/[lmdze]/trunk/Sources/phylmd/clmain.f
ViewVC logotype

Contents of /trunk/Sources/phylmd/clmain.f

Parent Directory Parent Directory | Revision Log Revision Log


Revision 238 - (show annotations)
Thu Nov 9 14:11:39 2017 UTC (6 years, 6 months ago) by guez
File size: 20733 byte(s)
In procedure clmain, remove local variable ykmq, not used (not used in
LMDZ either). Remove its computation in yamada4.

In procedure yamada4, remove dummy argument cd, not used.

1 module clmain_m
2
3 IMPLICIT NONE
4
5 contains
6
7 SUBROUTINE clmain(dtime, pctsrf, t, q, u, v, julien, mu0, ftsol, cdmmax, &
8 cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, paprs, pplay, fsnow, &
9 qsurf, evap, falbe, fluxlat, rain_fall, snow_f, fsolsw, fsollw, frugs, &
10 agesno, rugoro, d_t, d_q, d_u, d_v, d_ts, flux_t, flux_q, flux_u, &
11 flux_v, cdragh, cdragm, q2, dflux_t, dflux_q, ycoefh, t2m, q2m, &
12 u10m_srf, v10m_srf, pblh, capcl, oliqcl, cteicl, pblt, therm, trmb1, &
13 trmb2, trmb3, plcl, fqcalving, ffonte, run_off_lic_0)
14
15 ! From phylmd/clmain.F, version 1.6, 2005/11/16 14:47:19
16 ! Author: Z. X. Li (LMD/CNRS), date: 1993/08/18
17 ! Objet : interface de couche limite (diffusion verticale)
18
19 ! Tout ce qui a trait aux traceurs est dans "phytrac". Le calcul
20 ! de la couche limite pour les traceurs se fait avec "cltrac" et
21 ! ne tient pas compte de la diff\'erentiation des sous-fractions
22 ! de sol.
23
24 use clqh_m, only: clqh
25 use clvent_m, only: clvent
26 use coefkz_m, only: coefkz
27 use coefkzmin_m, only: coefkzmin
28 use coefkz2_m, only: coefkz2
29 USE conf_gcm_m, ONLY: lmt_pas
30 USE conf_phys_m, ONLY: iflag_pbl
31 USE dimphy, ONLY: klev, klon, zmasq
32 USE dimsoil, ONLY: nsoilmx
33 use hbtm_m, only: hbtm
34 USE indicesol, ONLY: epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf
35 USE interfoce_lim_m, ONLY: interfoce_lim
36 use stdlevvar_m, only: stdlevvar
37 USE suphec_m, ONLY: rd, rg, rkappa
38 use time_phylmdz, only: itap
39 use ustarhb_m, only: ustarhb
40 use yamada4_m, only: yamada4
41
42 REAL, INTENT(IN):: dtime ! interval du temps (secondes)
43
44 REAL, INTENT(inout):: pctsrf(klon, nbsrf)
45 ! tableau des pourcentages de surface de chaque maille
46
47 REAL, INTENT(IN):: t(klon, klev) ! temperature (K)
48 REAL, INTENT(IN):: q(klon, klev) ! vapeur d'eau (kg / kg)
49 REAL, INTENT(IN):: u(klon, klev), v(klon, klev) ! vitesse
50 INTEGER, INTENT(IN):: julien ! jour de l'annee en cours
51 REAL, intent(in):: mu0(klon) ! cosinus de l'angle solaire zenithal
52 REAL, INTENT(IN):: ftsol(:, :) ! (klon, nbsrf) temp\'erature du sol (en K)
53 REAL, INTENT(IN):: cdmmax, cdhmax ! seuils cdrm, cdrh
54 REAL, INTENT(IN):: ksta, ksta_ter
55 LOGICAL, INTENT(IN):: ok_kzmin
56
57 REAL, INTENT(inout):: ftsoil(klon, nsoilmx, nbsrf)
58 ! soil temperature of surface fraction
59
60 REAL, INTENT(inout):: qsol(:) ! (klon)
61 ! column-density of water in soil, in kg m-2
62
63 REAL, INTENT(IN):: paprs(klon, klev + 1) ! pression a intercouche (Pa)
64 REAL, INTENT(IN):: pplay(klon, klev) ! pression au milieu de couche (Pa)
65 REAL, INTENT(inout):: fsnow(:, :) ! (klon, nbsrf) \'epaisseur neigeuse
66 REAL qsurf(klon, nbsrf)
67 REAL evap(klon, nbsrf)
68 REAL, intent(inout):: falbe(klon, nbsrf)
69 REAL, intent(out):: fluxlat(:, :) ! (klon, nbsrf)
70
71 REAL, intent(in):: rain_fall(klon)
72 ! liquid water mass flux (kg / m2 / s), positive down
73
74 REAL, intent(in):: snow_f(klon)
75 ! solid water mass flux (kg / m2 / s), positive down
76
77 REAL, INTENT(IN):: fsolsw(klon, nbsrf), fsollw(klon, nbsrf)
78 REAL, intent(inout):: frugs(klon, nbsrf) ! longueur de rugosit\'e (en m)
79 real agesno(klon, nbsrf)
80 REAL, INTENT(IN):: rugoro(klon)
81
82 REAL d_t(klon, klev), d_q(klon, klev)
83 ! d_t------output-R- le changement pour "t"
84 ! d_q------output-R- le changement pour "q"
85
86 REAL, intent(out):: d_u(klon, klev), d_v(klon, klev)
87 ! changement pour "u" et "v"
88
89 REAL, intent(out):: d_ts(:, :) ! (klon, nbsrf) variation of ftsol
90
91 REAL, intent(out):: flux_t(klon, nbsrf)
92 ! flux de chaleur sensible (Cp T) (W / m2) (orientation positive vers
93 ! le bas) à la surface
94
95 REAL, intent(out):: flux_q(klon, nbsrf)
96 ! flux de vapeur d'eau (kg / m2 / s) à la surface
97
98 REAL, intent(out):: flux_u(klon, nbsrf), flux_v(klon, nbsrf)
99 ! tension du vent (flux turbulent de vent) à la surface, en Pa
100
101 REAL, INTENT(out):: cdragh(klon), cdragm(klon)
102 real q2(klon, klev + 1, nbsrf)
103
104 REAL, INTENT(out):: dflux_t(klon), dflux_q(klon)
105 ! dflux_t derive du flux sensible
106 ! dflux_q derive du flux latent
107 ! IM "slab" ocean
108
109 REAL, intent(out):: ycoefh(:, :) ! (klon, klev)
110 ! Pour pouvoir extraire les coefficients d'\'echange, le champ
111 ! "ycoefh" a \'et\'e cr\'e\'e. Nous avons moyenn\'e les valeurs de
112 ! ce champ sur les quatre sous-surfaces du mod\`ele.
113
114 REAL, INTENT(inout):: t2m(klon, nbsrf), q2m(klon, nbsrf)
115
116 REAL, INTENT(inout):: u10m_srf(:, :), v10m_srf(:, :) ! (klon, nbsrf)
117 ! composantes du vent \`a 10m sans spirale d'Ekman
118
119 ! Ionela Musat. Cf. Anne Mathieu : planetary boundary layer, hbtm.
120 ! Comme les autres diagnostics on cumule dans physiq ce qui permet
121 ! de sortir les grandeurs par sous-surface.
122 REAL pblh(klon, nbsrf) ! height of planetary boundary layer
123 REAL capcl(klon, nbsrf)
124 REAL oliqcl(klon, nbsrf)
125 REAL cteicl(klon, nbsrf)
126 REAL, INTENT(inout):: pblt(klon, nbsrf) ! T au nveau HCL
127 REAL therm(klon, nbsrf)
128 REAL trmb1(klon, nbsrf)
129 ! trmb1-------deep_cape
130 REAL trmb2(klon, nbsrf)
131 ! trmb2--------inhibition
132 REAL trmb3(klon, nbsrf)
133 ! trmb3-------Point Omega
134 REAL plcl(klon, nbsrf)
135 REAL fqcalving(klon, nbsrf), ffonte(klon, nbsrf)
136 ! ffonte----Flux thermique utilise pour fondre la neige
137 ! fqcalving-Flux d'eau "perdue" par la surface et necessaire pour limiter la
138 ! hauteur de neige, en kg / m2 / s
139 REAL run_off_lic_0(klon)
140
141 ! Local:
142
143 LOGICAL:: firstcal = .true.
144
145 ! la nouvelle repartition des surfaces sortie de l'interface
146 REAL, save:: pctsrf_new_oce(klon)
147 REAL, save:: pctsrf_new_sic(klon)
148
149 REAL y_fqcalving(klon), y_ffonte(klon)
150 real y_run_off_lic_0(klon)
151 REAL rugmer(klon)
152 REAL ytsoil(klon, nsoilmx)
153 REAL yts(klon), yrugos(klon), ypct(klon), yz0_new(klon)
154 REAL yalb(klon)
155 REAL snow(klon), yqsurf(klon), yagesno(klon)
156 real yqsol(klon) ! column-density of water in soil, in kg m-2
157 REAL yrain_f(klon) ! liquid water mass flux (kg / m2 / s), positive down
158 REAL ysnow_f(klon) ! solid water mass flux (kg / m2 / s), positive down
159 REAL yrugm(klon), yrads(klon), yrugoro(klon)
160 REAL yfluxlat(klon)
161 REAL y_d_ts(klon)
162 REAL y_d_t(klon, klev), y_d_q(klon, klev)
163 REAL y_d_u(klon, klev), y_d_v(klon, klev)
164 REAL y_flux_t(klon), y_flux_q(klon)
165 REAL y_flux_u(klon), y_flux_v(klon)
166 REAL y_dflux_t(klon), y_dflux_q(klon)
167 REAL coefh(klon, 2:klev), coefm(klon, 2:klev)
168 real ycdragh(klon), ycdragm(klon)
169 REAL yu(klon, klev), yv(klon, klev)
170 REAL yt(klon, klev), yq(klon, klev)
171 REAL ypaprs(klon, klev + 1), ypplay(klon, klev), ydelp(klon, klev)
172 REAL ycoefm0(klon, klev), ycoefh0(klon, klev)
173 REAL yzlay(klon, klev), zlev(klon, klev + 1), yteta(klon, klev)
174 REAL ykmm(klon, klev + 1), ykmn(klon, klev + 1)
175 REAL yq2(klon, klev + 1)
176 REAL delp(klon, klev)
177 INTEGER i, k, nsrf
178 INTEGER ni(klon), knon, j
179
180 REAL pctsrf_pot(klon, nbsrf)
181 ! "pourcentage potentiel" pour tenir compte des \'eventuelles
182 ! apparitions ou disparitions de la glace de mer
183
184 REAL yt2m(klon), yq2m(klon), wind10m(klon)
185 REAL ustar(klon)
186
187 REAL yt10m(klon), yq10m(klon)
188 REAL ypblh(klon)
189 REAL ylcl(klon)
190 REAL ycapcl(klon)
191 REAL yoliqcl(klon)
192 REAL ycteicl(klon)
193 REAL ypblt(klon)
194 REAL ytherm(klon)
195 REAL ytrmb1(klon)
196 REAL ytrmb2(klon)
197 REAL ytrmb3(klon)
198 REAL u1(klon), v1(klon)
199 REAL tair1(klon), qair1(klon), tairsol(klon)
200 REAL psfce(klon), patm(klon)
201
202 REAL qairsol(klon), zgeo1(klon)
203 REAL rugo1(klon)
204
205 !------------------------------------------------------------
206
207 ytherm = 0.
208
209 DO k = 1, klev ! epaisseur de couche
210 DO i = 1, klon
211 delp(i, k) = paprs(i, k) - paprs(i, k + 1)
212 END DO
213 END DO
214
215 ! Initialization:
216 rugmer = 0.
217 cdragh = 0.
218 cdragm = 0.
219 dflux_t = 0.
220 dflux_q = 0.
221 ypct = 0.
222 yqsurf = 0.
223 yrain_f = 0.
224 ysnow_f = 0.
225 yrugos = 0.
226 ypaprs = 0.
227 ypplay = 0.
228 ydelp = 0.
229 yu = 0.
230 yv = 0.
231 yt = 0.
232 yq = 0.
233 y_dflux_t = 0.
234 y_dflux_q = 0.
235 yrugoro = 0.
236 d_ts = 0.
237 flux_t = 0.
238 flux_q = 0.
239 flux_u = 0.
240 flux_v = 0.
241 fluxlat = 0.
242 d_t = 0.
243 d_q = 0.
244 d_u = 0.
245 d_v = 0.
246 ycoefh = 0.
247
248 ! Initialisation des "pourcentages potentiels". On consid\`ere ici qu'on
249 ! peut avoir potentiellement de la glace sur tout le domaine oc\'eanique
250 ! (\`a affiner)
251
252 pctsrf_pot(:, is_ter) = pctsrf(:, is_ter)
253 pctsrf_pot(:, is_lic) = pctsrf(:, is_lic)
254 pctsrf_pot(:, is_oce) = 1. - zmasq
255 pctsrf_pot(:, is_sic) = 1. - zmasq
256
257 ! Tester si c'est le moment de lire le fichier:
258 if (mod(itap - 1, lmt_pas) == 0) then
259 CALL interfoce_lim(julien, pctsrf_new_oce, pctsrf_new_sic)
260 endif
261
262 ! Boucler sur toutes les sous-fractions du sol:
263
264 loop_surface: DO nsrf = 1, nbsrf
265 ! Chercher les indices :
266 ni = 0
267 knon = 0
268 DO i = 1, klon
269 ! Pour d\'eterminer le domaine \`a traiter, on utilise les surfaces
270 ! "potentielles"
271 IF (pctsrf_pot(i, nsrf) > epsfra) THEN
272 knon = knon + 1
273 ni(knon) = i
274 END IF
275 END DO
276
277 if_knon: IF (knon /= 0) then
278 DO j = 1, knon
279 i = ni(j)
280 ypct(j) = pctsrf(i, nsrf)
281 yts(j) = ftsol(i, nsrf)
282 snow(j) = fsnow(i, nsrf)
283 yqsurf(j) = qsurf(i, nsrf)
284 yalb(j) = falbe(i, nsrf)
285 yrain_f(j) = rain_fall(i)
286 ysnow_f(j) = snow_f(i)
287 yagesno(j) = agesno(i, nsrf)
288 yrugos(j) = frugs(i, nsrf)
289 yrugoro(j) = rugoro(i)
290 yrads(j) = fsolsw(i, nsrf) + fsollw(i, nsrf)
291 ypaprs(j, klev + 1) = paprs(i, klev + 1)
292 y_run_off_lic_0(j) = run_off_lic_0(i)
293 END DO
294
295 ! For continent, copy soil water content
296 IF (nsrf == is_ter) yqsol(:knon) = qsol(ni(:knon))
297
298 ytsoil(:knon, :) = ftsoil(ni(:knon), :, nsrf)
299
300 DO k = 1, klev
301 DO j = 1, knon
302 i = ni(j)
303 ypaprs(j, k) = paprs(i, k)
304 ypplay(j, k) = pplay(i, k)
305 ydelp(j, k) = delp(i, k)
306 yu(j, k) = u(i, k)
307 yv(j, k) = v(i, k)
308 yt(j, k) = t(i, k)
309 yq(j, k) = q(i, k)
310 END DO
311 END DO
312
313 ! calculer Cdrag et les coefficients d'echange
314 CALL coefkz(nsrf, ypaprs, ypplay, ksta, ksta_ter, yts(:knon), &
315 yrugos, yu, yv, yt, yq, yqsurf(:knon), coefm(:knon, :), &
316 coefh(:knon, :), ycdragm(:knon), ycdragh(:knon))
317
318 IF (iflag_pbl == 1) THEN
319 CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0(:knon, 2:), &
320 ycoefh0(:knon, 2:))
321 ycoefm0(:knon, 1) = 0.
322 ycoefh0(:knon, 1) = 0.
323 coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, 2:))
324 coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, 2:))
325 ycdragm(:knon) = max(ycdragm(:knon), 0.)
326 ycdragh(:knon) = max(ycdragh(:knon), 0.)
327 END IF
328
329 ! on met un seuil pour ycdragm et ycdragh
330 IF (nsrf == is_oce) THEN
331 ycdragm(:knon) = min(ycdragm(:knon), cdmmax)
332 ycdragh(:knon) = min(ycdragh(:knon), cdhmax)
333 END IF
334
335 IF (ok_kzmin) THEN
336 ! Calcul d'une diffusion minimale pour les conditions tres stables
337 CALL coefkzmin(knon, ypaprs, ypplay, yu, yv, yt, yq, &
338 ycdragm(:knon), ycoefm0(:knon, 2:), ycoefh0(:knon, 2:))
339 coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, 2:))
340 coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, 2:))
341 ycdragm(:knon) = max(ycdragm(:knon), ycoefm0(:knon, 1))
342 ycdragh(:knon) = max(ycdragh(:knon), ycoefh0(:knon, 1))
343 END IF
344
345 IF (iflag_pbl >= 6) THEN
346 ! Mellor et Yamada adapt\'e \`a Mars, Richard Fournier et
347 ! Fr\'ed\'eric Hourdin
348 yzlay(:knon, 1) = rd * yt(:knon, 1) / (0.5 * (ypaprs(:knon, 1) &
349 + ypplay(:knon, 1))) &
350 * (ypaprs(:knon, 1) - ypplay(:knon, 1)) / rg
351
352 DO k = 2, klev
353 yzlay(:knon, k) = yzlay(:knon, k-1) &
354 + rd * 0.5 * (yt(1:knon, k-1) + yt(1:knon, k)) &
355 / ypaprs(1:knon, k) &
356 * (ypplay(1:knon, k-1) - ypplay(1:knon, k)) / rg
357 END DO
358
359 DO k = 1, klev
360 yteta(1:knon, k) = yt(1:knon, k) * (ypaprs(1:knon, 1) &
361 / ypplay(1:knon, k))**rkappa * (1. + 0.61 * yq(1:knon, k))
362 END DO
363
364 zlev(:knon, 1) = 0.
365 zlev(:knon, klev + 1) = 2. * yzlay(:knon, klev) &
366 - yzlay(:knon, klev - 1)
367
368 DO k = 2, klev
369 zlev(:knon, k) = 0.5 * (yzlay(:knon, k) + yzlay(:knon, k-1))
370 END DO
371
372 DO k = 1, klev + 1
373 DO j = 1, knon
374 i = ni(j)
375 yq2(j, k) = q2(i, k, nsrf)
376 END DO
377 END DO
378
379 ustar(:knon) = ustarhb(yu(:knon, 1), yv(:knon, 1), ycdragm(:knon))
380 CALL yamada4(dtime, rg, zlev(:knon, :), yzlay(:knon, :), &
381 yu(:knon, :), yv(:knon, :), yteta(:knon, :), yq2(:knon, :), &
382 ykmm(:knon, :), ykmn(:knon, :), ustar(:knon))
383 coefm(:knon, :) = ykmm(:knon, 2:klev)
384 coefh(:knon, :) = ykmn(:knon, 2:klev)
385 END IF
386
387 CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), coefm(:knon, :), &
388 ycdragm(:knon), yt(:knon, :), yu(:knon, :), ypaprs(:knon, :), &
389 ypplay(:knon, :), ydelp(:knon, :), y_d_u(:knon, :), &
390 y_flux_u(:knon))
391 CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), coefm(:knon, :), &
392 ycdragm(:knon), yt(:knon, :), yv(:knon, :), ypaprs(:knon, :), &
393 ypplay(:knon, :), ydelp(:knon, :), y_d_v(:knon, :), &
394 y_flux_v(:knon))
395
396 ! calculer la diffusion de "q" et de "h"
397 CALL clqh(dtime, julien, firstcal, nsrf, ni(:knon), &
398 ytsoil(:knon, :), yqsol(:knon), mu0, yrugos, yrugoro, &
399 yu(:knon, 1), yv(:knon, 1), coefh(:knon, :), ycdragh(:knon), &
400 yt, yq, yts(:knon), ypaprs, ypplay, ydelp, yrads(:knon), &
401 yalb(:knon), snow(:knon), yqsurf, yrain_f, ysnow_f, &
402 yfluxlat(:knon), pctsrf_new_sic, yagesno(:knon), y_d_t, y_d_q, &
403 y_d_ts(:knon), yz0_new, y_flux_t(:knon), y_flux_q(:knon), &
404 y_dflux_t(:knon), y_dflux_q(:knon), y_fqcalving, y_ffonte, &
405 y_run_off_lic_0)
406
407 ! calculer la longueur de rugosite sur ocean
408 yrugm = 0.
409 IF (nsrf == is_oce) THEN
410 DO j = 1, knon
411 yrugm(j) = 0.018 * ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2) &
412 / rg + 0.11 * 14E-6 &
413 / sqrt(ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2))
414 yrugm(j) = max(1.5E-05, yrugm(j))
415 END DO
416 END IF
417 DO j = 1, knon
418 y_dflux_t(j) = y_dflux_t(j) * ypct(j)
419 y_dflux_q(j) = y_dflux_q(j) * ypct(j)
420 END DO
421
422 DO k = 2, klev
423 DO j = 1, knon
424 i = ni(j)
425 coefh(j, k) = coefh(j, k) * ypct(j)
426 coefm(j, k) = coefm(j, k) * ypct(j)
427 END DO
428 END DO
429 DO j = 1, knon
430 i = ni(j)
431 ycdragh(j) = ycdragh(j) * ypct(j)
432 ycdragm(j) = ycdragm(j) * ypct(j)
433 END DO
434 DO k = 1, klev
435 DO j = 1, knon
436 i = ni(j)
437 y_d_t(j, k) = y_d_t(j, k) * ypct(j)
438 y_d_q(j, k) = y_d_q(j, k) * ypct(j)
439 y_d_u(j, k) = y_d_u(j, k) * ypct(j)
440 y_d_v(j, k) = y_d_v(j, k) * ypct(j)
441 END DO
442 END DO
443
444 flux_t(ni(:knon), nsrf) = y_flux_t(:knon)
445 flux_q(ni(:knon), nsrf) = y_flux_q(:knon)
446 flux_u(ni(:knon), nsrf) = y_flux_u(:knon)
447 flux_v(ni(:knon), nsrf) = y_flux_v(:knon)
448
449 evap(:, nsrf) = -flux_q(:, nsrf)
450
451 falbe(:, nsrf) = 0.
452 fsnow(:, nsrf) = 0.
453 qsurf(:, nsrf) = 0.
454 frugs(:, nsrf) = 0.
455 DO j = 1, knon
456 i = ni(j)
457 d_ts(i, nsrf) = y_d_ts(j)
458 falbe(i, nsrf) = yalb(j)
459 fsnow(i, nsrf) = snow(j)
460 qsurf(i, nsrf) = yqsurf(j)
461 frugs(i, nsrf) = yz0_new(j)
462 fluxlat(i, nsrf) = yfluxlat(j)
463 IF (nsrf == is_oce) THEN
464 rugmer(i) = yrugm(j)
465 frugs(i, nsrf) = yrugm(j)
466 END IF
467 agesno(i, nsrf) = yagesno(j)
468 fqcalving(i, nsrf) = y_fqcalving(j)
469 ffonte(i, nsrf) = y_ffonte(j)
470 cdragh(i) = cdragh(i) + ycdragh(j)
471 cdragm(i) = cdragm(i) + ycdragm(j)
472 dflux_t(i) = dflux_t(i) + y_dflux_t(j)
473 dflux_q(i) = dflux_q(i) + y_dflux_q(j)
474 END DO
475 IF (nsrf == is_ter) THEN
476 qsol(ni(:knon)) = yqsol(:knon)
477 else IF (nsrf == is_lic) THEN
478 DO j = 1, knon
479 i = ni(j)
480 run_off_lic_0(i) = y_run_off_lic_0(j)
481 END DO
482 END IF
483
484 ftsoil(:, :, nsrf) = 0.
485 ftsoil(ni(:knon), :, nsrf) = ytsoil(:knon, :)
486
487 DO j = 1, knon
488 i = ni(j)
489 DO k = 1, klev
490 d_t(i, k) = d_t(i, k) + y_d_t(j, k)
491 d_q(i, k) = d_q(i, k) + y_d_q(j, k)
492 d_u(i, k) = d_u(i, k) + y_d_u(j, k)
493 d_v(i, k) = d_v(i, k) + y_d_v(j, k)
494 END DO
495 END DO
496
497 DO j = 1, knon
498 i = ni(j)
499 DO k = 2, klev
500 ycoefh(i, k) = ycoefh(i, k) + coefh(j, k)
501 END DO
502 END DO
503
504 DO j = 1, knon
505 i = ni(j)
506 ycoefh(i, 1) = ycoefh(i, 1) + ycdragh(j)
507 END DO
508
509 ! diagnostic t, q a 2m et u, v a 10m
510
511 DO j = 1, knon
512 i = ni(j)
513 u1(j) = yu(j, 1) + y_d_u(j, 1)
514 v1(j) = yv(j, 1) + y_d_v(j, 1)
515 tair1(j) = yt(j, 1) + y_d_t(j, 1)
516 qair1(j) = yq(j, 1) + y_d_q(j, 1)
517 zgeo1(j) = rd * tair1(j) / (0.5 * (ypaprs(j, 1) + ypplay(j, &
518 1))) * (ypaprs(j, 1)-ypplay(j, 1))
519 tairsol(j) = yts(j) + y_d_ts(j)
520 rugo1(j) = yrugos(j)
521 IF (nsrf == is_oce) THEN
522 rugo1(j) = frugs(i, nsrf)
523 END IF
524 psfce(j) = ypaprs(j, 1)
525 patm(j) = ypplay(j, 1)
526
527 qairsol(j) = yqsurf(j)
528 END DO
529
530 CALL stdlevvar(klon, knon, nsrf, u1(:knon), v1(:knon), tair1(:knon), &
531 qair1, zgeo1, tairsol, qairsol, rugo1, psfce, patm, yt2m, &
532 yq2m, yt10m, yq10m, wind10m(:knon), ustar)
533
534 DO j = 1, knon
535 i = ni(j)
536 t2m(i, nsrf) = yt2m(j)
537 q2m(i, nsrf) = yq2m(j)
538
539 u10m_srf(i, nsrf) = (wind10m(j) * u1(j)) &
540 / sqrt(u1(j)**2 + v1(j)**2)
541 v10m_srf(i, nsrf) = (wind10m(j) * v1(j)) &
542 / sqrt(u1(j)**2 + v1(j)**2)
543 END DO
544
545 CALL hbtm(ypaprs, ypplay, yt2m, yq2m, ustar(:knon), y_flux_t(:knon), &
546 y_flux_q(:knon), yu, yv, yt, yq, ypblh(:knon), ycapcl, &
547 yoliqcl, ycteicl, ypblt, ytherm, ytrmb1, ytrmb2, ytrmb3, ylcl)
548
549 DO j = 1, knon
550 i = ni(j)
551 pblh(i, nsrf) = ypblh(j)
552 plcl(i, nsrf) = ylcl(j)
553 capcl(i, nsrf) = ycapcl(j)
554 oliqcl(i, nsrf) = yoliqcl(j)
555 cteicl(i, nsrf) = ycteicl(j)
556 pblt(i, nsrf) = ypblt(j)
557 therm(i, nsrf) = ytherm(j)
558 trmb1(i, nsrf) = ytrmb1(j)
559 trmb2(i, nsrf) = ytrmb2(j)
560 trmb3(i, nsrf) = ytrmb3(j)
561 END DO
562
563 DO j = 1, knon
564 DO k = 1, klev + 1
565 i = ni(j)
566 q2(i, k, nsrf) = yq2(j, k)
567 END DO
568 END DO
569 else
570 fsnow(:, nsrf) = 0.
571 end IF if_knon
572 END DO loop_surface
573
574 ! On utilise les nouvelles surfaces
575 frugs(:, is_oce) = rugmer
576 pctsrf(:, is_oce) = pctsrf_new_oce
577 pctsrf(:, is_sic) = pctsrf_new_sic
578
579 firstcal = .false.
580
581 END SUBROUTINE clmain
582
583 end module clmain_m

  ViewVC Help
Powered by ViewVC 1.1.21