/[lmdze]/trunk/Sources/phylmd/clmain.f
ViewVC logotype

Diff of /trunk/Sources/phylmd/clmain.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

revision 134 by guez, Wed Apr 29 15:47:56 2015 UTC revision 208 by guez, Wed Dec 7 16:44:53 2016 UTC
# Line 4  module clmain_m Line 4  module clmain_m
4    
5  contains  contains
6    
7    SUBROUTINE clmain(dtime, itap, pctsrf, pctsrf_new, t, q, u, v, jour, rmu0, &    SUBROUTINE clmain(dtime, pctsrf, t, q, u, v, jour, rmu0, ftsol, cdmmax, &
8         co2_ppm, ts, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, &         cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, paprs, pplay, snow, &
9         paprs, pplay, snow, qsurf, evap, albe, alblw, fluxlat, rain_fall, &         qsurf, evap, falbe, fluxlat, rain_fall, snow_f, solsw, sollw, fder, &
10         snow_f, solsw, sollw, fder, rlat, rugos, debut, agesno, rugoro, d_t, &         rlat, rugos, agesno, rugoro, d_t, d_q, d_u, d_v, d_ts, flux_t, flux_q, &
11         d_q, d_u, d_v, d_ts, flux_t, flux_q, flux_u, flux_v, cdragh, cdragm, &         flux_u, flux_v, cdragh, cdragm, q2, dflux_t, dflux_q, ycoefh, zu1, &
12         q2, dflux_t, dflux_q, ycoefh, zu1, zv1, t2m, q2m, u10m, v10m, pblh, &         zv1, t2m, q2m, u10m, v10m, pblh, capcl, oliqcl, cteicl, pblt, therm, &
13         capcl, oliqcl, cteicl, pblt, therm, trmb1, trmb2, trmb3, plcl, &         trmb1, trmb2, trmb3, plcl, fqcalving, ffonte, run_off_lic_0)
        fqcalving, ffonte, run_off_lic_0, flux_o, flux_g, tslab)  
14    
15      ! From phylmd/clmain.F, version 1.6, 2005/11/16 14:47:19      ! From phylmd/clmain.F, version 1.6, 2005/11/16 14:47:19
16      ! Author: Z. X. Li (LMD/CNRS), date: 1993/08/18      ! Author: Z. X. Li (LMD/CNRS), date: 1993/08/18
# Line 19  contains Line 18  contains
18    
19      ! Tout ce qui a trait aux traceurs est dans "phytrac". Le calcul      ! Tout ce qui a trait aux traceurs est dans "phytrac". Le calcul
20      ! de la couche limite pour les traceurs se fait avec "cltrac" et      ! de la couche limite pour les traceurs se fait avec "cltrac" et
21      ! ne tient pas compte de la différentiation des sous-fractions de      ! ne tient pas compte de la diff\'erentiation des sous-fractions
22      ! sol.      ! de sol.
23    
24      ! Pour pouvoir extraire les coefficients d'échanges et le vent      ! Pour pouvoir extraire les coefficients d'\'echanges et le vent
25      ! dans la première couche, trois champs ont été créés : "ycoefh",      ! dans la premi\`ere couche, trois champs ont \'et\'e cr\'e\'es : "ycoefh",
26      ! "zu1" et "zv1". Nous avons moyenné les valeurs de ces trois      ! "zu1" et "zv1". Nous avons moyenn\'e les valeurs de ces trois
27      ! champs sur les quatre sous-surfaces du modèle.      ! champs sur les quatre sous-surfaces du mod\`ele.
28    
29      use clqh_m, only: clqh      use clqh_m, only: clqh
30      use clvent_m, only: clvent      use clvent_m, only: clvent
31      use coefkz_m, only: coefkz      use coefkz_m, only: coefkz
32      use coefkzmin_m, only: coefkzmin      use coefkzmin_m, only: coefkzmin
33      USE conf_gcm_m, ONLY: prt_level      USE conf_gcm_m, ONLY: prt_level, lmt_pas
34      USE conf_phys_m, ONLY: iflag_pbl      USE conf_phys_m, ONLY: iflag_pbl
     USE dimens_m, ONLY: iim, jjm  
35      USE dimphy, ONLY: klev, klon, zmasq      USE dimphy, ONLY: klev, klon, zmasq
36      USE dimsoil, ONLY: nsoilmx      USE dimsoil, ONLY: nsoilmx
37      use hbtm_m, only: hbtm      use hbtm_m, only: hbtm
38      USE indicesol, ONLY: epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf      USE indicesol, ONLY: epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf
39        USE interfoce_lim_m, ONLY: interfoce_lim
40      use stdlevvar_m, only: stdlevvar      use stdlevvar_m, only: stdlevvar
41      USE suphec_m, ONLY: rd, rg, rkappa      USE suphec_m, ONLY: rd, rg, rkappa
42        use time_phylmdz, only: itap
43      use ustarhb_m, only: ustarhb      use ustarhb_m, only: ustarhb
44      use vdif_kcay_m, only: vdif_kcay      use vdif_kcay_m, only: vdif_kcay
45      use yamada4_m, only: yamada4      use yamada4_m, only: yamada4
46    
47      REAL, INTENT(IN):: dtime ! interval du temps (secondes)      REAL, INTENT(IN):: dtime ! interval du temps (secondes)
     INTEGER, INTENT(IN):: itap ! numero du pas de temps  
     REAL, INTENT(inout):: pctsrf(klon, nbsrf)  
48    
49      ! la nouvelle repartition des surfaces sortie de l'interface      REAL, INTENT(inout):: pctsrf(klon, nbsrf)
50      REAL, INTENT(out):: pctsrf_new(klon, nbsrf)      ! tableau des pourcentages de surface de chaque maille
51    
52      REAL, INTENT(IN):: t(klon, klev) ! temperature (K)      REAL, INTENT(IN):: t(klon, klev) ! temperature (K)
53      REAL, INTENT(IN):: q(klon, klev) ! vapeur d'eau (kg/kg)      REAL, INTENT(IN):: q(klon, klev) ! vapeur d'eau (kg/kg)
54      REAL, INTENT(IN):: u(klon, klev), v(klon, klev) ! vitesse      REAL, INTENT(IN):: u(klon, klev), v(klon, klev) ! vitesse
55      INTEGER, INTENT(IN):: jour ! jour de l'annee en cours      INTEGER, INTENT(IN):: jour ! jour de l'annee en cours
56      REAL, intent(in):: rmu0(klon) ! cosinus de l'angle solaire zenithal          REAL, intent(in):: rmu0(klon) ! cosinus de l'angle solaire zenithal    
57      REAL, intent(in):: co2_ppm ! taux CO2 atmosphere      REAL, INTENT(IN):: ftsol(klon, nbsrf) ! temp\'erature du sol (en K)
     REAL, INTENT(IN):: ts(klon, nbsrf) ! temperature du sol (en Kelvin)  
58      REAL, INTENT(IN):: cdmmax, cdhmax ! seuils cdrm, cdrh      REAL, INTENT(IN):: cdmmax, cdhmax ! seuils cdrm, cdrh
59      REAL, INTENT(IN):: ksta, ksta_ter      REAL, INTENT(IN):: ksta, ksta_ter
60      LOGICAL, INTENT(IN):: ok_kzmin      LOGICAL, INTENT(IN):: ok_kzmin
# Line 70  contains Line 67  contains
67    
68      REAL, INTENT(IN):: paprs(klon, klev+1) ! pression a intercouche (Pa)      REAL, INTENT(IN):: paprs(klon, klev+1) ! pression a intercouche (Pa)
69      REAL, INTENT(IN):: pplay(klon, klev) ! pression au milieu de couche (Pa)      REAL, INTENT(IN):: pplay(klon, klev) ! pression au milieu de couche (Pa)
70      REAL snow(klon, nbsrf)      REAL, INTENT(inout):: snow(klon, nbsrf)
71      REAL qsurf(klon, nbsrf)      REAL qsurf(klon, nbsrf)
72      REAL evap(klon, nbsrf)      REAL evap(klon, nbsrf)
73      REAL albe(klon, nbsrf)      REAL, intent(inout):: falbe(klon, nbsrf)
     REAL alblw(klon, nbsrf)  
74    
75      REAL fluxlat(klon, nbsrf)      REAL fluxlat(klon, nbsrf)
76    
# Line 85  contains Line 81  contains
81      ! solid water mass flux (kg/m2/s), positive down      ! solid water mass flux (kg/m2/s), positive down
82    
83      REAL, INTENT(IN):: solsw(klon, nbsrf), sollw(klon, nbsrf)      REAL, INTENT(IN):: solsw(klon, nbsrf), sollw(klon, nbsrf)
84      REAL fder(klon)      REAL, intent(in):: fder(klon)
85      REAL, INTENT(IN):: rlat(klon) ! latitude en degrés      REAL, INTENT(IN):: rlat(klon) ! latitude en degr\'es
86    
87      REAL rugos(klon, nbsrf)      REAL, intent(inout):: rugos(klon, nbsrf) ! longueur de rugosit\'e (en m)
     ! rugos----input-R- longeur de rugosite (en m)  
88    
     LOGICAL, INTENT(IN):: debut  
89      real agesno(klon, nbsrf)      real agesno(klon, nbsrf)
90      REAL, INTENT(IN):: rugoro(klon)      REAL, INTENT(IN):: rugoro(klon)
91    
# Line 102  contains Line 96  contains
96      REAL, intent(out):: d_u(klon, klev), d_v(klon, klev)      REAL, intent(out):: d_u(klon, klev), d_v(klon, klev)
97      ! changement pour "u" et "v"      ! changement pour "u" et "v"
98    
99      REAL, intent(out):: d_ts(klon, nbsrf) ! le changement pour "ts"      REAL, intent(out):: d_ts(klon, nbsrf) ! le changement pour ftsol
100    
101        REAL, intent(out):: flux_t(klon, nbsrf)
102        ! flux de chaleur sensible (Cp T) (W/m2) (orientation positive vers
103        ! le bas) à la surface
104    
105        REAL, intent(out):: flux_q(klon, nbsrf)
106        ! flux de vapeur d'eau (kg/m2/s) à la surface
107    
108      REAL flux_t(klon, klev, nbsrf), flux_q(klon, klev, nbsrf)      REAL, intent(out):: flux_u(klon, nbsrf), flux_v(klon, nbsrf)
109      ! flux_t---output-R- flux de chaleur sensible (CpT) J/m**2/s (W/m**2)      ! tension du vent à la surface, en Pa
     !                    (orientation positive vers le bas)  
     ! flux_q---output-R- flux de vapeur d'eau (kg/m**2/s)  
   
     REAL flux_u(klon, klev, nbsrf), flux_v(klon, klev, nbsrf)  
     ! flux_u---output-R- tension du vent X: (kg m/s)/(m**2 s) ou Pascal  
     ! flux_v---output-R- tension du vent Y: (kg m/s)/(m**2 s) ou Pascal  
110    
111      REAL, INTENT(out):: cdragh(klon), cdragm(klon)      REAL, INTENT(out):: cdragh(klon), cdragm(klon)
112      real q2(klon, klev+1, nbsrf)      real q2(klon, klev+1, nbsrf)
# Line 119  contains Line 114  contains
114      REAL, INTENT(out):: dflux_t(klon), dflux_q(klon)      REAL, INTENT(out):: dflux_t(klon), dflux_q(klon)
115      ! dflux_t derive du flux sensible      ! dflux_t derive du flux sensible
116      ! dflux_q derive du flux latent      ! dflux_q derive du flux latent
117      !IM "slab" ocean      ! IM "slab" ocean
118    
119      REAL, intent(out):: ycoefh(klon, klev)      REAL, intent(out):: ycoefh(klon, klev)
120      REAL, intent(out):: zu1(klon)      REAL, intent(out):: zu1(klon)
# Line 127  contains Line 122  contains
122      REAL t2m(klon, nbsrf), q2m(klon, nbsrf)      REAL t2m(klon, nbsrf), q2m(klon, nbsrf)
123      REAL u10m(klon, nbsrf), v10m(klon, nbsrf)      REAL u10m(klon, nbsrf), v10m(klon, nbsrf)
124    
125      !IM cf. AM : pbl, hbtm (Comme les autres diagnostics on cumule ds      ! Ionela Musat cf. Anne Mathieu : planetary boundary layer, hbtm
126      ! physiq ce qui permet de sortir les grdeurs par sous surface)      ! (Comme les autres diagnostics on cumule dans physiq ce qui
127      REAL pblh(klon, nbsrf)      ! permet de sortir les grandeurs par sous-surface)
128      ! pblh------- HCL      REAL pblh(klon, nbsrf) ! height of planetary boundary layer
129      REAL capcl(klon, nbsrf)      REAL capcl(klon, nbsrf)
130      REAL oliqcl(klon, nbsrf)      REAL oliqcl(klon, nbsrf)
131      REAL cteicl(klon, nbsrf)      REAL cteicl(klon, nbsrf)
# Line 150  contains Line 145  contains
145      !           hauteur de neige, en kg/m2/s      !           hauteur de neige, en kg/m2/s
146      REAL run_off_lic_0(klon)      REAL run_off_lic_0(klon)
147    
     REAL flux_o(klon), flux_g(klon)  
     !IM "slab" ocean  
     ! flux_g---output-R-  flux glace (pour OCEAN='slab  ')  
     ! flux_o---output-R-  flux ocean (pour OCEAN='slab  ')  
   
     REAL tslab(klon)  
     ! tslab-in/output-R temperature du slab ocean (en Kelvin)  
     ! uniqmnt pour slab  
   
148      ! Local:      ! Local:
149    
150      REAL y_flux_o(klon), y_flux_g(klon)      LOGICAL:: firstcal = .true.
151      real ytslab(klon)  
152        ! la nouvelle repartition des surfaces sortie de l'interface
153        REAL, save:: pctsrf_new_oce(klon)
154        REAL, save:: pctsrf_new_sic(klon)
155    
156      REAL y_fqcalving(klon), y_ffonte(klon)      REAL y_fqcalving(klon), y_ffonte(klon)
157      real y_run_off_lic_0(klon)      real y_run_off_lic_0(klon)
   
158      REAL rugmer(klon)      REAL rugmer(klon)
   
159      REAL ytsoil(klon, nsoilmx)      REAL ytsoil(klon, nsoilmx)
   
160      REAL yts(klon), yrugos(klon), ypct(klon), yz0_new(klon)      REAL yts(klon), yrugos(klon), ypct(klon), yz0_new(klon)
161      REAL yalb(klon)      REAL yalb(klon)
     REAL yalblw(klon)  
162      REAL yu1(klon), yv1(klon)      REAL yu1(klon), yv1(klon)
163      ! on rajoute en output yu1 et yv1 qui sont les vents dans      ! on rajoute en output yu1 et yv1 qui sont les vents dans
164      ! la premiere couche      ! la premiere couche
# Line 187  contains Line 173  contains
173      REAL ysnow_f(klon)      REAL ysnow_f(klon)
174      ! solid water mass flux (kg/m2/s), positive down      ! solid water mass flux (kg/m2/s), positive down
175    
     REAL ysollw(klon), ysolsw(klon)  
176      REAL yfder(klon)      REAL yfder(klon)
177      REAL yrugm(klon), yrads(klon), yrugoro(klon)      REAL yrugm(klon), yrads(klon), yrugoro(klon)
178    
# Line 196  contains Line 181  contains
181      REAL y_d_ts(klon)      REAL y_d_ts(klon)
182      REAL y_d_t(klon, klev), y_d_q(klon, klev)      REAL y_d_t(klon, klev), y_d_q(klon, klev)
183      REAL y_d_u(klon, klev), y_d_v(klon, klev)      REAL y_d_u(klon, klev), y_d_v(klon, klev)
184      REAL y_flux_t(klon, klev), y_flux_q(klon, klev)      REAL y_flux_t(klon), y_flux_q(klon)
185      REAL y_flux_u(klon, klev), y_flux_v(klon, klev)      REAL y_flux_u(klon), y_flux_v(klon)
186      REAL y_dflux_t(klon), y_dflux_q(klon)      REAL y_dflux_t(klon), y_dflux_q(klon)
187      REAL coefh(klon, klev), coefm(klon, klev)      REAL coefh(klon, klev), coefm(klon, klev)
188      REAL yu(klon, klev), yv(klon, klev)      REAL yu(klon, klev), yv(klon, klev)
# Line 219  contains Line 204  contains
204      INTEGER ni(klon), knon, j      INTEGER ni(klon), knon, j
205    
206      REAL pctsrf_pot(klon, nbsrf)      REAL pctsrf_pot(klon, nbsrf)
207      ! "pourcentage potentiel" pour tenir compte des éventuelles      ! "pourcentage potentiel" pour tenir compte des \'eventuelles
208      ! apparitions ou disparitions de la glace de mer      ! apparitions ou disparitions de la glace de mer
209    
210      REAL zx_alf1, zx_alf2 !valeur ambiante par extrapola.      REAL zx_alf1, zx_alf2 ! valeur ambiante par extrapolation
211    
212      REAL yt2m(klon), yq2m(klon), yu10m(klon)      REAL yt2m(klon), yq2m(klon), yu10m(klon)
213      REAL yustar(klon)      REAL yustar(klon)
     ! -- LOOP  
     REAL yu10mx(klon)  
     REAL yu10my(klon)  
     REAL ywindsp(klon)  
     ! -- LOOP  
214    
215      REAL yt10m(klon), yq10m(klon)      REAL yt10m(klon), yq10m(klon)
216      REAL ypblh(klon)      REAL ypblh(klon)
# Line 282  contains Line 262  contains
262      yts = 0.      yts = 0.
263      ysnow = 0.      ysnow = 0.
264      yqsurf = 0.      yqsurf = 0.
     yalb = 0.  
     yalblw = 0.  
265      yrain_f = 0.      yrain_f = 0.
266      ysnow_f = 0.      ysnow_f = 0.
267      yfder = 0.      yfder = 0.
     ysolsw = 0.  
     ysollw = 0.  
268      yrugos = 0.      yrugos = 0.
269      yu1 = 0.      yu1 = 0.
270      yv1 = 0.      yv1 = 0.
# Line 300  contains Line 276  contains
276      yv = 0.      yv = 0.
277      yt = 0.      yt = 0.
278      yq = 0.      yq = 0.
     pctsrf_new = 0.  
     y_flux_u = 0.  
     y_flux_v = 0.  
279      y_dflux_t = 0.      y_dflux_t = 0.
280      y_dflux_q = 0.      y_dflux_q = 0.
     ytsoil = 999999.  
281      yrugoro = 0.      yrugoro = 0.
     yu10mx = 0.  
     yu10my = 0.  
     ywindsp = 0.  
282      d_ts = 0.      d_ts = 0.
283      yfluxlat = 0.      yfluxlat = 0.
284      flux_t = 0.      flux_t = 0.
# Line 322  contains Line 291  contains
291      d_v = 0.      d_v = 0.
292      ycoefh = 0.      ycoefh = 0.
293    
294      ! Initialisation des "pourcentages potentiels". On considère ici qu'on      ! Initialisation des "pourcentages potentiels". On consid\`ere ici qu'on
295      ! peut avoir potentiellement de la glace sur tout le domaine océanique      ! peut avoir potentiellement de la glace sur tout le domaine oc\'eanique
296      ! (à affiner)      ! (\`a affiner)
297    
298      pctsrf_pot = pctsrf      pctsrf_pot(:, is_ter) = pctsrf(:, is_ter)
299        pctsrf_pot(:, is_lic) = pctsrf(:, is_lic)
300      pctsrf_pot(:, is_oce) = 1. - zmasq      pctsrf_pot(:, is_oce) = 1. - zmasq
301      pctsrf_pot(:, is_sic) = 1. - zmasq      pctsrf_pot(:, is_sic) = 1. - zmasq
302    
303        ! Tester si c'est le moment de lire le fichier:
304        if (mod(itap - 1, lmt_pas) == 0) then
305           CALL interfoce_lim(jour, pctsrf_new_oce, pctsrf_new_sic)
306        endif
307    
308      ! Boucler sur toutes les sous-fractions du sol:      ! Boucler sur toutes les sous-fractions du sol:
309    
310      loop_surface: DO nsrf = 1, nbsrf      loop_surface: DO nsrf = 1, nbsrf
# Line 337  contains Line 312  contains
312         ni = 0         ni = 0
313         knon = 0         knon = 0
314         DO i = 1, klon         DO i = 1, klon
315            ! Pour déterminer le domaine à traiter, on utilise les surfaces            ! Pour d\'eterminer le domaine \`a traiter, on utilise les surfaces
316            ! "potentielles"            ! "potentielles"
317            IF (pctsrf_pot(i, nsrf) > epsfra) THEN            IF (pctsrf_pot(i, nsrf) > epsfra) THEN
318               knon = knon + 1               knon = knon + 1
# Line 349  contains Line 324  contains
324            DO j = 1, knon            DO j = 1, knon
325               i = ni(j)               i = ni(j)
326               ypct(j) = pctsrf(i, nsrf)               ypct(j) = pctsrf(i, nsrf)
327               yts(j) = ts(i, nsrf)               yts(j) = ftsol(i, nsrf)
              ytslab(i) = tslab(i)  
328               ysnow(j) = snow(i, nsrf)               ysnow(j) = snow(i, nsrf)
329               yqsurf(j) = qsurf(i, nsrf)               yqsurf(j) = qsurf(i, nsrf)
330               yalb(j) = albe(i, nsrf)               yalb(j) = falbe(i, nsrf)
              yalblw(j) = alblw(i, nsrf)  
331               yrain_f(j) = rain_fall(i)               yrain_f(j) = rain_fall(i)
332               ysnow_f(j) = snow_f(i)               ysnow_f(j) = snow_f(i)
333               yagesno(j) = agesno(i, nsrf)               yagesno(j) = agesno(i, nsrf)
334               yfder(j) = fder(i)               yfder(j) = fder(i)
              ysolsw(j) = solsw(i, nsrf)  
              ysollw(j) = sollw(i, nsrf)  
335               yrugos(j) = rugos(i, nsrf)               yrugos(j) = rugos(i, nsrf)
336               yrugoro(j) = rugoro(i)               yrugoro(j) = rugoro(i)
337               yu1(j) = u1lay(i)               yu1(j) = u1lay(i)
338               yv1(j) = v1lay(i)               yv1(j) = v1lay(i)
339               yrads(j) = ysolsw(j) + ysollw(j)               yrads(j) = solsw(i, nsrf) + sollw(i, nsrf)
340               ypaprs(j, klev+1) = paprs(i, klev+1)               ypaprs(j, klev+1) = paprs(i, klev+1)
341               y_run_off_lic_0(j) = run_off_lic_0(i)               y_run_off_lic_0(j) = run_off_lic_0(i)
              yu10mx(j) = u10m(i, nsrf)  
              yu10my(j) = v10m(i, nsrf)  
              ywindsp(j) = sqrt(yu10mx(j)*yu10mx(j)+yu10my(j)*yu10my(j))  
342            END DO            END DO
343    
344            ! For continent, copy soil water content            ! For continent, copy soil water content
# Line 380  contains Line 348  contains
348               yqsol = 0.               yqsol = 0.
349            END IF            END IF
350    
351            DO k = 1, nsoilmx            ytsoil(:knon, :) = ftsoil(ni(:knon), :, nsrf)
              DO j = 1, knon  
                 i = ni(j)  
                 ytsoil(j, k) = ftsoil(i, k, nsrf)  
              END DO  
           END DO  
352    
353            DO k = 1, klev            DO k = 1, klev
354               DO j = 1, knon               DO j = 1, knon
# Line 401  contains Line 364  contains
364            END DO            END DO
365    
366            ! calculer Cdrag et les coefficients d'echange            ! calculer Cdrag et les coefficients d'echange
367            CALL coefkz(nsrf, knon, ypaprs, ypplay, ksta, ksta_ter, yts, yrugos, &            CALL coefkz(nsrf, ypaprs, ypplay, ksta, ksta_ter, yts, yrugos, yu, &
368                 yu, yv, yt, yq, yqsurf, coefm(:knon, :), coefh(:knon, :))                 yv, yt, yq, yqsurf, coefm(:knon, :), coefh(:knon, :))
369            IF (iflag_pbl == 1) THEN            IF (iflag_pbl == 1) THEN
370               CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0, ycoefh0)               CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0, ycoefh0)
371               coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :))               coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :))
# Line 424  contains Line 387  contains
387            END IF            END IF
388    
389            IF (iflag_pbl >= 3) THEN            IF (iflag_pbl >= 3) THEN
390               ! Mellor et Yamada adapté à Mars, Richard Fournier et               ! Mellor et Yamada adapt\'e \`a Mars, Richard Fournier et
391               ! Frédéric Hourdin               ! Fr\'ed\'eric Hourdin
392               yzlay(:knon, 1) = rd * yt(:knon, 1) / (0.5 * (ypaprs(:knon, 1) &               yzlay(:knon, 1) = rd * yt(:knon, 1) / (0.5 * (ypaprs(:knon, 1) &
393                    + ypplay(:knon, 1))) &                    + ypplay(:knon, 1))) &
394                    * (ypaprs(:knon, 1) - ypplay(:knon, 1)) / rg                    * (ypaprs(:knon, 1) - ypplay(:knon, 1)) / rg
# Line 455  contains Line 418  contains
418               CALL ustarhb(knon, yu, yv, coefm(:knon, 1), yustar)               CALL ustarhb(knon, yu, yv, coefm(:knon, 1), yustar)
419               IF (prt_level > 9) PRINT *, 'USTAR = ', yustar               IF (prt_level > 9) PRINT *, 'USTAR = ', yustar
420    
421               ! iflag_pbl peut être utilisé comme longueur de mélange               ! iflag_pbl peut \^etre utilis\'e comme longueur de m\'elange
422    
423               IF (iflag_pbl >= 11) THEN               IF (iflag_pbl >= 11) THEN
424                  CALL vdif_kcay(knon, dtime, rg, rd, ypaprs, yt, yzlev, yzlay, &                  CALL vdif_kcay(knon, dtime, rg, ypaprs, yzlev, yzlay, yu, yv, &
425                       yu, yv, yteta, coefm(:knon, 1), yq2, q2diag, ykmm, ykmn, &                       yteta, coefm(:knon, 1), yq2, q2diag, ykmm, ykmn, yustar, &
426                       yustar, iflag_pbl)                       iflag_pbl)
427               ELSE               ELSE
428                  CALL yamada4(knon, dtime, rg, yzlev, yzlay, yu, yv, yteta, &                  CALL yamada4(knon, dtime, rg, yzlev, yzlay, yu, yv, yteta, &
429                       coefm(:knon, 1), yq2, ykmm, ykmn, ykmq, yustar, iflag_pbl)                       coefm(:knon, 1), yq2, ykmm, ykmn, ykmq, yustar, iflag_pbl)
# Line 472  contains Line 435  contains
435    
436            ! calculer la diffusion des vitesses "u" et "v"            ! calculer la diffusion des vitesses "u" et "v"
437            CALL clvent(knon, dtime, yu1, yv1, coefm(:knon, :), yt, yu, ypaprs, &            CALL clvent(knon, dtime, yu1, yv1, coefm(:knon, :), yt, yu, ypaprs, &
438                 ypplay, ydelp, y_d_u, y_flux_u)                 ypplay, ydelp, y_d_u, y_flux_u(:knon))
439            CALL clvent(knon, dtime, yu1, yv1, coefm(:knon, :), yt, yv, ypaprs, &            CALL clvent(knon, dtime, yu1, yv1, coefm(:knon, :), yt, yv, ypaprs, &
440                 ypplay, ydelp, y_d_v, y_flux_v)                 ypplay, ydelp, y_d_v, y_flux_v(:knon))
441    
442            ! calculer la diffusion de "q" et de "h"            ! calculer la diffusion de "q" et de "h"
443            CALL clqh(dtime, itap, jour, debut, rlat, knon, nsrf, ni(:knon), &            CALL clqh(dtime, jour, firstcal, rlat, nsrf, ni(:knon), &
444                 pctsrf, ytsoil, yqsol, rmu0, co2_ppm, yrugos, yrugoro, yu1, &                 ytsoil(:knon, :), yqsol, rmu0, yrugos, yrugoro, yu1, yv1, &
445                 yv1, coefh(:knon, :), yt, yq, yts, ypaprs, ypplay, ydelp, &                 coefh(:knon, :), yt, yq, yts(:knon), ypaprs, ypplay, ydelp, &
446                 yrads, yalb, yalblw, ysnow, yqsurf, yrain_f, ysnow_f, yfder, &                 yrads, yalb(:knon), ysnow, yqsurf, yrain_f, ysnow_f, yfder, &
447                 ysolsw, yfluxlat, pctsrf_new, yagesno, y_d_t, y_d_q, &                 yfluxlat, pctsrf_new_sic, yagesno(:knon), y_d_t, y_d_q, &
448                 y_d_ts(:knon), yz0_new, y_flux_t, y_flux_q, y_dflux_t, &                 y_d_ts(:knon), yz0_new, y_flux_t(:knon), y_flux_q(:knon), &
449                 y_dflux_q, y_fqcalving, y_ffonte, y_run_off_lic_0, y_flux_o, &                 y_dflux_t, y_dflux_q, y_fqcalving, y_ffonte, y_run_off_lic_0)
                y_flux_g)  
450    
451            ! calculer la longueur de rugosite sur ocean            ! calculer la longueur de rugosite sur ocean
452            yrugm = 0.            yrugm = 0.
# Line 509  contains Line 471  contains
471                  coefm(j, k) = coefm(j, k)*ypct(j)                  coefm(j, k) = coefm(j, k)*ypct(j)
472                  y_d_t(j, k) = y_d_t(j, k)*ypct(j)                  y_d_t(j, k) = y_d_t(j, k)*ypct(j)
473                  y_d_q(j, k) = y_d_q(j, k)*ypct(j)                  y_d_q(j, k) = y_d_q(j, k)*ypct(j)
                 flux_t(i, k, nsrf) = y_flux_t(j, k)  
                 flux_q(i, k, nsrf) = y_flux_q(j, k)  
                 flux_u(i, k, nsrf) = y_flux_u(j, k)  
                 flux_v(i, k, nsrf) = y_flux_v(j, k)  
474                  y_d_u(j, k) = y_d_u(j, k)*ypct(j)                  y_d_u(j, k) = y_d_u(j, k)*ypct(j)
475                  y_d_v(j, k) = y_d_v(j, k)*ypct(j)                  y_d_v(j, k) = y_d_v(j, k)*ypct(j)
476               END DO               END DO
477            END DO            END DO
478    
479            evap(:, nsrf) = -flux_q(:, 1, nsrf)            DO j = 1, knon
480                 i = ni(j)
481                 flux_t(i, nsrf) = y_flux_t(j)
482                 flux_q(i, nsrf) = y_flux_q(j)
483                 flux_u(i, nsrf) = y_flux_u(j)
484                 flux_v(i, nsrf) = y_flux_v(j)
485              END DO
486    
487            albe(:, nsrf) = 0.            evap(:, nsrf) = -flux_q(:, nsrf)
488            alblw(:, nsrf) = 0.  
489              falbe(:, nsrf) = 0.
490            snow(:, nsrf) = 0.            snow(:, nsrf) = 0.
491            qsurf(:, nsrf) = 0.            qsurf(:, nsrf) = 0.
492            rugos(:, nsrf) = 0.            rugos(:, nsrf) = 0.
# Line 529  contains Line 494  contains
494            DO j = 1, knon            DO j = 1, knon
495               i = ni(j)               i = ni(j)
496               d_ts(i, nsrf) = y_d_ts(j)               d_ts(i, nsrf) = y_d_ts(j)
497               albe(i, nsrf) = yalb(j)               falbe(i, nsrf) = yalb(j)
              alblw(i, nsrf) = yalblw(j)  
498               snow(i, nsrf) = ysnow(j)               snow(i, nsrf) = ysnow(j)
499               qsurf(i, nsrf) = yqsurf(j)               qsurf(i, nsrf) = yqsurf(j)
500               rugos(i, nsrf) = yz0_new(j)               rugos(i, nsrf) = yz0_new(j)
# Line 559  contains Line 523  contains
523            END IF            END IF
524    
525            ftsoil(:, :, nsrf) = 0.            ftsoil(:, :, nsrf) = 0.
526            DO k = 1, nsoilmx            ftsoil(ni(:knon), :, nsrf) = ytsoil(:knon, :)
              DO j = 1, knon  
                 i = ni(j)  
                 ftsoil(i, k, nsrf) = ytsoil(j, k)  
              END DO  
           END DO  
527    
528            DO j = 1, knon            DO j = 1, knon
529               i = ni(j)               i = ni(j)
# Line 610  contains Line 569  contains
569               ! u10m, v10m : composantes du vent a 10m sans spirale de Ekman               ! u10m, v10m : composantes du vent a 10m sans spirale de Ekman
570               u10m(i, nsrf) = (yu10m(j)*uzon(j))/sqrt(uzon(j)**2+vmer(j)**2)               u10m(i, nsrf) = (yu10m(j)*uzon(j))/sqrt(uzon(j)**2+vmer(j)**2)
571               v10m(i, nsrf) = (yu10m(j)*vmer(j))/sqrt(uzon(j)**2+vmer(j)**2)               v10m(i, nsrf) = (yu10m(j)*vmer(j))/sqrt(uzon(j)**2+vmer(j)**2)
   
572            END DO            END DO
573    
574            CALL hbtm(knon, ypaprs, ypplay, yt2m, yt10m, yq2m, yq10m, yustar, &            CALL hbtm(ypaprs, ypplay, yt2m, yq2m, yustar, y_flux_t(:knon), &
575                 y_flux_t, y_flux_q, yu, yv, yt, yq, ypblh, ycapcl, yoliqcl, &                 y_flux_q(:knon), yu, yv, yt, yq, ypblh(:knon), ycapcl, &
576                 ycteicl, ypblt, ytherm, ytrmb1, ytrmb2, ytrmb3, ylcl)                 yoliqcl, ycteicl, ypblt, ytherm, ytrmb1, ytrmb2, ytrmb3, ylcl)
577    
578            DO j = 1, knon            DO j = 1, knon
579               i = ni(j)               i = ni(j)
# Line 637  contains Line 595  contains
595                  q2(i, k, nsrf) = yq2(j, k)                  q2(i, k, nsrf) = yq2(j, k)
596               END DO               END DO
597            END DO            END DO
           !IM "slab" ocean  
           IF (nsrf == is_oce) THEN  
              DO j = 1, knon  
                 ! on projette sur la grille globale  
                 i = ni(j)  
                 IF (pctsrf_new(i, is_oce)>epsfra) THEN  
                    flux_o(i) = y_flux_o(j)  
                 ELSE  
                    flux_o(i) = 0.  
                 END IF  
              END DO  
           END IF  
   
           IF (nsrf == is_sic) THEN  
              DO j = 1, knon  
                 i = ni(j)  
                 ! On pondère lorsque l'on fait le bilan au sol :  
                 IF (pctsrf_new(i, is_sic)>epsfra) THEN  
                    flux_g(i) = y_flux_g(j)  
                 ELSE  
                    flux_g(i) = 0.  
                 END IF  
              END DO  
   
           END IF  
598         end IF if_knon         end IF if_knon
599      END DO loop_surface      END DO loop_surface
600    
601      ! On utilise les nouvelles surfaces      ! On utilise les nouvelles surfaces
   
602      rugos(:, is_oce) = rugmer      rugos(:, is_oce) = rugmer
603      pctsrf = pctsrf_new      pctsrf(:, is_oce) = pctsrf_new_oce
604        pctsrf(:, is_sic) = pctsrf_new_sic
605    
606        firstcal = .false.
607    
608    END SUBROUTINE clmain    END SUBROUTINE clmain
609    

Legend:
Removed from v.134  
changed lines
  Added in v.208

  ViewVC Help
Powered by ViewVC 1.1.21