--- trunk/Sources/phylmd/clmain.f 2016/09/01 10:30:53 207 +++ trunk/Sources/phylmd/clmain.f 2017/04/25 15:31:48 222 @@ -4,10 +4,10 @@ contains - SUBROUTINE clmain(dtime, pctsrf, t, q, u, v, jour, rmu0, ftsol, cdmmax, & - cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, paprs, pplay, snow, & - qsurf, evap, falbe, fluxlat, rain_fall, snow_f, solsw, sollw, fder, & - rlat, rugos, agesno, rugoro, d_t, d_q, d_u, d_v, d_ts, flux_t, flux_q, & + SUBROUTINE clmain(dtime, pctsrf, t, q, u, v, julien, mu0, ftsol, cdmmax, & + cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, paprs, pplay, fsnow, & + qsurf, evap, falbe, fluxlat, rain_fall, snow_f, fsolsw, fsollw, fder, & + frugs, agesno, rugoro, d_t, d_q, d_u, d_v, d_ts, flux_t, flux_q, & flux_u, flux_v, cdragh, cdragm, q2, dflux_t, dflux_q, ycoefh, zu1, & zv1, t2m, q2m, u10m, v10m, pblh, capcl, oliqcl, cteicl, pblt, therm, & trmb1, trmb2, trmb3, plcl, fqcalving, ffonte, run_off_lic_0) @@ -52,9 +52,9 @@ REAL, INTENT(IN):: t(klon, klev) ! temperature (K) REAL, INTENT(IN):: q(klon, klev) ! vapeur d'eau (kg/kg) REAL, INTENT(IN):: u(klon, klev), v(klon, klev) ! vitesse - INTEGER, INTENT(IN):: jour ! jour de l'annee en cours - REAL, intent(in):: rmu0(klon) ! cosinus de l'angle solaire zenithal - REAL, INTENT(IN):: ftsol(klon, nbsrf) ! temperature du sol (en Kelvin) + INTEGER, INTENT(IN):: julien ! jour de l'annee en cours + REAL, intent(in):: mu0(klon) ! cosinus de l'angle solaire zenithal + REAL, INTENT(IN):: ftsol(:, :) ! (klon, nbsrf) temp\'erature du sol (en K) REAL, INTENT(IN):: cdmmax, cdhmax ! seuils cdrm, cdrh REAL, INTENT(IN):: ksta, ksta_ter LOGICAL, INTENT(IN):: ok_kzmin @@ -67,12 +67,11 @@ REAL, INTENT(IN):: paprs(klon, klev+1) ! pression a intercouche (Pa) REAL, INTENT(IN):: pplay(klon, klev) ! pression au milieu de couche (Pa) - REAL, INTENT(inout):: snow(klon, nbsrf) + REAL, INTENT(inout):: fsnow(:, :) ! (klon, nbsrf) \'epaisseur neigeuse REAL qsurf(klon, nbsrf) REAL evap(klon, nbsrf) REAL, intent(inout):: falbe(klon, nbsrf) - - REAL fluxlat(klon, nbsrf) + REAL, intent(out):: fluxlat(:, :) ! (klon, nbsrf) REAL, intent(in):: rain_fall(klon) ! liquid water mass flux (kg/m2/s), positive down @@ -80,12 +79,9 @@ REAL, intent(in):: snow_f(klon) ! solid water mass flux (kg/m2/s), positive down - REAL, INTENT(IN):: solsw(klon, nbsrf), sollw(klon, nbsrf) - REAL, intent(in):: fder(klon) - REAL, INTENT(IN):: rlat(klon) ! latitude en degr\'es - - REAL, intent(inout):: rugos(klon, nbsrf) ! longueur de rugosit\'e (en m) - + REAL, INTENT(IN):: fsolsw(klon, nbsrf), fsollw(klon, nbsrf) + REAL, intent(in):: fder(:) ! (klon) + REAL, intent(inout):: frugs(klon, nbsrf) ! longueur de rugosit\'e (en m) real agesno(klon, nbsrf) REAL, INTENT(IN):: rugoro(klon) @@ -96,7 +92,7 @@ REAL, intent(out):: d_u(klon, klev), d_v(klon, klev) ! changement pour "u" et "v" - REAL, intent(out):: d_ts(klon, nbsrf) ! le changement pour "ftsol" + REAL, intent(out):: d_ts(:, :) ! (klon, nbsrf) variation of ftsol REAL, intent(out):: flux_t(klon, nbsrf) ! flux de chaleur sensible (Cp T) (W/m2) (orientation positive vers @@ -119,7 +115,7 @@ REAL, intent(out):: ycoefh(klon, klev) REAL, intent(out):: zu1(klon) REAL zv1(klon) - REAL t2m(klon, nbsrf), q2m(klon, nbsrf) + REAL, INTENT(inout):: t2m(klon, nbsrf), q2m(klon, nbsrf) REAL u10m(klon, nbsrf), v10m(klon, nbsrf) ! Ionela Musat cf. Anne Mathieu : planetary boundary layer, hbtm @@ -129,8 +125,7 @@ REAL capcl(klon, nbsrf) REAL oliqcl(klon, nbsrf) REAL cteicl(klon, nbsrf) - REAL pblt(klon, nbsrf) - ! pblT------- T au nveau HCL + REAL, INTENT(inout):: pblt(klon, nbsrf) ! T au nveau HCL REAL therm(klon, nbsrf) REAL trmb1(klon, nbsrf) ! trmb1-------deep_cape @@ -159,10 +154,12 @@ REAL ytsoil(klon, nsoilmx) REAL yts(klon), yrugos(klon), ypct(klon), yz0_new(klon) REAL yalb(klon) + REAL yu1(klon), yv1(klon) - ! on rajoute en output yu1 et yv1 qui sont les vents dans - ! la premiere couche - REAL ysnow(klon), yqsurf(klon), yagesno(klon) + ! On ajoute en output yu1 et yv1 qui sont les vents dans + ! la premi\`ere couche. + + REAL snow(klon), yqsurf(klon), yagesno(klon) real yqsol(klon) ! column-density of water in soil, in kg m-2 @@ -175,9 +172,7 @@ REAL yfder(klon) REAL yrugm(klon), yrads(klon), yrugoro(klon) - REAL yfluxlat(klon) - REAL y_d_ts(klon) REAL y_d_t(klon, klev), y_d_q(klon, klev) REAL y_d_u(klon, klev), y_d_v(klon, klev) @@ -259,16 +254,12 @@ zu1 = 0. zv1 = 0. ypct = 0. - yts = 0. - ysnow = 0. yqsurf = 0. yrain_f = 0. ysnow_f = 0. - yfder = 0. yrugos = 0. yu1 = 0. yv1 = 0. - yrads = 0. ypaprs = 0. ypplay = 0. ydelp = 0. @@ -278,14 +269,13 @@ yq = 0. y_dflux_t = 0. y_dflux_q = 0. - ytsoil = 999999. yrugoro = 0. d_ts = 0. - yfluxlat = 0. flux_t = 0. flux_q = 0. flux_u = 0. flux_v = 0. + fluxlat = 0. d_t = 0. d_q = 0. d_u = 0. @@ -303,7 +293,7 @@ ! Tester si c'est le moment de lire le fichier: if (mod(itap - 1, lmt_pas) == 0) then - CALL interfoce_lim(jour, pctsrf_new_oce, pctsrf_new_sic) + CALL interfoce_lim(julien, pctsrf_new_oce, pctsrf_new_sic) endif ! Boucler sur toutes les sous-fractions du sol: @@ -326,18 +316,18 @@ i = ni(j) ypct(j) = pctsrf(i, nsrf) yts(j) = ftsol(i, nsrf) - ysnow(j) = snow(i, nsrf) + snow(j) = fsnow(i, nsrf) yqsurf(j) = qsurf(i, nsrf) yalb(j) = falbe(i, nsrf) yrain_f(j) = rain_fall(i) ysnow_f(j) = snow_f(i) yagesno(j) = agesno(i, nsrf) yfder(j) = fder(i) - yrugos(j) = rugos(i, nsrf) + yrugos(j) = frugs(i, nsrf) yrugoro(j) = rugoro(i) yu1(j) = u1lay(i) yv1(j) = v1lay(i) - yrads(j) = solsw(i, nsrf) + sollw(i, nsrf) + yrads(j) = fsolsw(i, nsrf) + fsollw(i, nsrf) ypaprs(j, klev+1) = paprs(i, klev+1) y_run_off_lic_0(j) = run_off_lic_0(i) END DO @@ -349,12 +339,7 @@ yqsol = 0. END IF - DO k = 1, nsoilmx - DO j = 1, knon - i = ni(j) - ytsoil(j, k) = ftsoil(i, k, nsrf) - END DO - END DO + ytsoil(:knon, :) = ftsoil(ni(:knon), :, nsrf) DO k = 1, klev DO j = 1, knon @@ -370,8 +355,9 @@ END DO ! calculer Cdrag et les coefficients d'echange - CALL coefkz(nsrf, knon, ypaprs, ypplay, ksta, ksta_ter, yts, yrugos, & - yu, yv, yt, yq, yqsurf, coefm(:knon, :), coefh(:knon, :)) + CALL coefkz(nsrf, ypaprs, ypplay, ksta, ksta_ter, yts(:knon), & + yrugos, yu, yv, yt, yq, yqsurf(:knon), coefm(:knon, :), & + coefh(:knon, :)) IF (iflag_pbl == 1) THEN CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0, ycoefh0) coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :)) @@ -446,13 +432,14 @@ ypplay, ydelp, y_d_v, y_flux_v(:knon)) ! calculer la diffusion de "q" et de "h" - CALL clqh(dtime, jour, firstcal, rlat, nsrf, ni(:knon), ytsoil, & - yqsol, rmu0, yrugos, yrugoro, yu1, yv1, coefh(:knon, :), yt, & - yq, yts(:knon), ypaprs, ypplay, ydelp, yrads, yalb(:knon), & - ysnow, yqsurf, yrain_f, ysnow_f, yfder, yfluxlat, & - pctsrf_new_sic, yagesno(:knon), y_d_t, y_d_q, y_d_ts(:knon), & - yz0_new, y_flux_t(:knon), y_flux_q(:knon), y_dflux_t, & - y_dflux_q, y_fqcalving, y_ffonte, y_run_off_lic_0) + CALL clqh(dtime, julien, firstcal, nsrf, ni(:knon), & + ytsoil(:knon, :), yqsol, mu0, yrugos, yrugoro, yu1, yv1, & + coefh(:knon, :), yt, yq, yts(:knon), ypaprs, ypplay, ydelp, & + yrads(:knon), yalb(:knon), snow(:knon), yqsurf, yrain_f, & + ysnow_f, yfder(:knon), yfluxlat(:knon), pctsrf_new_sic, & + yagesno(:knon), y_d_t, y_d_q, y_d_ts(:knon), yz0_new, & + y_flux_t(:knon), y_flux_q(:knon), y_dflux_t(:knon), & + y_dflux_q(:knon), y_fqcalving, y_ffonte, y_run_off_lic_0) ! calculer la longueur de rugosite sur ocean yrugm = 0. @@ -482,32 +469,28 @@ END DO END DO - DO j = 1, knon - i = ni(j) - flux_t(i, nsrf) = y_flux_t(j) - flux_q(i, nsrf) = y_flux_q(j) - flux_u(i, nsrf) = y_flux_u(j) - flux_v(i, nsrf) = y_flux_v(j) - END DO + flux_t(ni(:knon), nsrf) = y_flux_t(:knon) + flux_q(ni(:knon), nsrf) = y_flux_q(:knon) + flux_u(ni(:knon), nsrf) = y_flux_u(:knon) + flux_v(ni(:knon), nsrf) = y_flux_v(:knon) evap(:, nsrf) = -flux_q(:, nsrf) falbe(:, nsrf) = 0. - snow(:, nsrf) = 0. + fsnow(:, nsrf) = 0. qsurf(:, nsrf) = 0. - rugos(:, nsrf) = 0. - fluxlat(:, nsrf) = 0. + frugs(:, nsrf) = 0. DO j = 1, knon i = ni(j) d_ts(i, nsrf) = y_d_ts(j) falbe(i, nsrf) = yalb(j) - snow(i, nsrf) = ysnow(j) + fsnow(i, nsrf) = snow(j) qsurf(i, nsrf) = yqsurf(j) - rugos(i, nsrf) = yz0_new(j) + frugs(i, nsrf) = yz0_new(j) fluxlat(i, nsrf) = yfluxlat(j) IF (nsrf == is_oce) THEN rugmer(i) = yrugm(j) - rugos(i, nsrf) = yrugm(j) + frugs(i, nsrf) = yrugm(j) END IF agesno(i, nsrf) = yagesno(j) fqcalving(i, nsrf) = y_fqcalving(j) @@ -529,12 +512,7 @@ END IF ftsoil(:, :, nsrf) = 0. - DO k = 1, nsoilmx - DO j = 1, knon - i = ni(j) - ftsoil(i, k, nsrf) = ytsoil(j, k) - END DO - END DO + ftsoil(ni(:knon), :, nsrf) = ytsoil(:knon, :) DO j = 1, knon i = ni(j) @@ -560,7 +538,7 @@ tairsol(j) = yts(j) + y_d_ts(j) rugo1(j) = yrugos(j) IF (nsrf == is_oce) THEN - rugo1(j) = rugos(i, nsrf) + rugo1(j) = frugs(i, nsrf) END IF psfce(j) = ypaprs(j, 1) patm(j) = ypplay(j, 1) @@ -580,7 +558,6 @@ ! u10m, v10m : composantes du vent a 10m sans spirale de Ekman u10m(i, nsrf) = (yu10m(j)*uzon(j))/sqrt(uzon(j)**2+vmer(j)**2) v10m(i, nsrf) = (yu10m(j)*vmer(j))/sqrt(uzon(j)**2+vmer(j)**2) - END DO CALL hbtm(ypaprs, ypplay, yt2m, yq2m, yustar, y_flux_t(:knon), & @@ -607,11 +584,13 @@ q2(i, k, nsrf) = yq2(j, k) END DO END DO + else + fsnow(:, nsrf) = 0. end IF if_knon END DO loop_surface ! On utilise les nouvelles surfaces - rugos(:, is_oce) = rugmer + frugs(:, is_oce) = rugmer pctsrf(:, is_oce) = pctsrf_new_oce pctsrf(:, is_sic) = pctsrf_new_sic