--- trunk/Sources/phylmd/clmain.f 2017/03/22 13:40:27 214 +++ trunk/Sources/phylmd/clmain.f 2017/04/28 13:22:36 223 @@ -4,13 +4,13 @@ contains - SUBROUTINE clmain(dtime, pctsrf, t, q, u, v, jour, mu0, ftsol, cdmmax, & - cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, paprs, pplay, snow, & - qsurf, evap, falbe, fluxlat, rain_fall, snow_f, solsw, sollw, fder, & - rugos, agesno, rugoro, d_t, d_q, d_u, d_v, d_ts, flux_t, flux_q, & - flux_u, flux_v, cdragh, cdragm, q2, dflux_t, dflux_q, ycoefh, zu1, & - zv1, t2m, q2m, u10m, v10m, pblh, capcl, oliqcl, cteicl, pblt, therm, & - trmb1, trmb2, trmb3, plcl, fqcalving, ffonte, run_off_lic_0) + SUBROUTINE clmain(dtime, pctsrf, t, q, u, v, julien, mu0, ftsol, cdmmax, & + cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, paprs, pplay, fsnow, & + qsurf, evap, falbe, fluxlat, rain_fall, snow_f, fsolsw, fsollw, frugs, & + agesno, rugoro, d_t, d_q, d_u, d_v, d_ts, flux_t, flux_q, flux_u, & + flux_v, cdragh, cdragm, q2, dflux_t, dflux_q, ycoefh, zu1, zv1, t2m, & + q2m, u10m, v10m, pblh, capcl, oliqcl, cteicl, pblt, therm, trmb1, & + trmb2, trmb3, plcl, fqcalving, ffonte, run_off_lic_0) ! From phylmd/clmain.F, version 1.6, 2005/11/16 14:47:19 ! Author: Z. X. Li (LMD/CNRS), date: 1993/08/18 @@ -52,9 +52,9 @@ REAL, INTENT(IN):: t(klon, klev) ! temperature (K) REAL, INTENT(IN):: q(klon, klev) ! vapeur d'eau (kg/kg) REAL, INTENT(IN):: u(klon, klev), v(klon, klev) ! vitesse - INTEGER, INTENT(IN):: jour ! jour de l'annee en cours + INTEGER, INTENT(IN):: julien ! jour de l'annee en cours REAL, intent(in):: mu0(klon) ! cosinus de l'angle solaire zenithal - REAL, INTENT(IN):: ftsol(klon, nbsrf) ! temp\'erature du sol (en K) + REAL, INTENT(IN):: ftsol(:, :) ! (klon, nbsrf) temp\'erature du sol (en K) REAL, INTENT(IN):: cdmmax, cdhmax ! seuils cdrm, cdrh REAL, INTENT(IN):: ksta, ksta_ter LOGICAL, INTENT(IN):: ok_kzmin @@ -67,7 +67,7 @@ REAL, INTENT(IN):: paprs(klon, klev+1) ! pression a intercouche (Pa) REAL, INTENT(IN):: pplay(klon, klev) ! pression au milieu de couche (Pa) - REAL, INTENT(inout):: snow(klon, nbsrf) + REAL, INTENT(inout):: fsnow(:, :) ! (klon, nbsrf) \'epaisseur neigeuse REAL qsurf(klon, nbsrf) REAL evap(klon, nbsrf) REAL, intent(inout):: falbe(klon, nbsrf) @@ -79,9 +79,8 @@ REAL, intent(in):: snow_f(klon) ! solid water mass flux (kg/m2/s), positive down - REAL, INTENT(IN):: solsw(klon, nbsrf), sollw(klon, nbsrf) - REAL, intent(in):: fder(klon) - REAL, intent(inout):: rugos(klon, nbsrf) ! longueur de rugosit\'e (en m) + REAL, INTENT(IN):: fsolsw(klon, nbsrf), fsollw(klon, nbsrf) + REAL, intent(inout):: frugs(klon, nbsrf) ! longueur de rugosit\'e (en m) real agesno(klon, nbsrf) REAL, INTENT(IN):: rugoro(klon) @@ -92,7 +91,7 @@ REAL, intent(out):: d_u(klon, klev), d_v(klon, klev) ! changement pour "u" et "v" - REAL, intent(out):: d_ts(klon, nbsrf) ! le changement pour ftsol + REAL, intent(out):: d_ts(:, :) ! (klon, nbsrf) variation of ftsol REAL, intent(out):: flux_t(klon, nbsrf) ! flux de chaleur sensible (Cp T) (W/m2) (orientation positive vers @@ -115,7 +114,7 @@ REAL, intent(out):: ycoefh(klon, klev) REAL, intent(out):: zu1(klon) REAL zv1(klon) - REAL t2m(klon, nbsrf), q2m(klon, nbsrf) + REAL, INTENT(inout):: t2m(klon, nbsrf), q2m(klon, nbsrf) REAL u10m(klon, nbsrf), v10m(klon, nbsrf) ! Ionela Musat cf. Anne Mathieu : planetary boundary layer, hbtm @@ -125,8 +124,7 @@ REAL capcl(klon, nbsrf) REAL oliqcl(klon, nbsrf) REAL cteicl(klon, nbsrf) - REAL pblt(klon, nbsrf) - ! pblT------- T au nveau HCL + REAL, INTENT(inout):: pblt(klon, nbsrf) ! T au nveau HCL REAL therm(klon, nbsrf) REAL trmb1(klon, nbsrf) ! trmb1-------deep_cape @@ -155,10 +153,12 @@ REAL ytsoil(klon, nsoilmx) REAL yts(klon), yrugos(klon), ypct(klon), yz0_new(klon) REAL yalb(klon) + REAL yu1(klon), yv1(klon) - ! on rajoute en output yu1 et yv1 qui sont les vents dans - ! la premiere couche - REAL ysnow(klon), yqsurf(klon), yagesno(klon) + ! On ajoute en output yu1 et yv1 qui sont les vents dans + ! la premi\`ere couche. + + REAL snow(klon), yqsurf(klon), yagesno(klon) real yqsol(klon) ! column-density of water in soil, in kg m-2 @@ -169,7 +169,6 @@ REAL ysnow_f(klon) ! solid water mass flux (kg/m2/s), positive down - REAL yfder(klon) REAL yrugm(klon), yrads(klon), yrugoro(klon) REAL yfluxlat(klon) REAL y_d_ts(klon) @@ -253,16 +252,12 @@ zu1 = 0. zv1 = 0. ypct = 0. - yts = 0. - ysnow = 0. yqsurf = 0. yrain_f = 0. ysnow_f = 0. - yfder = 0. yrugos = 0. yu1 = 0. yv1 = 0. - yrads = 0. ypaprs = 0. ypplay = 0. ydelp = 0. @@ -296,7 +291,7 @@ ! Tester si c'est le moment de lire le fichier: if (mod(itap - 1, lmt_pas) == 0) then - CALL interfoce_lim(jour, pctsrf_new_oce, pctsrf_new_sic) + CALL interfoce_lim(julien, pctsrf_new_oce, pctsrf_new_sic) endif ! Boucler sur toutes les sous-fractions du sol: @@ -319,18 +314,17 @@ i = ni(j) ypct(j) = pctsrf(i, nsrf) yts(j) = ftsol(i, nsrf) - ysnow(j) = snow(i, nsrf) + snow(j) = fsnow(i, nsrf) yqsurf(j) = qsurf(i, nsrf) yalb(j) = falbe(i, nsrf) yrain_f(j) = rain_fall(i) ysnow_f(j) = snow_f(i) yagesno(j) = agesno(i, nsrf) - yfder(j) = fder(i) - yrugos(j) = rugos(i, nsrf) + yrugos(j) = frugs(i, nsrf) yrugoro(j) = rugoro(i) yu1(j) = u1lay(i) yv1(j) = v1lay(i) - yrads(j) = solsw(i, nsrf) + sollw(i, nsrf) + yrads(j) = fsolsw(i, nsrf) + fsollw(i, nsrf) ypaprs(j, klev+1) = paprs(i, klev+1) y_run_off_lic_0(j) = run_off_lic_0(i) END DO @@ -358,8 +352,9 @@ END DO ! calculer Cdrag et les coefficients d'echange - CALL coefkz(nsrf, ypaprs, ypplay, ksta, ksta_ter, yts, yrugos, yu, & - yv, yt, yq, yqsurf, coefm(:knon, :), coefh(:knon, :)) + CALL coefkz(nsrf, ypaprs, ypplay, ksta, ksta_ter, yts(:knon), & + yrugos, yu, yv, yt, yq, yqsurf(:knon), coefm(:knon, :), & + coefh(:knon, :)) IF (iflag_pbl == 1) THEN CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0, ycoefh0) coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :)) @@ -434,13 +429,14 @@ ypplay, ydelp, y_d_v, y_flux_v(:knon)) ! calculer la diffusion de "q" et de "h" - CALL clqh(dtime, jour, firstcal, nsrf, ni(:knon), ytsoil(:knon, :), & - yqsol, mu0, yrugos, yrugoro, yu1, yv1, coefh(:knon, :), yt, & - yq, yts(:knon), ypaprs, ypplay, ydelp, yrads, yalb(:knon), & - ysnow, yqsurf, yrain_f, ysnow_f, yfder, yfluxlat(:knon), & - pctsrf_new_sic, yagesno(:knon), y_d_t, y_d_q, y_d_ts(:knon), & - yz0_new, y_flux_t(:knon), y_flux_q(:knon), y_dflux_t, & - y_dflux_q, y_fqcalving, y_ffonte, y_run_off_lic_0) + CALL clqh(dtime, julien, firstcal, nsrf, ni(:knon), & + ytsoil(:knon, :), yqsol, mu0, yrugos, yrugoro, yu1, yv1, & + coefh(:knon, :), yt, yq, yts(:knon), ypaprs, ypplay, ydelp, & + yrads(:knon), yalb(:knon), snow(:knon), yqsurf, yrain_f, & + ysnow_f, yfluxlat(:knon), pctsrf_new_sic, yagesno(:knon), & + y_d_t, y_d_q, y_d_ts(:knon), yz0_new, y_flux_t(:knon), & + y_flux_q(:knon), y_dflux_t(:knon), y_dflux_q(:knon), & + y_fqcalving, y_ffonte, y_run_off_lic_0) ! calculer la longueur de rugosite sur ocean yrugm = 0. @@ -478,20 +474,20 @@ evap(:, nsrf) = -flux_q(:, nsrf) falbe(:, nsrf) = 0. - snow(:, nsrf) = 0. + fsnow(:, nsrf) = 0. qsurf(:, nsrf) = 0. - rugos(:, nsrf) = 0. + frugs(:, nsrf) = 0. DO j = 1, knon i = ni(j) d_ts(i, nsrf) = y_d_ts(j) falbe(i, nsrf) = yalb(j) - snow(i, nsrf) = ysnow(j) + fsnow(i, nsrf) = snow(j) qsurf(i, nsrf) = yqsurf(j) - rugos(i, nsrf) = yz0_new(j) + frugs(i, nsrf) = yz0_new(j) fluxlat(i, nsrf) = yfluxlat(j) IF (nsrf == is_oce) THEN rugmer(i) = yrugm(j) - rugos(i, nsrf) = yrugm(j) + frugs(i, nsrf) = yrugm(j) END IF agesno(i, nsrf) = yagesno(j) fqcalving(i, nsrf) = y_fqcalving(j) @@ -539,7 +535,7 @@ tairsol(j) = yts(j) + y_d_ts(j) rugo1(j) = yrugos(j) IF (nsrf == is_oce) THEN - rugo1(j) = rugos(i, nsrf) + rugo1(j) = frugs(i, nsrf) END IF psfce(j) = ypaprs(j, 1) patm(j) = ypplay(j, 1) @@ -585,11 +581,13 @@ q2(i, k, nsrf) = yq2(j, k) END DO END DO + else + fsnow(:, nsrf) = 0. end IF if_knon END DO loop_surface ! On utilise les nouvelles surfaces - rugos(:, is_oce) = rugmer + frugs(:, is_oce) = rugmer pctsrf(:, is_oce) = pctsrf_new_oce pctsrf(:, is_sic) = pctsrf_new_sic