--- trunk/Sources/phylmd/clmain.f 2017/11/07 10:52:46 233 +++ trunk/Sources/phylmd/clmain.f 2018/01/05 16:40:13 248 @@ -8,7 +8,7 @@ cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, paprs, pplay, fsnow, & qsurf, evap, falbe, fluxlat, rain_fall, snow_f, fsolsw, fsollw, frugs, & agesno, rugoro, d_t, d_q, d_u, d_v, d_ts, flux_t, flux_q, flux_u, & - flux_v, cdragh, cdragm, q2, dflux_t, dflux_q, ycoefh, t2m, q2m, & + flux_v, cdragh, cdragm, q2, dflux_t, dflux_q, coefh, t2m, q2m, & u10m_srf, v10m_srf, pblh, capcl, oliqcl, cteicl, pblt, therm, trmb1, & trmb2, trmb3, plcl, fqcalving, ffonte, run_off_lic_0) @@ -21,6 +21,7 @@ ! ne tient pas compte de la diff\'erentiation des sous-fractions ! de sol. + use clcdrag_m, only: clcdrag use clqh_m, only: clqh use clvent_m, only: clvent use coefkz_m, only: coefkz @@ -106,9 +107,9 @@ ! dflux_q derive du flux latent ! IM "slab" ocean - REAL, intent(out):: ycoefh(klon, klev) + REAL, intent(out):: coefh(:, 2:) ! (klon, 2:klev) ! Pour pouvoir extraire les coefficients d'\'echange, le champ - ! "ycoefh" a \'et\'e cr\'e\'e. Nous avons moyenn\'e les valeurs de + ! "coefh" a \'et\'e cr\'e\'e. Nous avons moyenn\'e les valeurs de ! ce champ sur les quatre sous-surfaces du mod\`ele. REAL, INTENT(inout):: t2m(klon, nbsrf), q2m(klon, nbsrf) @@ -150,7 +151,8 @@ real y_run_off_lic_0(klon) REAL rugmer(klon) REAL ytsoil(klon, nsoilmx) - REAL yts(klon), yrugos(klon), ypct(klon), yz0_new(klon) + REAL yts(klon), ypct(klon), yz0_new(klon) + real yrugos(klon) ! longeur de rugosite (en m) REAL yalb(klon) REAL snow(klon), yqsurf(klon), yagesno(klon) real yqsol(klon) ! column-density of water in soil, in kg m-2 @@ -164,14 +166,13 @@ REAL y_flux_t(klon), y_flux_q(klon) REAL y_flux_u(klon), y_flux_v(klon) REAL y_dflux_t(klon), y_dflux_q(klon) - REAL coefh(klon, klev), coefm(klon, klev) + REAL ycoefh(klon, 2:klev), ycoefm(klon, 2:klev) + real ycdragh(klon), ycdragm(klon) REAL yu(klon, klev), yv(klon, klev) REAL yt(klon, klev), yq(klon, klev) REAL ypaprs(klon, klev + 1), ypplay(klon, klev), ydelp(klon, klev) - REAL ycoefm0(klon, klev), ycoefh0(klon, klev) + REAL ycoefm0(klon, 2:klev), ycoefh0(klon, 2:klev) REAL yzlay(klon, klev), zlev(klon, klev + 1), yteta(klon, klev) - REAL ykmm(klon, klev + 1), ykmn(klon, klev + 1) - REAL ykmq(klon, klev + 1) REAL yq2(klon, klev + 1) REAL delp(klon, klev) INTEGER i, k, nsrf @@ -201,6 +202,7 @@ REAL qairsol(klon), zgeo1(klon) REAL rugo1(klon) + REAL zgeop(klon, klev) !------------------------------------------------------------ @@ -243,7 +245,7 @@ d_q = 0. d_u = 0. d_v = 0. - ycoefh = 0. + coefh = 0. ! Initialisation des "pourcentages potentiels". On consid\`ere ici qu'on ! peut avoir potentiellement de la glace sur tout le domaine oc\'eanique @@ -310,29 +312,48 @@ END DO END DO - ! calculer Cdrag et les coefficients d'echange - CALL coefkz(nsrf, ypaprs, ypplay, ksta, ksta_ter, yts(:knon), & - yrugos, yu, yv, yt, yq, yqsurf(:knon), coefm(:knon, 2:), & - coefh(:knon, 2:), coefm(:knon, 1), coefh(:knon, 1)) + ! Calculer les géopotentiels de chaque couche: + + zgeop(:knon, 1) = RD * yt(:knon, 1) / (0.5 * (ypaprs(:knon, 1) & + + ypplay(:knon, 1))) * (ypaprs(:knon, 1) - ypplay(:knon, 1)) + + DO k = 2, klev + zgeop(:knon, k) = zgeop(:knon, k - 1) + RD * 0.5 & + * (yt(:knon, k - 1) + yt(:knon, k)) / ypaprs(:knon, k) & + * (ypplay(:knon, k - 1) - ypplay(:knon, k)) + ENDDO + + CALL clcdrag(nsrf, yu(:knon, 1), yv(:knon, 1), yt(:knon, 1), & + yq(:knon, 1), zgeop(:knon, 1), yts(:knon), yqsurf(:knon), & + yrugos(:knon), ycdragm(:knon), ycdragh(:knon)) + + CALL coefkz(nsrf, ypaprs(:knon, :), ypplay(:knon, :), ksta, & + ksta_ter, yts(:knon), yu(:knon, :), yv(:knon, :), yt(:knon, :), & + yq(:knon, :), zgeop(:knon, :), ycoefm(:knon, :), & + ycoefh(:knon, :)) IF (iflag_pbl == 1) THEN - CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0, ycoefh0) - coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :)) - coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, :)) + CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0(:knon, :), & + ycoefh0(:knon, :)) + ycoefm(:knon, :) = max(ycoefm(:knon, :), ycoefm0(:knon, :)) + ycoefh(:knon, :) = max(ycoefh(:knon, :), ycoefh0(:knon, :)) + ycdragm(:knon) = max(ycdragm(:knon), 0.) + ycdragh(:knon) = max(ycdragh(:knon), 0.) END IF - ! on met un seuil pour coefm et coefh + ! on met un seuil pour ycdragm et ycdragh IF (nsrf == is_oce) THEN - coefm(:knon, 1) = min(coefm(:knon, 1), cdmmax) - coefh(:knon, 1) = min(coefh(:knon, 1), cdhmax) + ycdragm(:knon) = min(ycdragm(:knon), cdmmax) + ycdragh(:knon) = min(ycdragh(:knon), cdhmax) END IF IF (ok_kzmin) THEN ! Calcul d'une diffusion minimale pour les conditions tres stables CALL coefkzmin(knon, ypaprs, ypplay, yu, yv, yt, yq, & - coefm(:knon, 1), ycoefm0(:knon, 2:), ycoefh0(:knon, 2:)) - coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :)) - coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, :)) + ycdragm(:knon), ycoefh0(:knon, :)) + ycoefm0(:knon, :) = ycoefh0(:knon, :) + ycoefm(:knon, :) = max(ycoefm(:knon, :), ycoefm0(:knon, :)) + ycoefh(:knon, :) = max(ycoefh(:knon, :), ycoefh0(:knon, :)) END IF IF (iflag_pbl >= 6) THEN @@ -369,41 +390,39 @@ END DO END DO - ustar(:knon) = ustarhb(yu(:knon, 1), yv(:knon, 1), coefm(:knon, 1)) + ustar(:knon) = ustarhb(yu(:knon, 1), yv(:knon, 1), ycdragm(:knon)) CALL yamada4(dtime, rg, zlev(:knon, :), yzlay(:knon, :), & - yu(:knon, :), yv(:knon, :), yteta(:knon, :), & - coefm(:knon, 1), yq2(:knon, :), ykmm(:knon, :), & - ykmn(:knon, :), ykmq(:knon, :), ustar(:knon)) - coefm(:knon, 2:) = ykmm(:knon, 2:klev) - coefh(:knon, 2:) = ykmn(:knon, 2:klev) + yu(:knon, :), yv(:knon, :), yteta(:knon, :), yq2(:knon, :), & + ycoefm(:knon, :), ycoefh(:knon, :), ustar(:knon)) END IF - CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), coefm(:knon, 2:), & - coefm(:knon, 1), yt(:knon, :), yu(:knon, :), ypaprs(:knon, :), & + CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), ycoefm(:knon, :), & + ycdragm(:knon), yt(:knon, :), yu(:knon, :), ypaprs(:knon, :), & ypplay(:knon, :), ydelp(:knon, :), y_d_u(:knon, :), & y_flux_u(:knon)) - CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), coefm(:knon, 2:), & - coefm(:knon, 1), yt(:knon, :), yv(:knon, :), ypaprs(:knon, :), & + CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), ycoefm(:knon, :), & + ycdragm(:knon), yt(:knon, :), yv(:knon, :), ypaprs(:knon, :), & ypplay(:knon, :), ydelp(:knon, :), y_d_v(:knon, :), & y_flux_v(:knon)) ! calculer la diffusion de "q" et de "h" CALL clqh(dtime, julien, firstcal, nsrf, ni(:knon), & ytsoil(:knon, :), yqsol(:knon), mu0, yrugos, yrugoro, & - yu(:knon, 1), yv(:knon, 1), coefh(:knon, :), yt, yq, & - yts(:knon), ypaprs, ypplay, ydelp, yrads(:knon), yalb(:knon), & - snow(:knon), yqsurf, yrain_f, ysnow_f, yfluxlat(:knon), & - pctsrf_new_sic, yagesno(:knon), y_d_t, y_d_q, y_d_ts(:knon), & - yz0_new, y_flux_t(:knon), y_flux_q(:knon), y_dflux_t(:knon), & - y_dflux_q(:knon), y_fqcalving, y_ffonte, y_run_off_lic_0) + yu(:knon, 1), yv(:knon, 1), ycoefh(:knon, :), ycdragh(:knon), & + yt, yq, yts(:knon), ypaprs, ypplay, ydelp, yrads(:knon), & + yalb(:knon), snow(:knon), yqsurf, yrain_f, ysnow_f, & + yfluxlat(:knon), pctsrf_new_sic, yagesno(:knon), y_d_t, y_d_q, & + y_d_ts(:knon), yz0_new, y_flux_t(:knon), y_flux_q(:knon), & + y_dflux_t(:knon), y_dflux_q(:knon), y_fqcalving, y_ffonte, & + y_run_off_lic_0) ! calculer la longueur de rugosite sur ocean yrugm = 0. IF (nsrf == is_oce) THEN DO j = 1, knon - yrugm(j) = 0.018 * coefm(j, 1) * (yu(j, 1)**2 + yv(j, 1)**2) & + yrugm(j) = 0.018 * ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2) & / rg + 0.11 * 14E-6 & - / sqrt(coefm(j, 1) * (yu(j, 1)**2 + yv(j, 1)**2)) + / sqrt(ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2)) yrugm(j) = max(1.5E-05, yrugm(j)) END DO END IF @@ -415,8 +434,6 @@ DO k = 1, klev DO j = 1, knon i = ni(j) - coefh(j, k) = coefh(j, k) * ypct(j) - coefm(j, k) = coefm(j, k) * ypct(j) y_d_t(j, k) = y_d_t(j, k) * ypct(j) y_d_q(j, k) = y_d_q(j, k) * ypct(j) y_d_u(j, k) = y_d_u(j, k) * ypct(j) @@ -450,8 +467,8 @@ agesno(i, nsrf) = yagesno(j) fqcalving(i, nsrf) = y_fqcalving(j) ffonte(i, nsrf) = y_ffonte(j) - cdragh(i) = cdragh(i) + coefh(j, 1) - cdragm(i) = cdragm(i) + coefm(j, 1) + cdragh(i) = cdragh(i) + ycdragh(j) * ypct(j) + cdragm(i) = cdragm(i) + ycdragm(j) * ypct(j) dflux_t(i) = dflux_t(i) + y_dflux_t(j) dflux_q(i) = dflux_q(i) + y_dflux_q(j) END DO @@ -474,10 +491,12 @@ d_q(i, k) = d_q(i, k) + y_d_q(j, k) d_u(i, k) = d_u(i, k) + y_d_u(j, k) d_v(i, k) = d_v(i, k) + y_d_v(j, k) - ycoefh(i, k) = ycoefh(i, k) + coefh(j, k) END DO END DO + forall (k = 2:klev) coefh(ni(:knon), k) & + = coefh(ni(:knon), k) + ycoefh(:knon, k) * ypct(:knon) + ! diagnostic t, q a 2m et u, v a 10m DO j = 1, knon @@ -501,7 +520,7 @@ CALL stdlevvar(klon, knon, nsrf, u1(:knon), v1(:knon), tair1(:knon), & qair1, zgeo1, tairsol, qairsol, rugo1, psfce, patm, yt2m, & - yq2m, yt10m, yq10m, wind10m(:knon), ustar) + yq2m, yt10m, yq10m, wind10m(:knon), ustar(:knon)) DO j = 1, knon i = ni(j)