(j) + y_d_ts(j)               tairsol(j) = yts(j) + y_d_ts(j)
511               rugo1(j) = yrugos(j)               rugo1(j) = yrugos(j)
512               IF (nsrf == is_oce) THEN               IF (nsrf == is_oce) THEN
513                  rugo1(j) = rugos(i, nsrf)                  rugo1(j) = frugs(i, nsrf)
514               END IF               END IF
515               psfce(j) = ypaprs(j, 1)               psfce(j) = ypaprs(j, 1)
516               patm(j) = ypplay(j, 1)               patm(j) = ypplay(j, 1)
# Line 548  contains Line 518  contains
518               qairsol(j) = yqsurf(j)               qairsol(j) = yqsurf(j)
519            END DO            END DO
520    
521            CALL stdlevvar(klon, knon, nsrf, zxli, uzon, vmer, tair1, qair1, &            CALL stdlevvar(klon, knon, nsrf, u1(:knon), v1(:knon), tair1(:knon), &
522                 zgeo1, tairsol, qairsol, rugo1, psfce, patm, yt2m, yq2m, &                 qair1, zgeo1, tairsol, qairsol, rugo1, psfce, patm, yt2m, &
523                 yt10m, yq10m, yu10m, yustar)                 yq2m, yt10m, yq10m, wind10m(:knon), ustar(:knon))
524    
525            DO j = 1, knon            DO j = 1, knon
526               i = ni(j)               i = ni(j)
527               t2m(i, nsrf) = yt2m(j)               t2m(i, nsrf) = yt2m(j)
528               q2m(i, nsrf) = yq2m(j)               q2m(i, nsrf) = yq2m(j)
529    
530               ! u10m, v10m : composantes du vent a 10m sans spirale de Ekman               u10m_srf(i, nsrf) = (wind10m(j) * u1(j)) &
531               u10m(i, nsrf) = (yu10m(j)*uzon(j))/sqrt(uzon(j)**2+vmer(j)**2)                    / sqrt(u1(j)**2 + v1(j)**2)
532               v10m(i, nsrf) = (yu10m(j)*vmer(j))/sqrt(uzon(j)**2+vmer(j)**2)               v10m_srf(i, nsrf) = (wind10m(j) * v1(j)) &
533                      / sqrt(u1(j)**2 + v1(j)**2)
534            END DO            END DO
535    
536            CALL hbtm(ypaprs, ypplay, yt2m, yq2m, yustar, y_flux_t(:knon), &            CALL hbtm(ypaprs, ypplay, yt2m, yq2m, ustar(:knon), y_flux_t(:knon), &
537                 y_flux_q(:knon), yu, yv, yt, yq, ypblh(:knon), ycapcl, &                 y_flux_q(:knon), yu, yv, yt, yq, ypblh(:knon), ycapcl, &
538                 yoliqcl, ycteicl, ypblt, ytherm, ytrmb1, ytrmb2, ytrmb3, ylcl)                 yoliqcl, ycteicl, ypblt, ytherm, ytrmb1, ytrmb2, ytrmb3, ylcl)
539    
# Line 592  contains Line 563  contains
563      END DO loop_surface      END DO loop_surface
564    
565      ! On utilise les nouvelles surfaces      ! On utilise les nouvelles surfaces
566      rugos(:, is_oce) = rugmer      frugs(:, is_oce) = rugmer
567      pctsrf(:, is_oce) = pctsrf_new_oce      pctsrf(:, is_oce) = pctsrf_new_oce
568      pctsrf(:, is_sic) = pctsrf_new_sic      pctsrf(:, is_sic) = pctsrf_new_sic
569    

Legend:
Removed from v.221  
changed lines
  Added in v.248

  ViewVC Help
Powered by ViewVC 1.1.21