/[lmdze]/trunk/Sources/phylmd/clmain.f
ViewVC logotype

Diff of /trunk/Sources/phylmd/clmain.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/libf/phylmd/clmain.f90 revision 47 by guez, Fri Jul 1 15:00:48 2011 UTC trunk/Sources/phylmd/clmain.f revision 250 by guez, Fri Jan 5 18:18:53 2018 UTC
# Line 4  module clmain_m Line 4  module clmain_m
4    
5  contains  contains
6    
7    SUBROUTINE clmain(dtime, itap, date0, pctsrf, pctsrf_new, t, q, u, v,&    SUBROUTINE clmain(dtime, pctsrf, t, q, u, v, julien, mu0, ftsol, cdmmax, &
8         jour, rmu0, co2_ppm, ok_veget, ocean, npas, nexca, ts,&         cdhmax, ftsoil, qsol, paprs, pplay, fsnow, qsurf, evap, falbe, fluxlat, &
9         soil_model, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil,&         rain_fall, snow_f, fsolsw, fsollw, frugs, agesno, rugoro, d_t, d_q, &
10         qsol, paprs, pplay, snow, qsurf, evap, albe, alblw, fluxlat,&         d_u, d_v, d_ts, flux_t, flux_q, flux_u, flux_v, cdragh, cdragm, q2, &
11         rain_f, snow_f, solsw, sollw, sollwdown, fder, rlon, rlat, cufi,&         dflux_t, dflux_q, coefh, t2m, q2m, u10m_srf, v10m_srf, pblh, capcl, &
12         cvfi, rugos, debut, lafin, agesno, rugoro, d_t, d_q, d_u, d_v,&         oliqcl, cteicl, pblt, therm, trmb1, trmb2, trmb3, plcl, fqcalving, &
13         d_ts, flux_t, flux_q, flux_u, flux_v, cdragh, cdragm, q2,&         ffonte, run_off_lic_0)
14         dflux_t, dflux_q, zcoefh, zu1, zv1, t2m, q2m, u10m, v10m, pblh,&  
15         capcl, oliqcl, cteicl, pblt, therm, trmb1, trmb2, trmb3, plcl,&      ! From phylmd/clmain.F, version 1.6, 2005/11/16 14:47:19
16         fqcalving, ffonte, run_off_lic_0, flux_o, flux_g, tslab, seaice)      ! Author: Z. X. Li (LMD/CNRS), date: 1993/08/18
17        ! Objet : interface de couche limite (diffusion verticale)
18      ! From phylmd/clmain.F, version 1.6 2005/11/16 14:47:19  
19      ! Author: Z.X. Li (LMD/CNRS), date: 1993/08/18      ! Tout ce qui a trait aux traceurs est dans "phytrac". Le calcul
20      ! Objet : interface de "couche limite" (diffusion verticale)      ! de la couche limite pour les traceurs se fait avec "cltrac" et
21        ! ne tient pas compte de la diff\'erentiation des sous-fractions
22      ! Tout ce qui a trait aux traceurs est dans "phytrac" maintenant.      ! de sol.
23      ! Pour l'instant le calcul de la couche limite pour les traceurs  
24      ! se fait avec "cltrac" et ne tient pas compte de la différentiation      use clcdrag_m, only: clcdrag
25      ! des sous-fractions de sol.      use clqh_m, only: clqh
26        use clvent_m, only: clvent
27      ! Pour pouvoir extraire les coefficients d'échanges et le vent      use coef_diff_turb_m, only: coef_diff_turb
28      ! dans la première couche, trois champs supplémentaires ont été      USE conf_gcm_m, ONLY: lmt_pas
29      ! créés : "zcoefh", "zu1" et "zv1". Pour l'instant nous avons      USE conf_phys_m, ONLY: iflag_pbl
30      ! moyenné les valeurs de ces trois champs sur les 4 sous-surfaces      USE dimphy, ONLY: klev, klon, zmasq
31      ! du modèle. Dans l'avenir, si les informations des sous-surfaces      USE dimsoil, ONLY: nsoilmx
32      ! doivent être prises en compte, il faudra sortir ces mêmes champs      use hbtm_m, only: hbtm
33      ! en leur ajoutant une dimension, c'est-à-dire "nbsrf" (nombre de      USE indicesol, ONLY: epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf
34      ! sous-surfaces).      USE interfoce_lim_m, ONLY: interfoce_lim
35        use stdlevvar_m, only: stdlevvar
36      ! Arguments:      USE suphec_m, ONLY: rd, rg
37      ! dtime----input-R- interval du temps (secondes)      use time_phylmdz, only: itap
38      ! itap-----input-I- numero du pas de temps  
39      ! date0----input-R- jour initial      REAL, INTENT(IN):: dtime ! interval du temps (secondes)
40      ! t--------input-R- temperature (K)  
41      ! q--------input-R- vapeur d'eau (kg/kg)      REAL, INTENT(inout):: pctsrf(klon, nbsrf)
42      ! u--------input-R- vitesse u      ! tableau des pourcentages de surface de chaque maille
43      ! v--------input-R- vitesse v  
44      ! ts-------input-R- temperature du sol (en Kelvin)      REAL, INTENT(IN):: t(klon, klev) ! temperature (K)
45      ! paprs----input-R- pression a intercouche (Pa)      REAL, INTENT(IN):: q(klon, klev) ! vapeur d'eau (kg / kg)
46      ! pplay----input-R- pression au milieu de couche (Pa)      REAL, INTENT(IN):: u(klon, klev), v(klon, klev) ! vitesse
47      ! radsol---input-R- flux radiatif net (positif vers le sol) en W/m**2      INTEGER, INTENT(IN):: julien ! jour de l'annee en cours
48      ! rlat-----input-R- latitude en degree      REAL, intent(in):: mu0(klon) ! cosinus de l'angle solaire zenithal    
49      ! rugos----input-R- longeur de rugosite (en m)      REAL, INTENT(IN):: ftsol(:, :) ! (klon, nbsrf) temp\'erature du sol (en K)
50      ! cufi-----input-R- resolution des mailles en x (m)      REAL, INTENT(IN):: cdmmax, cdhmax ! seuils cdrm, cdrh
51      ! cvfi-----input-R- resolution des mailles en y (m)  
52        REAL, INTENT(inout):: ftsoil(klon, nsoilmx, nbsrf)
53        ! soil temperature of surface fraction
54    
55        REAL, INTENT(inout):: qsol(:) ! (klon)
56        ! column-density of water in soil, in kg m-2
57    
58        REAL, INTENT(IN):: paprs(klon, klev + 1) ! pression a intercouche (Pa)
59        REAL, INTENT(IN):: pplay(klon, klev) ! pression au milieu de couche (Pa)
60        REAL, INTENT(inout):: fsnow(:, :) ! (klon, nbsrf) \'epaisseur neigeuse
61        REAL qsurf(klon, nbsrf)
62        REAL evap(klon, nbsrf)
63        REAL, intent(inout):: falbe(klon, nbsrf)
64        REAL, intent(out):: fluxlat(:, :) ! (klon, nbsrf)
65    
66        REAL, intent(in):: rain_fall(klon)
67        ! liquid water mass flux (kg / m2 / s), positive down
68    
69        REAL, intent(in):: snow_f(klon)
70        ! solid water mass flux (kg / m2 / s), positive down
71    
72        REAL, INTENT(IN):: fsolsw(klon, nbsrf), fsollw(klon, nbsrf)
73        REAL, intent(inout):: frugs(klon, nbsrf) ! longueur de rugosit\'e (en m)
74        real agesno(klon, nbsrf)
75        REAL, INTENT(IN):: rugoro(klon)
76    
77        REAL d_t(klon, klev), d_q(klon, klev)
78      ! d_t------output-R- le changement pour "t"      ! d_t------output-R- le changement pour "t"
79      ! d_q------output-R- le changement pour "q"      ! d_q------output-R- le changement pour "q"
80      ! d_u------output-R- le changement pour "u"  
81      ! d_v------output-R- le changement pour "v"      REAL, intent(out):: d_u(klon, klev), d_v(klon, klev)
82      ! d_ts-----output-R- le changement pour "ts"      ! changement pour "u" et "v"
83      ! flux_t---output-R- flux de chaleur sensible (CpT) J/m**2/s (W/m**2)  
84      !                    (orientation positive vers le bas)      REAL, intent(out):: d_ts(:, :) ! (klon, nbsrf) variation of ftsol
85      ! flux_q---output-R- flux de vapeur d'eau (kg/m**2/s)  
86      ! flux_u---output-R- tension du vent X: (kg m/s)/(m**2 s) ou Pascal      REAL, intent(out):: flux_t(klon, nbsrf)
87      ! flux_v---output-R- tension du vent Y: (kg m/s)/(m**2 s) ou Pascal      ! flux de chaleur sensible (Cp T) (W / m2) (orientation positive vers
88        ! le bas) à la surface
89    
90        REAL, intent(out):: flux_q(klon, nbsrf)
91        ! flux de vapeur d'eau (kg / m2 / s) à la surface
92    
93        REAL, intent(out):: flux_u(klon, nbsrf), flux_v(klon, nbsrf)
94        ! tension du vent (flux turbulent de vent) à la surface, en Pa
95    
96        REAL, INTENT(out):: cdragh(klon), cdragm(klon)
97        real q2(klon, klev + 1, nbsrf)
98    
99        REAL, INTENT(out):: dflux_t(klon), dflux_q(klon)
100      ! dflux_t derive du flux sensible      ! dflux_t derive du flux sensible
101      ! dflux_q derive du flux latent      ! dflux_q derive du flux latent
102      !IM "slab" ocean      ! IM "slab" ocean
     ! flux_g---output-R-  flux glace (pour OCEAN='slab  ')  
     ! flux_o---output-R-  flux ocean (pour OCEAN='slab  ')  
   
     ! tslab-in/output-R temperature du slab ocean (en Kelvin)  
     ! uniqmnt pour slab  
103    
104      ! seaice---output-R-  glace de mer (kg/m2) (pour OCEAN='slab  ')      REAL, intent(out):: coefh(:, 2:) ! (klon, 2:klev)
105      !cc      ! Pour pouvoir extraire les coefficients d'\'echange, le champ
106      ! ffonte----Flux thermique utilise pour fondre la neige      ! "coefh" a \'et\'e cr\'e\'e. Nous avons moyenn\'e les valeurs de
107      ! fqcalving-Flux d'eau "perdue" par la surface et necessaire pour limiter la      ! ce champ sur les quatre sous-surfaces du mod\`ele.
108      !           hauteur de neige, en kg/m2/s  
109      ! on rajoute en output yu1 et yv1 qui sont les vents dans      REAL, INTENT(inout):: t2m(klon, nbsrf), q2m(klon, nbsrf)
110      ! la premiere couche  
111      ! ces 4 variables sont maintenant traites dans phytrac      REAL, INTENT(inout):: u10m_srf(:, :), v10m_srf(:, :) ! (klon, nbsrf)
112      ! itr--------input-I- nombre de traceurs      ! composantes du vent \`a 10m sans spirale d'Ekman
113      ! tr---------input-R- q. de traceurs  
114      ! flux_surf--input-R- flux de traceurs a la surface      ! Ionela Musat. Cf. Anne Mathieu : planetary boundary layer, hbtm.
115      ! d_tr-------output-R tendance de traceurs      ! Comme les autres diagnostics on cumule dans physiq ce qui permet
116      !IM cf. AM : PBL      ! de sortir les grandeurs par sous-surface.
117        REAL pblh(klon, nbsrf) ! height of planetary boundary layer
118        REAL capcl(klon, nbsrf)
119        REAL oliqcl(klon, nbsrf)
120        REAL cteicl(klon, nbsrf)
121        REAL, INTENT(inout):: pblt(klon, nbsrf) ! T au nveau HCL
122        REAL therm(klon, nbsrf)
123        REAL trmb1(klon, nbsrf)
124      ! trmb1-------deep_cape      ! trmb1-------deep_cape
125        REAL trmb2(klon, nbsrf)
126      ! trmb2--------inhibition      ! trmb2--------inhibition
127        REAL trmb3(klon, nbsrf)
128      ! trmb3-------Point Omega      ! trmb3-------Point Omega
129      ! Cape(klon)-------Cape du thermique      REAL plcl(klon, nbsrf)
     ! EauLiq(klon)-------Eau liqu integr du thermique  
     ! ctei(klon)-------Critere d'instab d'entrainmt des nuages de CL  
     ! lcl------- Niveau de condensation  
     ! pblh------- HCL  
     ! pblT------- T au nveau HCL  
   
     use calendar, ONLY : ymds2ju  
     use coefkz_m, only: coefkz  
     use coefkzmin_m, only: coefkzmin  
     USE conf_phys_m, ONLY : iflag_pbl  
     USE dimens_m, ONLY : iim, jjm  
     USE dimphy, ONLY : klev, klon, zmasq  
     USE dimsoil, ONLY : nsoilmx  
     USE dynetat0_m, ONLY : day_ini  
     USE gath_cpl, ONLY : gath2cpl  
     use hbtm_m, only: hbtm  
     USE histcom, ONLY : histbeg_totreg, histdef, histend, histsync  
     use histwrite_m, only: histwrite  
     USE indicesol, ONLY : epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf  
     USE iniprint, ONLY : prt_level  
     USE suphec_m, ONLY : rd, rg, rkappa  
     USE temps, ONLY : annee_ref, itau_phy  
     use yamada4_m, only: yamada4  
   
     REAL, INTENT (IN) :: dtime  
     REAL date0  
     INTEGER, INTENT (IN) :: itap  
     REAL t(klon, klev), q(klon, klev)  
     REAL, INTENT (IN):: u(klon, klev), v(klon, klev)  
     REAL, INTENT (IN):: paprs(klon, klev+1)  
     REAL, INTENT (IN):: pplay(klon, klev)  
     REAL, INTENT (IN):: rlon(klon), rlat(klon)  
     REAL cufi(klon), cvfi(klon)  
     REAL d_t(klon, klev), d_q(klon, klev)  
     REAL d_u(klon, klev), d_v(klon, klev)  
     REAL flux_t(klon, klev, nbsrf), flux_q(klon, klev, nbsrf)  
     REAL dflux_t(klon), dflux_q(klon)  
     !IM "slab" ocean  
     REAL flux_o(klon), flux_g(klon)  
     REAL y_flux_o(klon), y_flux_g(klon)  
     REAL tslab(klon), ytslab(klon)  
     REAL seaice(klon), y_seaice(klon)  
     REAL y_fqcalving(klon), y_ffonte(klon)  
130      REAL fqcalving(klon, nbsrf), ffonte(klon, nbsrf)      REAL fqcalving(klon, nbsrf), ffonte(klon, nbsrf)
131      REAL run_off_lic_0(klon), y_run_off_lic_0(klon)      ! ffonte----Flux thermique utilise pour fondre la neige
132        ! fqcalving-Flux d'eau "perdue" par la surface et necessaire pour limiter la
133      REAL flux_u(klon, klev, nbsrf), flux_v(klon, klev, nbsrf)      !           hauteur de neige, en kg / m2 / s
134      REAL rugmer(klon), agesno(klon, nbsrf)      REAL run_off_lic_0(klon)
     REAL, INTENT (IN) :: rugoro(klon)  
     REAL cdragh(klon), cdragm(klon)  
     ! jour de l'annee en cours                  
     INTEGER jour  
     REAL rmu0(klon) ! cosinus de l'angle solaire zenithal      
     ! taux CO2 atmosphere                      
     REAL co2_ppm  
     LOGICAL, INTENT (IN) :: debut  
     LOGICAL, INTENT (IN) :: lafin  
     LOGICAL ok_veget  
     CHARACTER (len=*), INTENT (IN) :: ocean  
     INTEGER npas, nexca  
   
     REAL pctsrf(klon, nbsrf)  
     REAL ts(klon, nbsrf)  
     REAL d_ts(klon, nbsrf)  
     REAL snow(klon, nbsrf)  
     REAL qsurf(klon, nbsrf)  
     REAL evap(klon, nbsrf)  
     REAL albe(klon, nbsrf)  
     REAL alblw(klon, nbsrf)  
135    
136      REAL fluxlat(klon, nbsrf)      ! Local:
137    
138      REAL rain_f(klon), snow_f(klon)      LOGICAL:: firstcal = .true.
     REAL fder(klon)  
139    
     REAL sollw(klon, nbsrf), solsw(klon, nbsrf), sollwdown(klon)  
     REAL rugos(klon, nbsrf)  
140      ! la nouvelle repartition des surfaces sortie de l'interface      ! la nouvelle repartition des surfaces sortie de l'interface
141      REAL pctsrf_new(klon, nbsrf)      REAL, save:: pctsrf_new_oce(klon)
142        REAL, save:: pctsrf_new_sic(klon)
     REAL zcoefh(klon, klev)  
     REAL zu1(klon)  
     REAL zv1(klon)  
   
     !$$$ PB ajout pour soil  
     LOGICAL, INTENT (IN) :: soil_model  
     !IM ajout seuils cdrm, cdrh  
     REAL cdmmax, cdhmax  
143    
144      REAL ksta, ksta_ter      REAL y_fqcalving(klon), y_ffonte(klon)
145      LOGICAL ok_kzmin      real y_run_off_lic_0(klon)
146        REAL rugmer(klon)
     REAL ftsoil(klon, nsoilmx, nbsrf)  
147      REAL ytsoil(klon, nsoilmx)      REAL ytsoil(klon, nsoilmx)
148      REAL qsol(klon)      REAL yts(klon), ypct(klon), yz0_new(klon)
149        real yrugos(klon) ! longeur de rugosite (en m)
     EXTERNAL clqh, clvent, calbeta, cltrac  
   
     REAL yts(klon), yrugos(klon), ypct(klon), yz0_new(klon)  
150      REAL yalb(klon)      REAL yalb(klon)
151      REAL yalblw(klon)      REAL snow(klon), yqsurf(klon), yagesno(klon)
152      REAL yu1(klon), yv1(klon)      real yqsol(klon) ! column-density of water in soil, in kg m-2
153      REAL ysnow(klon), yqsurf(klon), yagesno(klon), yqsol(klon)      REAL yrain_f(klon) ! liquid water mass flux (kg / m2 / s), positive down
154      REAL yrain_f(klon), ysnow_f(klon)      REAL ysnow_f(klon) ! solid water mass flux (kg / m2 / s), positive down
     REAL ysollw(klon), ysolsw(klon), ysollwdown(klon)  
     REAL yfder(klon), ytaux(klon), ytauy(klon)  
155      REAL yrugm(klon), yrads(klon), yrugoro(klon)      REAL yrugm(klon), yrads(klon), yrugoro(klon)
   
156      REAL yfluxlat(klon)      REAL yfluxlat(klon)
   
157      REAL y_d_ts(klon)      REAL y_d_ts(klon)
158      REAL y_d_t(klon, klev), y_d_q(klon, klev)      REAL y_d_t(klon, klev), y_d_q(klon, klev)
159      REAL y_d_u(klon, klev), y_d_v(klon, klev)      REAL y_d_u(klon, klev), y_d_v(klon, klev)
160      REAL y_flux_t(klon, klev), y_flux_q(klon, klev)      REAL y_flux_t(klon), y_flux_q(klon)
161      REAL y_flux_u(klon, klev), y_flux_v(klon, klev)      REAL y_flux_u(klon), y_flux_v(klon)
162      REAL y_dflux_t(klon), y_dflux_q(klon)      REAL y_dflux_t(klon), y_dflux_q(klon)
163      REAL ycoefh(klon, klev), ycoefm(klon, klev)      REAL ycoefh(klon, 2:klev), ycoefm(klon, 2:klev)
164        real ycdragh(klon), ycdragm(klon)
165      REAL yu(klon, klev), yv(klon, klev)      REAL yu(klon, klev), yv(klon, klev)
166      REAL yt(klon, klev), yq(klon, klev)      REAL yt(klon, klev), yq(klon, klev)
167      REAL ypaprs(klon, klev+1), ypplay(klon, klev), ydelp(klon, klev)      REAL ypaprs(klon, klev + 1), ypplay(klon, klev), ydelp(klon, klev)
168        REAL yq2(klon, klev + 1)
     LOGICAL ok_nonloc  
     PARAMETER (ok_nonloc=.FALSE.)  
     REAL ycoefm0(klon, klev), ycoefh0(klon, klev)  
   
     REAL yzlay(klon, klev), yzlev(klon, klev+1), yteta(klon, klev)  
     REAL ykmm(klon, klev+1), ykmn(klon, klev+1)  
     REAL ykmq(klon, klev+1)  
     REAL yq2(klon, klev+1), q2(klon, klev+1, nbsrf)  
     REAL q2diag(klon, klev+1)  
   
     REAL u1lay(klon), v1lay(klon)  
169      REAL delp(klon, klev)      REAL delp(klon, klev)
170      INTEGER i, k, nsrf      INTEGER i, k, nsrf
   
171      INTEGER ni(klon), knon, j      INTEGER ni(klon), knon, j
172    
173      REAL pctsrf_pot(klon, nbsrf)      REAL pctsrf_pot(klon, nbsrf)
174      ! "pourcentage potentiel" pour tenir compte des éventuelles      ! "pourcentage potentiel" pour tenir compte des \'eventuelles
175      ! apparitions ou disparitions de la glace de mer      ! apparitions ou disparitions de la glace de mer
176    
177      REAL zx_alf1, zx_alf2 !valeur ambiante par extrapola.      REAL yt2m(klon), yq2m(klon), wind10m(klon)
178        REAL ustar(klon)
     ! maf pour sorties IOISPL en cas de debugagage  
   
     CHARACTER (80) cldebug  
     SAVE cldebug  
     CHARACTER (8) cl_surf(nbsrf)  
     SAVE cl_surf  
     INTEGER nhoridbg, nidbg  
     SAVE nhoridbg, nidbg  
     INTEGER ndexbg(iim*(jjm+1))  
     REAL zx_lon(iim, jjm+1), zx_lat(iim, jjm+1), zjulian  
     REAL tabindx(klon)  
     REAL debugtab(iim, jjm+1)  
     LOGICAL first_appel  
     SAVE first_appel  
     DATA first_appel/ .TRUE./  
     LOGICAL :: debugindex = .FALSE.  
     INTEGER idayref  
     REAL t2m(klon, nbsrf), q2m(klon, nbsrf)  
     REAL u10m(klon, nbsrf), v10m(klon, nbsrf)  
   
     REAL yt2m(klon), yq2m(klon), yu10m(klon)  
     REAL yustar(klon)  
     ! -- LOOP  
     REAL yu10mx(klon)  
     REAL yu10my(klon)  
     REAL ywindsp(klon)  
     ! -- LOOP  
179    
180      REAL yt10m(klon), yq10m(klon)      REAL yt10m(klon), yq10m(klon)
     !IM cf. AM : pbl, hbtm (Comme les autres diagnostics on cumule ds  
     ! physiq ce qui permet de sortir les grdeurs par sous surface)  
     REAL pblh(klon, nbsrf)  
     REAL plcl(klon, nbsrf)  
     REAL capcl(klon, nbsrf)  
     REAL oliqcl(klon, nbsrf)  
     REAL cteicl(klon, nbsrf)  
     REAL pblt(klon, nbsrf)  
     REAL therm(klon, nbsrf)  
     REAL trmb1(klon, nbsrf)  
     REAL trmb2(klon, nbsrf)  
     REAL trmb3(klon, nbsrf)  
181      REAL ypblh(klon)      REAL ypblh(klon)
182      REAL ylcl(klon)      REAL ylcl(klon)
183      REAL ycapcl(klon)      REAL ycapcl(klon)
# Line 280  contains Line 188  contains
188      REAL ytrmb1(klon)      REAL ytrmb1(klon)
189      REAL ytrmb2(klon)      REAL ytrmb2(klon)
190      REAL ytrmb3(klon)      REAL ytrmb3(klon)
191      REAL y_cd_h(klon), y_cd_m(klon)      REAL u1(klon), v1(klon)
     REAL uzon(klon), vmer(klon)  
192      REAL tair1(klon), qair1(klon), tairsol(klon)      REAL tair1(klon), qair1(klon), tairsol(klon)
193      REAL psfce(klon), patm(klon)      REAL psfce(klon), patm(klon)
194    
195      REAL qairsol(klon), zgeo1(klon)      REAL qairsol(klon), zgeo1(klon)
196      REAL rugo1(klon)      REAL rugo1(klon)
197        REAL zgeop(klon, klev)
     ! utiliser un jeu de fonctions simples                
     LOGICAL zxli  
     PARAMETER (zxli=.FALSE.)  
   
     REAL zt, zqs, zdelta, zcor  
     REAL t_coup  
     PARAMETER (t_coup=273.15)  
   
     CHARACTER (len=20) :: modname = 'clmain'  
198    
199      !------------------------------------------------------------      !------------------------------------------------------------
200    
201      ytherm = 0.      ytherm = 0.
202    
     IF (debugindex .AND. first_appel) THEN  
        first_appel = .FALSE.  
   
        ! initialisation sorties netcdf  
   
        idayref = day_ini  
        CALL ymds2ju(annee_ref, 1, idayref, 0., zjulian)  
        CALL gr_fi_ecrit(1, klon, iim, jjm+1, rlon, zx_lon)  
        DO i = 1, iim  
           zx_lon(i, 1) = rlon(i+1)  
           zx_lon(i, jjm+1) = rlon(i+1)  
        END DO  
        CALL gr_fi_ecrit(1, klon, iim, jjm+1, rlat, zx_lat)  
        cldebug = 'sous_index'  
        CALL histbeg_totreg(cldebug, zx_lon(:, 1), zx_lat(1, :), 1, &  
             iim, 1, jjm+1, itau_phy, zjulian, dtime, nhoridbg, nidbg)  
        ! no vertical axis  
        cl_surf(1) = 'ter'  
        cl_surf(2) = 'lic'  
        cl_surf(3) = 'oce'  
        cl_surf(4) = 'sic'  
        DO nsrf = 1, nbsrf  
           CALL histdef(nidbg, cl_surf(nsrf), cl_surf(nsrf), '-', iim, jjm+1, &  
                nhoridbg, 1, 1, 1, -99, 'inst', dtime, dtime)  
        END DO  
        CALL histend(nidbg)  
        CALL histsync(nidbg)  
     END IF  
   
203      DO k = 1, klev ! epaisseur de couche      DO k = 1, klev ! epaisseur de couche
204         DO i = 1, klon         DO i = 1, klon
205            delp(i, k) = paprs(i, k) - paprs(i, k+1)            delp(i, k) = paprs(i, k) - paprs(i, k + 1)
206         END DO         END DO
207      END DO      END DO
     DO i = 1, klon ! vent de la premiere couche  
        zx_alf1 = 1.0  
        zx_alf2 = 1.0 - zx_alf1  
        u1lay(i) = u(i, 1)*zx_alf1 + u(i, 2)*zx_alf2  
        v1lay(i) = v(i, 1)*zx_alf1 + v(i, 2)*zx_alf2  
     END DO  
208    
209      ! Initialization:      ! Initialization:
210      rugmer = 0.      rugmer = 0.
# Line 349  contains Line 212  contains
212      cdragm = 0.      cdragm = 0.
213      dflux_t = 0.      dflux_t = 0.
214      dflux_q = 0.      dflux_q = 0.
     zu1 = 0.  
     zv1 = 0.  
215      ypct = 0.      ypct = 0.
     yts = 0.  
     ysnow = 0.  
216      yqsurf = 0.      yqsurf = 0.
     yalb = 0.  
     yalblw = 0.  
217      yrain_f = 0.      yrain_f = 0.
218      ysnow_f = 0.      ysnow_f = 0.
     yfder = 0.  
     ytaux = 0.  
     ytauy = 0.  
     ysolsw = 0.  
     ysollw = 0.  
     ysollwdown = 0.  
219      yrugos = 0.      yrugos = 0.
     yu1 = 0.  
     yv1 = 0.  
     yrads = 0.  
220      ypaprs = 0.      ypaprs = 0.
221      ypplay = 0.      ypplay = 0.
222      ydelp = 0.      ydelp = 0.
# Line 376  contains Line 224  contains
224      yv = 0.      yv = 0.
225      yt = 0.      yt = 0.
226      yq = 0.      yq = 0.
     pctsrf_new = 0.  
     y_flux_u = 0.  
     y_flux_v = 0.  
     !$$ PB  
227      y_dflux_t = 0.      y_dflux_t = 0.
228      y_dflux_q = 0.      y_dflux_q = 0.
     ytsoil = 999999.  
229      yrugoro = 0.      yrugoro = 0.
     ! -- LOOP  
     yu10mx = 0.  
     yu10my = 0.  
     ywindsp = 0.  
     ! -- LOOP  
230      d_ts = 0.      d_ts = 0.
     !§§§ PB  
     yfluxlat = 0.  
231      flux_t = 0.      flux_t = 0.
232      flux_q = 0.      flux_q = 0.
233      flux_u = 0.      flux_u = 0.
234      flux_v = 0.      flux_v = 0.
235        fluxlat = 0.
236      d_t = 0.      d_t = 0.
237      d_q = 0.      d_q = 0.
238      d_u = 0.      d_u = 0.
239      d_v = 0.      d_v = 0.
240      zcoefh = 0.      coefh = 0.
   
     ! Boucler sur toutes les sous-fractions du sol:  
241    
242      ! Initialisation des "pourcentages potentiels". On considère ici qu'on      ! Initialisation des "pourcentages potentiels". On consid\`ere ici qu'on
243      ! peut avoir potentiellement de la glace sur tout le domaine océanique      ! peut avoir potentiellement de la glace sur tout le domaine oc\'eanique
244      ! (à affiner)      ! (\`a affiner)
245    
246      pctsrf_pot = pctsrf      pctsrf_pot(:, is_ter) = pctsrf(:, is_ter)
247        pctsrf_pot(:, is_lic) = pctsrf(:, is_lic)
248      pctsrf_pot(:, is_oce) = 1. - zmasq      pctsrf_pot(:, is_oce) = 1. - zmasq
249      pctsrf_pot(:, is_sic) = 1. - zmasq      pctsrf_pot(:, is_sic) = 1. - zmasq
250    
251      DO nsrf = 1, nbsrf      ! Tester si c'est le moment de lire le fichier:
252         ! chercher les indices:      if (mod(itap - 1, lmt_pas) == 0) then
253           CALL interfoce_lim(julien, pctsrf_new_oce, pctsrf_new_sic)
254        endif
255    
256        ! Boucler sur toutes les sous-fractions du sol:
257    
258        loop_surface: DO nsrf = 1, nbsrf
259           ! Chercher les indices :
260         ni = 0         ni = 0
261         knon = 0         knon = 0
262         DO i = 1, klon         DO i = 1, klon
263            ! Pour déterminer le domaine à traiter, on utilise les surfaces            ! Pour d\'eterminer le domaine \`a traiter, on utilise les surfaces
264            ! "potentielles"            ! "potentielles"
265            IF (pctsrf_pot(i, nsrf) > epsfra) THEN            IF (pctsrf_pot(i, nsrf) > epsfra) THEN
266               knon = knon + 1               knon = knon + 1
# Line 425  contains Line 268  contains
268            END IF            END IF
269         END DO         END DO
270    
271         ! variables pour avoir une sortie IOIPSL des INDEX         if_knon: IF (knon /= 0) then
        IF (debugindex) THEN  
           tabindx = 0.  
           DO i = 1, knon  
              tabindx(i) = real(i)  
           END DO  
           debugtab = 0.  
           ndexbg = 0  
           CALL gath2cpl(tabindx, debugtab, klon, knon, iim, jjm, ni)  
           CALL histwrite(nidbg, cl_surf(nsrf), itap, debugtab)  
        END IF  
   
        IF (knon == 0) CYCLE  
   
        DO j = 1, knon  
           i = ni(j)  
           ypct(j) = pctsrf(i, nsrf)  
           yts(j) = ts(i, nsrf)  
           ytslab(i) = tslab(i)  
           ysnow(j) = snow(i, nsrf)  
           yqsurf(j) = qsurf(i, nsrf)  
           yalb(j) = albe(i, nsrf)  
           yalblw(j) = alblw(i, nsrf)  
           yrain_f(j) = rain_f(i)  
           ysnow_f(j) = snow_f(i)  
           yagesno(j) = agesno(i, nsrf)  
           yfder(j) = fder(i)  
           ytaux(j) = flux_u(i, 1, nsrf)  
           ytauy(j) = flux_v(i, 1, nsrf)  
           ysolsw(j) = solsw(i, nsrf)  
           ysollw(j) = sollw(i, nsrf)  
           ysollwdown(j) = sollwdown(i)  
           yrugos(j) = rugos(i, nsrf)  
           yrugoro(j) = rugoro(i)  
           yu1(j) = u1lay(i)  
           yv1(j) = v1lay(i)  
           yrads(j) = ysolsw(j) + ysollw(j)  
           ypaprs(j, klev+1) = paprs(i, klev+1)  
           y_run_off_lic_0(j) = run_off_lic_0(i)  
           yu10mx(j) = u10m(i, nsrf)  
           yu10my(j) = v10m(i, nsrf)  
           ywindsp(j) = sqrt(yu10mx(j)*yu10mx(j)+yu10my(j)*yu10my(j))  
        END DO  
   
        ! IF bucket model for continent, copy soil water content  
        IF (nsrf == is_ter .AND. .NOT. ok_veget) THEN  
           DO j = 1, knon  
              i = ni(j)  
              yqsol(j) = qsol(i)  
           END DO  
        ELSE  
           yqsol = 0.  
        END IF  
        !$$$ PB ajour pour soil  
        DO k = 1, nsoilmx  
           DO j = 1, knon  
              i = ni(j)  
              ytsoil(j, k) = ftsoil(i, k, nsrf)  
           END DO  
        END DO  
        DO k = 1, klev  
272            DO j = 1, knon            DO j = 1, knon
273               i = ni(j)               i = ni(j)
274               ypaprs(j, k) = paprs(i, k)               ypct(j) = pctsrf(i, nsrf)
275               ypplay(j, k) = pplay(i, k)               yts(j) = ftsol(i, nsrf)
276               ydelp(j, k) = delp(i, k)               snow(j) = fsnow(i, nsrf)
277               yu(j, k) = u(i, k)               yqsurf(j) = qsurf(i, nsrf)
278               yv(j, k) = v(i, k)               yalb(j) = falbe(i, nsrf)
279               yt(j, k) = t(i, k)               yrain_f(j) = rain_fall(i)
280               yq(j, k) = q(i, k)               ysnow_f(j) = snow_f(i)
281                 yagesno(j) = agesno(i, nsrf)
282                 yrugos(j) = frugs(i, nsrf)
283                 yrugoro(j) = rugoro(i)
284                 yrads(j) = fsolsw(i, nsrf) + fsollw(i, nsrf)
285                 ypaprs(j, klev + 1) = paprs(i, klev + 1)
286                 y_run_off_lic_0(j) = run_off_lic_0(i)
287            END DO            END DO
        END DO  
   
        ! calculer Cdrag et les coefficients d'echange  
        CALL coefkz(nsrf, knon, ypaprs, ypplay, ksta, ksta_ter, yts,&  
             yrugos, yu, yv, yt, yq, yqsurf, ycoefm, ycoefh)  
        IF (iflag_pbl == 1) THEN  
           CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0, ycoefh0)  
           DO k = 1, klev  
              DO i = 1, knon  
                 ycoefm(i, k) = max(ycoefm(i, k), ycoefm0(i, k))  
                 ycoefh(i, k) = max(ycoefh(i, k), ycoefh0(i, k))  
              END DO  
           END DO  
        END IF  
288    
289         ! on seuille ycoefm et ycoefh            ! For continent, copy soil water content
290         IF (nsrf == is_oce) THEN            IF (nsrf == is_ter) yqsol(:knon) = qsol(ni(:knon))
           DO j = 1, knon  
              ycoefm(j, 1) = min(ycoefm(j, 1), cdmmax)  
              ycoefh(j, 1) = min(ycoefh(j, 1), cdhmax)  
           END DO  
        END IF  
291    
292         IF (ok_kzmin) THEN            ytsoil(:knon, :) = ftsoil(ni(:knon), :, nsrf)
           ! Calcul d'une diffusion minimale pour les conditions tres stables  
           CALL coefkzmin(knon, ypaprs, ypplay, yu, yv, yt, yq, ycoefm(:, 1), &  
                ycoefm0, ycoefh0)  
293    
294            DO k = 1, klev            DO k = 1, klev
              DO i = 1, knon  
                 ycoefm(i, k) = max(ycoefm(i, k), ycoefm0(i, k))  
                 ycoefh(i, k) = max(ycoefh(i, k), ycoefh0(i, k))  
              END DO  
           END DO  
        END IF  
   
        IF (iflag_pbl >= 3) THEN  
           ! MELLOR ET YAMADA adapté à Mars, Richard Fournier et Frédéric Hourdin  
           yzlay(1:knon, 1) = rd*yt(1:knon, 1)/(0.5*(ypaprs(1:knon, &  
                1)+ypplay(1:knon, 1)))*(ypaprs(1:knon, 1)-ypplay(1:knon, 1))/rg  
           DO k = 2, klev  
              yzlay(1:knon, k) = yzlay(1:knon, k-1) &  
                   + rd * 0.5 * (yt(1:knon, k-1) + yt(1:knon, k)) &  
                   / ypaprs(1:knon, k) &  
                   * (ypplay(1:knon, k-1) - ypplay(1:knon, k)) / rg  
           END DO  
           DO k = 1, klev  
              yteta(1:knon, k) = yt(1:knon, k)*(ypaprs(1:knon, 1) &  
                   / ypplay(1:knon, k))**rkappa * (1.+0.61*yq(1:knon, k))  
           END DO  
           yzlev(1:knon, 1) = 0.  
           yzlev(1:knon, klev+1) = 2.*yzlay(1:knon, klev) - yzlay(1:knon, klev-1)  
           DO k = 2, klev  
              yzlev(1:knon, k) = 0.5*(yzlay(1:knon, k)+yzlay(1:knon, k-1))  
           END DO  
           DO k = 1, klev + 1  
295               DO j = 1, knon               DO j = 1, knon
296                  i = ni(j)                  i = ni(j)
297                  yq2(j, k) = q2(i, k, nsrf)                  ypaprs(j, k) = paprs(i, k)
298                    ypplay(j, k) = pplay(i, k)
299                    ydelp(j, k) = delp(i, k)
300                    yu(j, k) = u(i, k)
301                    yv(j, k) = v(i, k)
302                    yt(j, k) = t(i, k)
303                    yq(j, k) = q(i, k)
304               END DO               END DO
305            END DO            END DO
306    
307            y_cd_m(1:knon) = ycoefm(1:knon, 1)            ! Calculer les géopotentiels de chaque couche:
           y_cd_h(1:knon) = ycoefh(1:knon, 1)  
           CALL ustarhb(knon, yu, yv, y_cd_m, yustar)  
308    
309            IF (prt_level>9) THEN            zgeop(:knon, 1) = RD * yt(:knon, 1) / (0.5 * (ypaprs(:knon, 1) &
310               PRINT *, 'USTAR = ', yustar                 + ypplay(:knon, 1))) * (ypaprs(:knon, 1) - ypplay(:knon, 1))
           END IF  
311    
312            ! iflag_pbl peut être utilisé comme longueur de mélange            DO k = 2, klev
313                 zgeop(:knon, k) = zgeop(:knon, k - 1) + RD * 0.5 &
314                      * (yt(:knon, k - 1) + yt(:knon, k)) / ypaprs(:knon, k) &
315                      * (ypplay(:knon, k - 1) - ypplay(:knon, k))
316              ENDDO
317    
318              CALL clcdrag(nsrf, yu(:knon, 1), yv(:knon, 1), yt(:knon, 1), &
319                   yq(:knon, 1), zgeop(:knon, 1), yts(:knon), yqsurf(:knon), &
320                   yrugos(:knon), ycdragm(:knon), ycdragh(:knon))
321    
322              IF (iflag_pbl == 1) THEN
323                 ycdragm(:knon) = max(ycdragm(:knon), 0.)
324                 ycdragh(:knon) = max(ycdragh(:knon), 0.)
325              end IF
326    
327            IF (iflag_pbl >= 11) THEN            ! on met un seuil pour ycdragm et ycdragh
328               CALL vdif_kcay(knon, dtime, rg, rd, ypaprs, yt, yzlev, yzlay, &            IF (nsrf == is_oce) THEN
329                    yu, yv, yteta, y_cd_m, yq2, q2diag, ykmm, ykmn, yustar, &               ycdragm(:knon) = min(ycdragm(:knon), cdmmax)
330                    iflag_pbl)               ycdragh(:knon) = min(ycdragh(:knon), cdhmax)
           ELSE  
              CALL yamada4(knon, dtime, rg, yzlev, yzlay, yu, yv, yteta, &  
                   y_cd_m, yq2, ykmm, ykmn, ykmq, yustar, iflag_pbl)  
331            END IF            END IF
332    
333            ycoefm(1:knon, 1) = y_cd_m(1:knon)            IF (iflag_pbl >= 6) then
334            ycoefh(1:knon, 1) = y_cd_h(1:knon)               DO k = 1, klev + 1
335            ycoefm(1:knon, 2:klev) = ykmm(1:knon, 2:klev)                  DO j = 1, knon
336            ycoefh(1:knon, 2:klev) = ykmn(1:knon, 2:klev)                     i = ni(j)
337         END IF                     yq2(j, k) = q2(i, k, nsrf)
338                    END DO
339         ! calculer la diffusion des vitesses "u" et "v"               END DO
340         CALL clvent(knon, dtime, yu1, yv1, ycoefm, yt, yu, ypaprs, ypplay, &            end IF
             ydelp, y_d_u, y_flux_u)  
        CALL clvent(knon, dtime, yu1, yv1, ycoefm, yt, yv, ypaprs, ypplay, &  
             ydelp, y_d_v, y_flux_v)  
   
        ! pour le couplage  
        ytaux = y_flux_u(:, 1)  
        ytauy = y_flux_v(:, 1)  
   
        ! calculer la diffusion de "q" et de "h"  
        CALL clqh(dtime, itap, date0, jour, debut, lafin, rlon, rlat,&  
             cufi, cvfi, knon, nsrf, ni, pctsrf, soil_model, ytsoil,&  
             yqsol, ok_veget, ocean, npas, nexca, rmu0, co2_ppm, yrugos,&  
             yrugoro, yu1, yv1, ycoefh, yt, yq, yts, ypaprs, ypplay,&  
             ydelp, yrads, yalb, yalblw, ysnow, yqsurf, yrain_f, ysnow_f, &  
             yfder, ytaux, ytauy, ywindsp, ysollw, ysollwdown, ysolsw,&  
             yfluxlat, pctsrf_new, yagesno, y_d_t, y_d_q, y_d_ts,&  
             yz0_new, y_flux_t, y_flux_q, y_dflux_t, y_dflux_q,&  
             y_fqcalving, y_ffonte, y_run_off_lic_0, y_flux_o, y_flux_g,&  
             ytslab, y_seaice)  
   
        ! calculer la longueur de rugosite sur ocean  
        yrugm = 0.  
        IF (nsrf == is_oce) THEN  
           DO j = 1, knon  
              yrugm(j) = 0.018*ycoefm(j, 1)*(yu1(j)**2+yv1(j)**2)/rg + &  
                   0.11*14E-6/sqrt(ycoefm(j, 1)*(yu1(j)**2+yv1(j)**2))  
              yrugm(j) = max(1.5E-05, yrugm(j))  
           END DO  
        END IF  
        DO j = 1, knon  
           y_dflux_t(j) = y_dflux_t(j)*ypct(j)  
           y_dflux_q(j) = y_dflux_q(j)*ypct(j)  
           yu1(j) = yu1(j)*ypct(j)  
           yv1(j) = yv1(j)*ypct(j)  
        END DO  
   
        DO k = 1, klev  
           DO j = 1, knon  
              i = ni(j)  
              ycoefh(j, k) = ycoefh(j, k)*ypct(j)  
              ycoefm(j, k) = ycoefm(j, k)*ypct(j)  
              y_d_t(j, k) = y_d_t(j, k)*ypct(j)  
              y_d_q(j, k) = y_d_q(j, k)*ypct(j)  
              flux_t(i, k, nsrf) = y_flux_t(j, k)  
              flux_q(i, k, nsrf) = y_flux_q(j, k)  
              flux_u(i, k, nsrf) = y_flux_u(j, k)  
              flux_v(i, k, nsrf) = y_flux_v(j, k)  
              y_d_u(j, k) = y_d_u(j, k)*ypct(j)  
              y_d_v(j, k) = y_d_v(j, k)*ypct(j)  
           END DO  
        END DO  
341    
342         evap(:, nsrf) = -flux_q(:, 1, nsrf)            call coef_diff_turb(dtime, nsrf, ni(:knon), ypaprs, ypplay, yu, yv, &
343                   yq, yt, yts, ycdragm, zgeop(:knon, :), ycoefm(:knon, :), &
344                   ycoefh(:knon, :), yq2)
345    
346              CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), ycoefm(:knon, :), &
347                   ycdragm(:knon), yt(:knon, :), yu(:knon, :), ypaprs(:knon, :), &
348                   ypplay(:knon, :), ydelp(:knon, :), y_d_u(:knon, :), &
349                   y_flux_u(:knon))
350              CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), ycoefm(:knon, :), &
351                   ycdragm(:knon), yt(:knon, :), yv(:knon, :), ypaprs(:knon, :), &
352                   ypplay(:knon, :), ydelp(:knon, :), y_d_v(:knon, :), &
353                   y_flux_v(:knon))
354    
355              ! calculer la diffusion de "q" et de "h"
356              CALL clqh(dtime, julien, firstcal, nsrf, ni(:knon), &
357                   ytsoil(:knon, :), yqsol(:knon), mu0, yrugos, yrugoro, &
358                   yu(:knon, 1), yv(:knon, 1), ycoefh(:knon, :), ycdragh(:knon), &
359                   yt, yq, yts(:knon), ypaprs, ypplay, ydelp, yrads(:knon), &
360                   yalb(:knon), snow(:knon), yqsurf, yrain_f, ysnow_f, &
361                   yfluxlat(:knon), pctsrf_new_sic, yagesno(:knon), y_d_t, y_d_q, &
362                   y_d_ts(:knon), yz0_new, y_flux_t(:knon), y_flux_q(:knon), &
363                   y_dflux_t(:knon), y_dflux_q(:knon), y_fqcalving, y_ffonte, &
364                   y_run_off_lic_0)
365    
366         albe(:, nsrf) = 0.            ! calculer la longueur de rugosite sur ocean
367         alblw(:, nsrf) = 0.            yrugm = 0.
        snow(:, nsrf) = 0.  
        qsurf(:, nsrf) = 0.  
        rugos(:, nsrf) = 0.  
        fluxlat(:, nsrf) = 0.  
        DO j = 1, knon  
           i = ni(j)  
           d_ts(i, nsrf) = y_d_ts(j)  
           albe(i, nsrf) = yalb(j)  
           alblw(i, nsrf) = yalblw(j)  
           snow(i, nsrf) = ysnow(j)  
           qsurf(i, nsrf) = yqsurf(j)  
           rugos(i, nsrf) = yz0_new(j)  
           fluxlat(i, nsrf) = yfluxlat(j)  
368            IF (nsrf == is_oce) THEN            IF (nsrf == is_oce) THEN
369               rugmer(i) = yrugm(j)               DO j = 1, knon
370               rugos(i, nsrf) = yrugm(j)                  yrugm(j) = 0.018 * ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2) &
371                         / rg + 0.11 * 14E-6 &
372                         / sqrt(ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2))
373                    yrugm(j) = max(1.5E-05, yrugm(j))
374                 END DO
375            END IF            END IF
           agesno(i, nsrf) = yagesno(j)  
           fqcalving(i, nsrf) = y_fqcalving(j)  
           ffonte(i, nsrf) = y_ffonte(j)  
           cdragh(i) = cdragh(i) + ycoefh(j, 1)  
           cdragm(i) = cdragm(i) + ycoefm(j, 1)  
           dflux_t(i) = dflux_t(i) + y_dflux_t(j)  
           dflux_q(i) = dflux_q(i) + y_dflux_q(j)  
           zu1(i) = zu1(i) + yu1(j)  
           zv1(i) = zv1(i) + yv1(j)  
        END DO  
        IF (nsrf == is_ter) THEN  
           DO j = 1, knon  
              i = ni(j)  
              qsol(i) = yqsol(j)  
           END DO  
        END IF  
        IF (nsrf == is_lic) THEN  
376            DO j = 1, knon            DO j = 1, knon
377               i = ni(j)               y_dflux_t(j) = y_dflux_t(j) * ypct(j)
378               run_off_lic_0(i) = y_run_off_lic_0(j)               y_dflux_q(j) = y_dflux_q(j) * ypct(j)
           END DO  
        END IF  
        !$$$ PB ajout pour soil  
        ftsoil(:, :, nsrf) = 0.  
        DO k = 1, nsoilmx  
           DO j = 1, knon  
              i = ni(j)  
              ftsoil(i, k, nsrf) = ytsoil(j, k)  
379            END DO            END DO
        END DO  
380    
        DO j = 1, knon  
           i = ni(j)  
381            DO k = 1, klev            DO k = 1, klev
382               d_t(i, k) = d_t(i, k) + y_d_t(j, k)               DO j = 1, knon
383               d_q(i, k) = d_q(i, k) + y_d_q(j, k)                  i = ni(j)
384               d_u(i, k) = d_u(i, k) + y_d_u(j, k)                  y_d_t(j, k) = y_d_t(j, k) * ypct(j)
385               d_v(i, k) = d_v(i, k) + y_d_v(j, k)                  y_d_q(j, k) = y_d_q(j, k) * ypct(j)
386               zcoefh(i, k) = zcoefh(i, k) + ycoefh(j, k)                  y_d_u(j, k) = y_d_u(j, k) * ypct(j)
387                    y_d_v(j, k) = y_d_v(j, k) * ypct(j)
388                 END DO
389            END DO            END DO
        END DO  
390    
391         !cc diagnostic t, q a 2m et u, v a 10m            flux_t(ni(:knon), nsrf) = y_flux_t(:knon)
392              flux_q(ni(:knon), nsrf) = y_flux_q(:knon)
393         DO j = 1, knon            flux_u(ni(:knon), nsrf) = y_flux_u(:knon)
394            i = ni(j)            flux_v(ni(:knon), nsrf) = y_flux_v(:knon)
395            uzon(j) = yu(j, 1) + y_d_u(j, 1)  
396            vmer(j) = yv(j, 1) + y_d_v(j, 1)            evap(:, nsrf) = -flux_q(:, nsrf)
397            tair1(j) = yt(j, 1) + y_d_t(j, 1)  
398            qair1(j) = yq(j, 1) + y_d_q(j, 1)            falbe(:, nsrf) = 0.
399            zgeo1(j) = rd*tair1(j)/(0.5*(ypaprs(j, 1)+ypplay(j, &            fsnow(:, nsrf) = 0.
400                 1)))*(ypaprs(j, 1)-ypplay(j, 1))            qsurf(:, nsrf) = 0.
401            tairsol(j) = yts(j) + y_d_ts(j)            frugs(:, nsrf) = 0.
402            rugo1(j) = yrugos(j)            DO j = 1, knon
403            IF (nsrf == is_oce) THEN               i = ni(j)
404               rugo1(j) = rugos(i, nsrf)               d_ts(i, nsrf) = y_d_ts(j)
405                 falbe(i, nsrf) = yalb(j)
406                 fsnow(i, nsrf) = snow(j)
407                 qsurf(i, nsrf) = yqsurf(j)
408                 frugs(i, nsrf) = yz0_new(j)
409                 fluxlat(i, nsrf) = yfluxlat(j)
410                 IF (nsrf == is_oce) THEN
411                    rugmer(i) = yrugm(j)
412                    frugs(i, nsrf) = yrugm(j)
413                 END IF
414                 agesno(i, nsrf) = yagesno(j)
415                 fqcalving(i, nsrf) = y_fqcalving(j)
416                 ffonte(i, nsrf) = y_ffonte(j)
417                 cdragh(i) = cdragh(i) + ycdragh(j) * ypct(j)
418                 cdragm(i) = cdragm(i) + ycdragm(j) * ypct(j)
419                 dflux_t(i) = dflux_t(i) + y_dflux_t(j)
420                 dflux_q(i) = dflux_q(i) + y_dflux_q(j)
421              END DO
422              IF (nsrf == is_ter) THEN
423                 qsol(ni(:knon)) = yqsol(:knon)
424              else IF (nsrf == is_lic) THEN
425                 DO j = 1, knon
426                    i = ni(j)
427                    run_off_lic_0(i) = y_run_off_lic_0(j)
428                 END DO
429            END IF            END IF
           psfce(j) = ypaprs(j, 1)  
           patm(j) = ypplay(j, 1)  
430    
431            qairsol(j) = yqsurf(j)            ftsoil(:, :, nsrf) = 0.
432         END DO            ftsoil(ni(:knon), :, nsrf) = ytsoil(:knon, :)
433    
434         CALL stdlevvar(klon, knon, nsrf, zxli, uzon, vmer, tair1, qair1, zgeo1, &            DO j = 1, knon
435              tairsol, qairsol, rugo1, psfce, patm, yt2m, yq2m, yt10m, yq10m, &               i = ni(j)
436              yu10m, yustar)               DO k = 1, klev
437                    d_t(i, k) = d_t(i, k) + y_d_t(j, k)
438         DO j = 1, knon                  d_q(i, k) = d_q(i, k) + y_d_q(j, k)
439            i = ni(j)                  d_u(i, k) = d_u(i, k) + y_d_u(j, k)
440            t2m(i, nsrf) = yt2m(j)                  d_v(i, k) = d_v(i, k) + y_d_v(j, k)
441            q2m(i, nsrf) = yq2m(j)               END DO
442              END DO
           ! u10m, v10m : composantes du vent a 10m sans spirale de Ekman  
           u10m(i, nsrf) = (yu10m(j)*uzon(j))/sqrt(uzon(j)**2+vmer(j)**2)  
           v10m(i, nsrf) = (yu10m(j)*vmer(j))/sqrt(uzon(j)**2+vmer(j)**2)  
443    
444         END DO            forall (k = 2:klev) coefh(ni(:knon), k) &
445                   = coefh(ni(:knon), k) + ycoefh(:knon, k) * ypct(:knon)
446    
447         DO i = 1, knon            ! diagnostic t, q a 2m et u, v a 10m
           y_cd_h(i) = ycoefh(i, 1)  
           y_cd_m(i) = ycoefm(i, 1)  
        END DO  
        CALL hbtm(knon, ypaprs, ypplay, yt2m, yt10m, yq2m, yq10m, yustar, &  
             y_flux_t, y_flux_q, yu, yv, yt, yq, ypblh, ycapcl, yoliqcl, &  
             ycteicl, ypblt, ytherm, ytrmb1, ytrmb2, ytrmb3, ylcl)  
   
        DO j = 1, knon  
           i = ni(j)  
           pblh(i, nsrf) = ypblh(j)  
           plcl(i, nsrf) = ylcl(j)  
           capcl(i, nsrf) = ycapcl(j)  
           oliqcl(i, nsrf) = yoliqcl(j)  
           cteicl(i, nsrf) = ycteicl(j)  
           pblt(i, nsrf) = ypblt(j)  
           therm(i, nsrf) = ytherm(j)  
           trmb1(i, nsrf) = ytrmb1(j)  
           trmb2(i, nsrf) = ytrmb2(j)  
           trmb3(i, nsrf) = ytrmb3(j)  
        END DO  
448    
449         DO j = 1, knon            DO j = 1, knon
           DO k = 1, klev + 1  
450               i = ni(j)               i = ni(j)
451               q2(i, k, nsrf) = yq2(j, k)               u1(j) = yu(j, 1) + y_d_u(j, 1)
452                 v1(j) = yv(j, 1) + y_d_v(j, 1)
453                 tair1(j) = yt(j, 1) + y_d_t(j, 1)
454                 qair1(j) = yq(j, 1) + y_d_q(j, 1)
455                 zgeo1(j) = rd * tair1(j) / (0.5 * (ypaprs(j, 1) + ypplay(j, &
456                      1))) * (ypaprs(j, 1)-ypplay(j, 1))
457                 tairsol(j) = yts(j) + y_d_ts(j)
458                 rugo1(j) = yrugos(j)
459                 IF (nsrf == is_oce) THEN
460                    rugo1(j) = frugs(i, nsrf)
461                 END IF
462                 psfce(j) = ypaprs(j, 1)
463                 patm(j) = ypplay(j, 1)
464    
465                 qairsol(j) = yqsurf(j)
466            END DO            END DO
467         END DO  
468         !IM "slab" ocean            CALL stdlevvar(klon, knon, nsrf, u1(:knon), v1(:knon), tair1(:knon), &
469         IF (nsrf == is_oce) THEN                 qair1, zgeo1, tairsol, qairsol, rugo1, psfce, patm, yt2m, &
470                   yq2m, yt10m, yq10m, wind10m(:knon), ustar(:knon))
471    
472            DO j = 1, knon            DO j = 1, knon
              ! on projette sur la grille globale  
473               i = ni(j)               i = ni(j)
474               IF (pctsrf_new(i, is_oce)>epsfra) THEN               t2m(i, nsrf) = yt2m(j)
475                  flux_o(i) = y_flux_o(j)               q2m(i, nsrf) = yq2m(j)
476               ELSE  
477                  flux_o(i) = 0.               u10m_srf(i, nsrf) = (wind10m(j) * u1(j)) &
478               END IF                    / sqrt(u1(j)**2 + v1(j)**2)
479                 v10m_srf(i, nsrf) = (wind10m(j) * v1(j)) &
480                      / sqrt(u1(j)**2 + v1(j)**2)
481            END DO            END DO
        END IF  
482    
483         IF (nsrf == is_sic) THEN            CALL hbtm(ypaprs, ypplay, yt2m, yq2m, ustar(:knon), y_flux_t(:knon), &
484                   y_flux_q(:knon), yu, yv, yt, yq, ypblh(:knon), ycapcl, &
485                   yoliqcl, ycteicl, ypblt, ytherm, ytrmb1, ytrmb2, ytrmb3, ylcl)
486    
487            DO j = 1, knon            DO j = 1, knon
488               i = ni(j)               i = ni(j)
489               ! On pondère lorsque l'on fait le bilan au sol :               pblh(i, nsrf) = ypblh(j)
490               IF (pctsrf_new(i, is_sic)>epsfra) THEN               plcl(i, nsrf) = ylcl(j)
491                  flux_g(i) = y_flux_g(j)               capcl(i, nsrf) = ycapcl(j)
492               ELSE               oliqcl(i, nsrf) = yoliqcl(j)
493                  flux_g(i) = 0.               cteicl(i, nsrf) = ycteicl(j)
494               END IF               pblt(i, nsrf) = ypblt(j)
495                 therm(i, nsrf) = ytherm(j)
496                 trmb1(i, nsrf) = ytrmb1(j)
497                 trmb2(i, nsrf) = ytrmb2(j)
498                 trmb3(i, nsrf) = ytrmb3(j)
499            END DO            END DO
500    
501         END IF            DO j = 1, knon
502         IF (ocean == 'slab  ') THEN               DO k = 1, klev + 1
503            IF (nsrf == is_oce) THEN                  i = ni(j)
504               tslab(1:klon) = ytslab(1:klon)                  q2(i, k, nsrf) = yq2(j, k)
505               seaice(1:klon) = y_seaice(1:klon)               END DO
506            END IF            END DO
507         END IF         else
508      END DO            fsnow(:, nsrf) = 0.
509           end IF if_knon
510        END DO loop_surface
511    
512      ! On utilise les nouvelles surfaces      ! On utilise les nouvelles surfaces
513        frugs(:, is_oce) = rugmer
514        pctsrf(:, is_oce) = pctsrf_new_oce
515        pctsrf(:, is_sic) = pctsrf_new_sic
516    
517      rugos(:, is_oce) = rugmer      firstcal = .false.
     pctsrf = pctsrf_new  
518    
519    END SUBROUTINE clmain    END SUBROUTINE clmain
520    

Legend:
Removed from v.47  
changed lines
  Added in v.250

  ViewVC Help
Powered by ViewVC 1.1.21