/[lmdze]/trunk/Sources/phylmd/clmain.f
ViewVC logotype

Contents of /trunk/Sources/phylmd/clmain.f

Parent Directory Parent Directory | Revision Log Revision Log


Revision 234 - (show annotations)
Tue Nov 7 12:20:42 2017 UTC (6 years, 6 months ago) by guez
File size: 19905 byte(s)
Almost nothing.
1 module clmain_m
2
3 IMPLICIT NONE
4
5 contains
6
7 SUBROUTINE clmain(dtime, pctsrf, t, q, u, v, julien, mu0, ftsol, cdmmax, &
8 cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, paprs, pplay, fsnow, &
9 qsurf, evap, falbe, fluxlat, rain_fall, snow_f, fsolsw, fsollw, frugs, &
10 agesno, rugoro, d_t, d_q, d_u, d_v, d_ts, flux_t, flux_q, flux_u, &
11 flux_v, cdragh, cdragm, q2, dflux_t, dflux_q, ycoefh, t2m, q2m, &
12 u10m_srf, v10m_srf, pblh, capcl, oliqcl, cteicl, pblt, therm, trmb1, &
13 trmb2, trmb3, plcl, fqcalving, ffonte, run_off_lic_0)
14
15 ! From phylmd/clmain.F, version 1.6, 2005/11/16 14:47:19
16 ! Author: Z. X. Li (LMD/CNRS), date: 1993/08/18
17 ! Objet : interface de couche limite (diffusion verticale)
18
19 ! Tout ce qui a trait aux traceurs est dans "phytrac". Le calcul
20 ! de la couche limite pour les traceurs se fait avec "cltrac" et
21 ! ne tient pas compte de la diff\'erentiation des sous-fractions
22 ! de sol.
23
24 use clqh_m, only: clqh
25 use clvent_m, only: clvent
26 use coefkz_m, only: coefkz
27 use coefkzmin_m, only: coefkzmin
28 use coefkz2_m, only: coefkz2
29 USE conf_gcm_m, ONLY: lmt_pas
30 USE conf_phys_m, ONLY: iflag_pbl
31 USE dimphy, ONLY: klev, klon, zmasq
32 USE dimsoil, ONLY: nsoilmx
33 use hbtm_m, only: hbtm
34 USE indicesol, ONLY: epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf
35 USE interfoce_lim_m, ONLY: interfoce_lim
36 use stdlevvar_m, only: stdlevvar
37 USE suphec_m, ONLY: rd, rg, rkappa
38 use time_phylmdz, only: itap
39 use ustarhb_m, only: ustarhb
40 use yamada4_m, only: yamada4
41
42 REAL, INTENT(IN):: dtime ! interval du temps (secondes)
43
44 REAL, INTENT(inout):: pctsrf(klon, nbsrf)
45 ! tableau des pourcentages de surface de chaque maille
46
47 REAL, INTENT(IN):: t(klon, klev) ! temperature (K)
48 REAL, INTENT(IN):: q(klon, klev) ! vapeur d'eau (kg / kg)
49 REAL, INTENT(IN):: u(klon, klev), v(klon, klev) ! vitesse
50 INTEGER, INTENT(IN):: julien ! jour de l'annee en cours
51 REAL, intent(in):: mu0(klon) ! cosinus de l'angle solaire zenithal
52 REAL, INTENT(IN):: ftsol(:, :) ! (klon, nbsrf) temp\'erature du sol (en K)
53 REAL, INTENT(IN):: cdmmax, cdhmax ! seuils cdrm, cdrh
54 REAL, INTENT(IN):: ksta, ksta_ter
55 LOGICAL, INTENT(IN):: ok_kzmin
56
57 REAL, INTENT(inout):: ftsoil(klon, nsoilmx, nbsrf)
58 ! soil temperature of surface fraction
59
60 REAL, INTENT(inout):: qsol(:) ! (klon)
61 ! column-density of water in soil, in kg m-2
62
63 REAL, INTENT(IN):: paprs(klon, klev + 1) ! pression a intercouche (Pa)
64 REAL, INTENT(IN):: pplay(klon, klev) ! pression au milieu de couche (Pa)
65 REAL, INTENT(inout):: fsnow(:, :) ! (klon, nbsrf) \'epaisseur neigeuse
66 REAL qsurf(klon, nbsrf)
67 REAL evap(klon, nbsrf)
68 REAL, intent(inout):: falbe(klon, nbsrf)
69 REAL, intent(out):: fluxlat(:, :) ! (klon, nbsrf)
70
71 REAL, intent(in):: rain_fall(klon)
72 ! liquid water mass flux (kg / m2 / s), positive down
73
74 REAL, intent(in):: snow_f(klon)
75 ! solid water mass flux (kg / m2 / s), positive down
76
77 REAL, INTENT(IN):: fsolsw(klon, nbsrf), fsollw(klon, nbsrf)
78 REAL, intent(inout):: frugs(klon, nbsrf) ! longueur de rugosit\'e (en m)
79 real agesno(klon, nbsrf)
80 REAL, INTENT(IN):: rugoro(klon)
81
82 REAL d_t(klon, klev), d_q(klon, klev)
83 ! d_t------output-R- le changement pour "t"
84 ! d_q------output-R- le changement pour "q"
85
86 REAL, intent(out):: d_u(klon, klev), d_v(klon, klev)
87 ! changement pour "u" et "v"
88
89 REAL, intent(out):: d_ts(:, :) ! (klon, nbsrf) variation of ftsol
90
91 REAL, intent(out):: flux_t(klon, nbsrf)
92 ! flux de chaleur sensible (Cp T) (W / m2) (orientation positive vers
93 ! le bas) à la surface
94
95 REAL, intent(out):: flux_q(klon, nbsrf)
96 ! flux de vapeur d'eau (kg / m2 / s) à la surface
97
98 REAL, intent(out):: flux_u(klon, nbsrf), flux_v(klon, nbsrf)
99 ! tension du vent (flux turbulent de vent) à la surface, en Pa
100
101 REAL, INTENT(out):: cdragh(klon), cdragm(klon)
102 real q2(klon, klev + 1, nbsrf)
103
104 REAL, INTENT(out):: dflux_t(klon), dflux_q(klon)
105 ! dflux_t derive du flux sensible
106 ! dflux_q derive du flux latent
107 ! IM "slab" ocean
108
109 REAL, intent(out):: ycoefh(klon, klev)
110 ! Pour pouvoir extraire les coefficients d'\'echange, le champ
111 ! "ycoefh" a \'et\'e cr\'e\'e. Nous avons moyenn\'e les valeurs de
112 ! ce champ sur les quatre sous-surfaces du mod\`ele.
113
114 REAL, INTENT(inout):: t2m(klon, nbsrf), q2m(klon, nbsrf)
115
116 REAL, INTENT(inout):: u10m_srf(:, :), v10m_srf(:, :) ! (klon, nbsrf)
117 ! composantes du vent \`a 10m sans spirale d'Ekman
118
119 ! Ionela Musat. Cf. Anne Mathieu : planetary boundary layer, hbtm.
120 ! Comme les autres diagnostics on cumule dans physiq ce qui permet
121 ! de sortir les grandeurs par sous-surface.
122 REAL pblh(klon, nbsrf) ! height of planetary boundary layer
123 REAL capcl(klon, nbsrf)
124 REAL oliqcl(klon, nbsrf)
125 REAL cteicl(klon, nbsrf)
126 REAL, INTENT(inout):: pblt(klon, nbsrf) ! T au nveau HCL
127 REAL therm(klon, nbsrf)
128 REAL trmb1(klon, nbsrf)
129 ! trmb1-------deep_cape
130 REAL trmb2(klon, nbsrf)
131 ! trmb2--------inhibition
132 REAL trmb3(klon, nbsrf)
133 ! trmb3-------Point Omega
134 REAL plcl(klon, nbsrf)
135 REAL fqcalving(klon, nbsrf), ffonte(klon, nbsrf)
136 ! ffonte----Flux thermique utilise pour fondre la neige
137 ! fqcalving-Flux d'eau "perdue" par la surface et necessaire pour limiter la
138 ! hauteur de neige, en kg / m2 / s
139 REAL run_off_lic_0(klon)
140
141 ! Local:
142
143 LOGICAL:: firstcal = .true.
144
145 ! la nouvelle repartition des surfaces sortie de l'interface
146 REAL, save:: pctsrf_new_oce(klon)
147 REAL, save:: pctsrf_new_sic(klon)
148
149 REAL y_fqcalving(klon), y_ffonte(klon)
150 real y_run_off_lic_0(klon)
151 REAL rugmer(klon)
152 REAL ytsoil(klon, nsoilmx)
153 REAL yts(klon), yrugos(klon), ypct(klon), yz0_new(klon)
154 REAL yalb(klon)
155 REAL snow(klon), yqsurf(klon), yagesno(klon)
156 real yqsol(klon) ! column-density of water in soil, in kg m-2
157 REAL yrain_f(klon) ! liquid water mass flux (kg / m2 / s), positive down
158 REAL ysnow_f(klon) ! solid water mass flux (kg / m2 / s), positive down
159 REAL yrugm(klon), yrads(klon), yrugoro(klon)
160 REAL yfluxlat(klon)
161 REAL y_d_ts(klon)
162 REAL y_d_t(klon, klev), y_d_q(klon, klev)
163 REAL y_d_u(klon, klev), y_d_v(klon, klev)
164 REAL y_flux_t(klon), y_flux_q(klon)
165 REAL y_flux_u(klon), y_flux_v(klon)
166 REAL y_dflux_t(klon), y_dflux_q(klon)
167 REAL coefh(klon, klev), coefm(klon, klev)
168 REAL yu(klon, klev), yv(klon, klev)
169 REAL yt(klon, klev), yq(klon, klev)
170 REAL ypaprs(klon, klev + 1), ypplay(klon, klev), ydelp(klon, klev)
171 REAL ycoefm0(klon, klev), ycoefh0(klon, klev)
172 REAL yzlay(klon, klev), zlev(klon, klev + 1), yteta(klon, klev)
173 REAL ykmm(klon, klev + 1), ykmn(klon, klev + 1)
174 REAL ykmq(klon, klev + 1)
175 REAL yq2(klon, klev + 1)
176 REAL delp(klon, klev)
177 INTEGER i, k, nsrf
178 INTEGER ni(klon), knon, j
179
180 REAL pctsrf_pot(klon, nbsrf)
181 ! "pourcentage potentiel" pour tenir compte des \'eventuelles
182 ! apparitions ou disparitions de la glace de mer
183
184 REAL yt2m(klon), yq2m(klon), wind10m(klon)
185 REAL ustar(klon)
186
187 REAL yt10m(klon), yq10m(klon)
188 REAL ypblh(klon)
189 REAL ylcl(klon)
190 REAL ycapcl(klon)
191 REAL yoliqcl(klon)
192 REAL ycteicl(klon)
193 REAL ypblt(klon)
194 REAL ytherm(klon)
195 REAL ytrmb1(klon)
196 REAL ytrmb2(klon)
197 REAL ytrmb3(klon)
198 REAL u1(klon), v1(klon)
199 REAL tair1(klon), qair1(klon), tairsol(klon)
200 REAL psfce(klon), patm(klon)
201
202 REAL qairsol(klon), zgeo1(klon)
203 REAL rugo1(klon)
204
205 !------------------------------------------------------------
206
207 ytherm = 0.
208
209 DO k = 1, klev ! epaisseur de couche
210 DO i = 1, klon
211 delp(i, k) = paprs(i, k) - paprs(i, k + 1)
212 END DO
213 END DO
214
215 ! Initialization:
216 rugmer = 0.
217 cdragh = 0.
218 cdragm = 0.
219 dflux_t = 0.
220 dflux_q = 0.
221 ypct = 0.
222 yqsurf = 0.
223 yrain_f = 0.
224 ysnow_f = 0.
225 yrugos = 0.
226 ypaprs = 0.
227 ypplay = 0.
228 ydelp = 0.
229 yu = 0.
230 yv = 0.
231 yt = 0.
232 yq = 0.
233 y_dflux_t = 0.
234 y_dflux_q = 0.
235 yrugoro = 0.
236 d_ts = 0.
237 flux_t = 0.
238 flux_q = 0.
239 flux_u = 0.
240 flux_v = 0.
241 fluxlat = 0.
242 d_t = 0.
243 d_q = 0.
244 d_u = 0.
245 d_v = 0.
246 ycoefh = 0.
247
248 ! Initialisation des "pourcentages potentiels". On consid\`ere ici qu'on
249 ! peut avoir potentiellement de la glace sur tout le domaine oc\'eanique
250 ! (\`a affiner)
251
252 pctsrf_pot(:, is_ter) = pctsrf(:, is_ter)
253 pctsrf_pot(:, is_lic) = pctsrf(:, is_lic)
254 pctsrf_pot(:, is_oce) = 1. - zmasq
255 pctsrf_pot(:, is_sic) = 1. - zmasq
256
257 ! Tester si c'est le moment de lire le fichier:
258 if (mod(itap - 1, lmt_pas) == 0) then
259 CALL interfoce_lim(julien, pctsrf_new_oce, pctsrf_new_sic)
260 endif
261
262 ! Boucler sur toutes les sous-fractions du sol:
263
264 loop_surface: DO nsrf = 1, nbsrf
265 ! Chercher les indices :
266 ni = 0
267 knon = 0
268 DO i = 1, klon
269 ! Pour d\'eterminer le domaine \`a traiter, on utilise les surfaces
270 ! "potentielles"
271 IF (pctsrf_pot(i, nsrf) > epsfra) THEN
272 knon = knon + 1
273 ni(knon) = i
274 END IF
275 END DO
276
277 if_knon: IF (knon /= 0) then
278 DO j = 1, knon
279 i = ni(j)
280 ypct(j) = pctsrf(i, nsrf)
281 yts(j) = ftsol(i, nsrf)
282 snow(j) = fsnow(i, nsrf)
283 yqsurf(j) = qsurf(i, nsrf)
284 yalb(j) = falbe(i, nsrf)
285 yrain_f(j) = rain_fall(i)
286 ysnow_f(j) = snow_f(i)
287 yagesno(j) = agesno(i, nsrf)
288 yrugos(j) = frugs(i, nsrf)
289 yrugoro(j) = rugoro(i)
290 yrads(j) = fsolsw(i, nsrf) + fsollw(i, nsrf)
291 ypaprs(j, klev + 1) = paprs(i, klev + 1)
292 y_run_off_lic_0(j) = run_off_lic_0(i)
293 END DO
294
295 ! For continent, copy soil water content
296 IF (nsrf == is_ter) yqsol(:knon) = qsol(ni(:knon))
297
298 ytsoil(:knon, :) = ftsoil(ni(:knon), :, nsrf)
299
300 DO k = 1, klev
301 DO j = 1, knon
302 i = ni(j)
303 ypaprs(j, k) = paprs(i, k)
304 ypplay(j, k) = pplay(i, k)
305 ydelp(j, k) = delp(i, k)
306 yu(j, k) = u(i, k)
307 yv(j, k) = v(i, k)
308 yt(j, k) = t(i, k)
309 yq(j, k) = q(i, k)
310 END DO
311 END DO
312
313 ! calculer Cdrag et les coefficients d'echange
314 CALL coefkz(nsrf, ypaprs, ypplay, ksta, ksta_ter, yts(:knon), &
315 yrugos, yu, yv, yt, yq, yqsurf(:knon), coefm(:knon, 2:), &
316 coefh(:knon, 2:), coefm(:knon, 1), coefh(:knon, 1))
317
318 IF (iflag_pbl == 1) THEN
319 CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0(:knon, :), &
320 ycoefh0(:knon, :))
321 coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :))
322 coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, :))
323 END IF
324
325 ! on met un seuil pour coefm et coefh
326 IF (nsrf == is_oce) THEN
327 coefm(:knon, 1) = min(coefm(:knon, 1), cdmmax)
328 coefh(:knon, 1) = min(coefh(:knon, 1), cdhmax)
329 END IF
330
331 IF (ok_kzmin) THEN
332 ! Calcul d'une diffusion minimale pour les conditions tres stables
333 CALL coefkzmin(knon, ypaprs, ypplay, yu, yv, yt, yq, &
334 coefm(:knon, 1), ycoefm0(:knon, 2:), ycoefh0(:knon, 2:))
335 coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :))
336 coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, :))
337 END IF
338
339 IF (iflag_pbl >= 6) THEN
340 ! Mellor et Yamada adapt\'e \`a Mars, Richard Fournier et
341 ! Fr\'ed\'eric Hourdin
342 yzlay(:knon, 1) = rd * yt(:knon, 1) / (0.5 * (ypaprs(:knon, 1) &
343 + ypplay(:knon, 1))) &
344 * (ypaprs(:knon, 1) - ypplay(:knon, 1)) / rg
345
346 DO k = 2, klev
347 yzlay(:knon, k) = yzlay(:knon, k-1) &
348 + rd * 0.5 * (yt(1:knon, k-1) + yt(1:knon, k)) &
349 / ypaprs(1:knon, k) &
350 * (ypplay(1:knon, k-1) - ypplay(1:knon, k)) / rg
351 END DO
352
353 DO k = 1, klev
354 yteta(1:knon, k) = yt(1:knon, k) * (ypaprs(1:knon, 1) &
355 / ypplay(1:knon, k))**rkappa * (1. + 0.61 * yq(1:knon, k))
356 END DO
357
358 zlev(:knon, 1) = 0.
359 zlev(:knon, klev + 1) = 2. * yzlay(:knon, klev) &
360 - yzlay(:knon, klev - 1)
361
362 DO k = 2, klev
363 zlev(:knon, k) = 0.5 * (yzlay(:knon, k) + yzlay(:knon, k-1))
364 END DO
365
366 DO k = 1, klev + 1
367 DO j = 1, knon
368 i = ni(j)
369 yq2(j, k) = q2(i, k, nsrf)
370 END DO
371 END DO
372
373 ustar(:knon) = ustarhb(yu(:knon, 1), yv(:knon, 1), coefm(:knon, 1))
374 CALL yamada4(dtime, rg, zlev(:knon, :), yzlay(:knon, :), &
375 yu(:knon, :), yv(:knon, :), yteta(:knon, :), &
376 coefm(:knon, 1), yq2(:knon, :), ykmm(:knon, :), &
377 ykmn(:knon, :), ykmq(:knon, :), ustar(:knon))
378 coefm(:knon, 2:) = ykmm(:knon, 2:klev)
379 coefh(:knon, 2:) = ykmn(:knon, 2:klev)
380 END IF
381
382 CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), coefm(:knon, 2:), &
383 coefm(:knon, 1), yt(:knon, :), yu(:knon, :), ypaprs(:knon, :), &
384 ypplay(:knon, :), ydelp(:knon, :), y_d_u(:knon, :), &
385 y_flux_u(:knon))
386 CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), coefm(:knon, 2:), &
387 coefm(:knon, 1), yt(:knon, :), yv(:knon, :), ypaprs(:knon, :), &
388 ypplay(:knon, :), ydelp(:knon, :), y_d_v(:knon, :), &
389 y_flux_v(:knon))
390
391 ! calculer la diffusion de "q" et de "h"
392 CALL clqh(dtime, julien, firstcal, nsrf, ni(:knon), &
393 ytsoil(:knon, :), yqsol(:knon), mu0, yrugos, yrugoro, &
394 yu(:knon, 1), yv(:knon, 1), coefh(:knon, :), yt, yq, &
395 yts(:knon), ypaprs, ypplay, ydelp, yrads(:knon), yalb(:knon), &
396 snow(:knon), yqsurf, yrain_f, ysnow_f, yfluxlat(:knon), &
397 pctsrf_new_sic, yagesno(:knon), y_d_t, y_d_q, y_d_ts(:knon), &
398 yz0_new, y_flux_t(:knon), y_flux_q(:knon), y_dflux_t(:knon), &
399 y_dflux_q(:knon), y_fqcalving, y_ffonte, y_run_off_lic_0)
400
401 ! calculer la longueur de rugosite sur ocean
402 yrugm = 0.
403 IF (nsrf == is_oce) THEN
404 DO j = 1, knon
405 yrugm(j) = 0.018 * coefm(j, 1) * (yu(j, 1)**2 + yv(j, 1)**2) &
406 / rg + 0.11 * 14E-6 &
407 / sqrt(coefm(j, 1) * (yu(j, 1)**2 + yv(j, 1)**2))
408 yrugm(j) = max(1.5E-05, yrugm(j))
409 END DO
410 END IF
411 DO j = 1, knon
412 y_dflux_t(j) = y_dflux_t(j) * ypct(j)
413 y_dflux_q(j) = y_dflux_q(j) * ypct(j)
414 END DO
415
416 DO k = 1, klev
417 DO j = 1, knon
418 i = ni(j)
419 coefh(j, k) = coefh(j, k) * ypct(j)
420 coefm(j, k) = coefm(j, k) * ypct(j)
421 y_d_t(j, k) = y_d_t(j, k) * ypct(j)
422 y_d_q(j, k) = y_d_q(j, k) * ypct(j)
423 y_d_u(j, k) = y_d_u(j, k) * ypct(j)
424 y_d_v(j, k) = y_d_v(j, k) * ypct(j)
425 END DO
426 END DO
427
428 flux_t(ni(:knon), nsrf) = y_flux_t(:knon)
429 flux_q(ni(:knon), nsrf) = y_flux_q(:knon)
430 flux_u(ni(:knon), nsrf) = y_flux_u(:knon)
431 flux_v(ni(:knon), nsrf) = y_flux_v(:knon)
432
433 evap(:, nsrf) = -flux_q(:, nsrf)
434
435 falbe(:, nsrf) = 0.
436 fsnow(:, nsrf) = 0.
437 qsurf(:, nsrf) = 0.
438 frugs(:, nsrf) = 0.
439 DO j = 1, knon
440 i = ni(j)
441 d_ts(i, nsrf) = y_d_ts(j)
442 falbe(i, nsrf) = yalb(j)
443 fsnow(i, nsrf) = snow(j)
444 qsurf(i, nsrf) = yqsurf(j)
445 frugs(i, nsrf) = yz0_new(j)
446 fluxlat(i, nsrf) = yfluxlat(j)
447 IF (nsrf == is_oce) THEN
448 rugmer(i) = yrugm(j)
449 frugs(i, nsrf) = yrugm(j)
450 END IF
451 agesno(i, nsrf) = yagesno(j)
452 fqcalving(i, nsrf) = y_fqcalving(j)
453 ffonte(i, nsrf) = y_ffonte(j)
454 cdragh(i) = cdragh(i) + coefh(j, 1)
455 cdragm(i) = cdragm(i) + coefm(j, 1)
456 dflux_t(i) = dflux_t(i) + y_dflux_t(j)
457 dflux_q(i) = dflux_q(i) + y_dflux_q(j)
458 END DO
459 IF (nsrf == is_ter) THEN
460 qsol(ni(:knon)) = yqsol(:knon)
461 else IF (nsrf == is_lic) THEN
462 DO j = 1, knon
463 i = ni(j)
464 run_off_lic_0(i) = y_run_off_lic_0(j)
465 END DO
466 END IF
467
468 ftsoil(:, :, nsrf) = 0.
469 ftsoil(ni(:knon), :, nsrf) = ytsoil(:knon, :)
470
471 DO j = 1, knon
472 i = ni(j)
473 DO k = 1, klev
474 d_t(i, k) = d_t(i, k) + y_d_t(j, k)
475 d_q(i, k) = d_q(i, k) + y_d_q(j, k)
476 d_u(i, k) = d_u(i, k) + y_d_u(j, k)
477 d_v(i, k) = d_v(i, k) + y_d_v(j, k)
478 ycoefh(i, k) = ycoefh(i, k) + coefh(j, k)
479 END DO
480 END DO
481
482 ! diagnostic t, q a 2m et u, v a 10m
483
484 DO j = 1, knon
485 i = ni(j)
486 u1(j) = yu(j, 1) + y_d_u(j, 1)
487 v1(j) = yv(j, 1) + y_d_v(j, 1)
488 tair1(j) = yt(j, 1) + y_d_t(j, 1)
489 qair1(j) = yq(j, 1) + y_d_q(j, 1)
490 zgeo1(j) = rd * tair1(j) / (0.5 * (ypaprs(j, 1) + ypplay(j, &
491 1))) * (ypaprs(j, 1)-ypplay(j, 1))
492 tairsol(j) = yts(j) + y_d_ts(j)
493 rugo1(j) = yrugos(j)
494 IF (nsrf == is_oce) THEN
495 rugo1(j) = frugs(i, nsrf)
496 END IF
497 psfce(j) = ypaprs(j, 1)
498 patm(j) = ypplay(j, 1)
499
500 qairsol(j) = yqsurf(j)
501 END DO
502
503 CALL stdlevvar(klon, knon, nsrf, u1(:knon), v1(:knon), tair1(:knon), &
504 qair1, zgeo1, tairsol, qairsol, rugo1, psfce, patm, yt2m, &
505 yq2m, yt10m, yq10m, wind10m(:knon), ustar)
506
507 DO j = 1, knon
508 i = ni(j)
509 t2m(i, nsrf) = yt2m(j)
510 q2m(i, nsrf) = yq2m(j)
511
512 u10m_srf(i, nsrf) = (wind10m(j) * u1(j)) &
513 / sqrt(u1(j)**2 + v1(j)**2)
514 v10m_srf(i, nsrf) = (wind10m(j) * v1(j)) &
515 / sqrt(u1(j)**2 + v1(j)**2)
516 END DO
517
518 CALL hbtm(ypaprs, ypplay, yt2m, yq2m, ustar(:knon), y_flux_t(:knon), &
519 y_flux_q(:knon), yu, yv, yt, yq, ypblh(:knon), ycapcl, &
520 yoliqcl, ycteicl, ypblt, ytherm, ytrmb1, ytrmb2, ytrmb3, ylcl)
521
522 DO j = 1, knon
523 i = ni(j)
524 pblh(i, nsrf) = ypblh(j)
525 plcl(i, nsrf) = ylcl(j)
526 capcl(i, nsrf) = ycapcl(j)
527 oliqcl(i, nsrf) = yoliqcl(j)
528 cteicl(i, nsrf) = ycteicl(j)
529 pblt(i, nsrf) = ypblt(j)
530 therm(i, nsrf) = ytherm(j)
531 trmb1(i, nsrf) = ytrmb1(j)
532 trmb2(i, nsrf) = ytrmb2(j)
533 trmb3(i, nsrf) = ytrmb3(j)
534 END DO
535
536 DO j = 1, knon
537 DO k = 1, klev + 1
538 i = ni(j)
539 q2(i, k, nsrf) = yq2(j, k)
540 END DO
541 END DO
542 else
543 fsnow(:, nsrf) = 0.
544 end IF if_knon
545 END DO loop_surface
546
547 ! On utilise les nouvelles surfaces
548 frugs(:, is_oce) = rugmer
549 pctsrf(:, is_oce) = pctsrf_new_oce
550 pctsrf(:, is_sic) = pctsrf_new_sic
551
552 firstcal = .false.
553
554 END SUBROUTINE clmain
555
556 end module clmain_m

  ViewVC Help
Powered by ViewVC 1.1.21