--- trunk/Sources/phylmd/clmain.f 2016/08/30 12:52:46 206 +++ trunk/Sources/phylmd/clmain.f 2017/10/16 12:35:41 225 @@ -4,12 +4,12 @@ contains - SUBROUTINE clmain(dtime, pctsrf, t, q, u, v, jour, rmu0, ts, cdmmax, & - cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, paprs, pplay, snow, & - qsurf, evap, falbe, fluxlat, rain_fall, snow_f, solsw, sollw, fder, & - rlat, rugos, agesno, rugoro, d_t, d_q, d_u, d_v, d_ts, flux_t, flux_q, & - flux_u, flux_v, cdragh, cdragm, q2, dflux_t, dflux_q, ycoefh, zu1, & - zv1, t2m, q2m, u10m, v10m, pblh, capcl, oliqcl, cteicl, pblt, therm, & + SUBROUTINE clmain(dtime, pctsrf, t, q, u, v, julien, mu0, ftsol, cdmmax, & + cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, paprs, pplay, fsnow, & + qsurf, evap, falbe, fluxlat, rain_fall, snow_f, fsolsw, fsollw, frugs, & + agesno, rugoro, d_t, d_q, d_u, d_v, d_ts, flux_t, flux_q, flux_u, & + flux_v, cdragh, cdragm, q2, dflux_t, dflux_q, ycoefh, zu1, zv1, t2m, & + q2m, u10m_srf, v10m_srf, pblh, capcl, oliqcl, cteicl, pblt, therm, & trmb1, trmb2, trmb3, plcl, fqcalving, ffonte, run_off_lic_0) ! From phylmd/clmain.F, version 1.6, 2005/11/16 14:47:19 @@ -50,11 +50,11 @@ ! tableau des pourcentages de surface de chaque maille REAL, INTENT(IN):: t(klon, klev) ! temperature (K) - REAL, INTENT(IN):: q(klon, klev) ! vapeur d'eau (kg/kg) + REAL, INTENT(IN):: q(klon, klev) ! vapeur d'eau (kg / kg) REAL, INTENT(IN):: u(klon, klev), v(klon, klev) ! vitesse - INTEGER, INTENT(IN):: jour ! jour de l'annee en cours - REAL, intent(in):: rmu0(klon) ! cosinus de l'angle solaire zenithal - REAL, INTENT(IN):: ts(klon, nbsrf) ! temperature du sol (en Kelvin) + INTEGER, INTENT(IN):: julien ! jour de l'annee en cours + REAL, intent(in):: mu0(klon) ! cosinus de l'angle solaire zenithal + REAL, INTENT(IN):: ftsol(:, :) ! (klon, nbsrf) temp\'erature du sol (en K) REAL, INTENT(IN):: cdmmax, cdhmax ! seuils cdrm, cdrh REAL, INTENT(IN):: ksta, ksta_ter LOGICAL, INTENT(IN):: ok_kzmin @@ -62,30 +62,25 @@ REAL, INTENT(inout):: ftsoil(klon, nsoilmx, nbsrf) ! soil temperature of surface fraction - REAL, INTENT(inout):: qsol(klon) + REAL, INTENT(inout):: qsol(:) ! (klon) ! column-density of water in soil, in kg m-2 - REAL, INTENT(IN):: paprs(klon, klev+1) ! pression a intercouche (Pa) + REAL, INTENT(IN):: paprs(klon, klev + 1) ! pression a intercouche (Pa) REAL, INTENT(IN):: pplay(klon, klev) ! pression au milieu de couche (Pa) - REAL, INTENT(inout):: snow(klon, nbsrf) + REAL, INTENT(inout):: fsnow(:, :) ! (klon, nbsrf) \'epaisseur neigeuse REAL qsurf(klon, nbsrf) REAL evap(klon, nbsrf) REAL, intent(inout):: falbe(klon, nbsrf) - - REAL fluxlat(klon, nbsrf) + REAL, intent(out):: fluxlat(:, :) ! (klon, nbsrf) REAL, intent(in):: rain_fall(klon) - ! liquid water mass flux (kg/m2/s), positive down + ! liquid water mass flux (kg / m2 / s), positive down REAL, intent(in):: snow_f(klon) - ! solid water mass flux (kg/m2/s), positive down - - REAL, INTENT(IN):: solsw(klon, nbsrf), sollw(klon, nbsrf) - REAL, intent(in):: fder(klon) - REAL, INTENT(IN):: rlat(klon) ! latitude en degr\'es - - REAL, intent(inout):: rugos(klon, nbsrf) ! longueur de rugosit\'e (en m) + ! solid water mass flux (kg / m2 / s), positive down + REAL, INTENT(IN):: fsolsw(klon, nbsrf), fsollw(klon, nbsrf) + REAL, intent(inout):: frugs(klon, nbsrf) ! longueur de rugosit\'e (en m) real agesno(klon, nbsrf) REAL, INTENT(IN):: rugoro(klon) @@ -96,20 +91,20 @@ REAL, intent(out):: d_u(klon, klev), d_v(klon, klev) ! changement pour "u" et "v" - REAL, intent(out):: d_ts(klon, nbsrf) ! le changement pour "ts" + REAL, intent(out):: d_ts(:, :) ! (klon, nbsrf) variation of ftsol REAL, intent(out):: flux_t(klon, nbsrf) - ! flux de chaleur sensible (Cp T) (W/m2) (orientation positive vers + ! flux de chaleur sensible (Cp T) (W / m2) (orientation positive vers ! le bas) à la surface REAL, intent(out):: flux_q(klon, nbsrf) - ! flux de vapeur d'eau (kg/m2/s) à la surface + ! flux de vapeur d'eau (kg / m2 / s) à la surface REAL, intent(out):: flux_u(klon, nbsrf), flux_v(klon, nbsrf) ! tension du vent à la surface, en Pa REAL, INTENT(out):: cdragh(klon), cdragm(klon) - real q2(klon, klev+1, nbsrf) + real q2(klon, klev + 1, nbsrf) REAL, INTENT(out):: dflux_t(klon), dflux_q(klon) ! dflux_t derive du flux sensible @@ -117,20 +112,20 @@ ! IM "slab" ocean REAL, intent(out):: ycoefh(klon, klev) - REAL, intent(out):: zu1(klon) - REAL zv1(klon) - REAL t2m(klon, nbsrf), q2m(klon, nbsrf) - REAL u10m(klon, nbsrf), v10m(klon, nbsrf) - - ! Ionela Musat cf. Anne Mathieu : planetary boundary layer, hbtm - ! (Comme les autres diagnostics on cumule dans physiq ce qui - ! permet de sortir les grandeurs par sous-surface) + REAL, intent(out):: zu1(klon), zv1(klon) + REAL, INTENT(inout):: t2m(klon, nbsrf), q2m(klon, nbsrf) + + REAL, INTENT(inout):: u10m_srf(:, :), v10m_srf(:, :) ! (klon, nbsrf) + ! composantes du vent \`a 10m sans spirale d'Ekman + + ! Ionela Musat. Cf. Anne Mathieu : planetary boundary layer, hbtm. + ! Comme les autres diagnostics on cumule dans physiq ce qui permet + ! de sortir les grandeurs par sous-surface. REAL pblh(klon, nbsrf) ! height of planetary boundary layer REAL capcl(klon, nbsrf) REAL oliqcl(klon, nbsrf) REAL cteicl(klon, nbsrf) - REAL pblt(klon, nbsrf) - ! pblT------- T au nveau HCL + REAL, INTENT(inout):: pblt(klon, nbsrf) ! T au nveau HCL REAL therm(klon, nbsrf) REAL trmb1(klon, nbsrf) ! trmb1-------deep_cape @@ -142,7 +137,7 @@ REAL fqcalving(klon, nbsrf), ffonte(klon, nbsrf) ! ffonte----Flux thermique utilise pour fondre la neige ! fqcalving-Flux d'eau "perdue" par la surface et necessaire pour limiter la - ! hauteur de neige, en kg/m2/s + ! hauteur de neige, en kg / m2 / s REAL run_off_lic_0(klon) ! Local: @@ -155,32 +150,20 @@ REAL y_fqcalving(klon), y_ffonte(klon) real y_run_off_lic_0(klon) - REAL rugmer(klon) - REAL ytsoil(klon, nsoilmx) - REAL yts(klon), yrugos(klon), ypct(klon), yz0_new(klon) REAL yalb(klon) - REAL yu1(klon), yv1(klon) - ! on rajoute en output yu1 et yv1 qui sont les vents dans - ! la premiere couche - REAL ysnow(klon), yqsurf(klon), yagesno(klon) - real yqsol(klon) - ! column-density of water in soil, in kg m-2 - - REAL yrain_f(klon) - ! liquid water mass flux (kg/m2/s), positive down - - REAL ysnow_f(klon) - ! solid water mass flux (kg/m2/s), positive down - - REAL yfder(klon) + REAL u1lay(klon), v1lay(klon) ! vent dans la premi\`ere couche, pour + ! une sous-surface donnée + + REAL snow(klon), yqsurf(klon), yagesno(klon) + real yqsol(klon) ! column-density of water in soil, in kg m-2 + REAL yrain_f(klon) ! liquid water mass flux (kg / m2 / s), positive down + REAL ysnow_f(klon) ! solid water mass flux (kg / m2 / s), positive down REAL yrugm(klon), yrads(klon), yrugoro(klon) - REAL yfluxlat(klon) - REAL y_d_ts(klon) REAL y_d_t(klon, klev), y_d_q(klon, klev) REAL y_d_u(klon, klev), y_d_v(klon, klev) @@ -190,17 +173,16 @@ REAL coefh(klon, klev), coefm(klon, klev) REAL yu(klon, klev), yv(klon, klev) REAL yt(klon, klev), yq(klon, klev) - REAL ypaprs(klon, klev+1), ypplay(klon, klev), ydelp(klon, klev) + REAL ypaprs(klon, klev + 1), ypplay(klon, klev), ydelp(klon, klev) REAL ycoefm0(klon, klev), ycoefh0(klon, klev) - REAL yzlay(klon, klev), yzlev(klon, klev+1), yteta(klon, klev) - REAL ykmm(klon, klev+1), ykmn(klon, klev+1) - REAL ykmq(klon, klev+1) - REAL yq2(klon, klev+1) - REAL q2diag(klon, klev+1) + REAL yzlay(klon, klev), yzlev(klon, klev + 1), yteta(klon, klev) + REAL ykmm(klon, klev + 1), ykmn(klon, klev + 1) + REAL ykmq(klon, klev + 1) + REAL yq2(klon, klev + 1) + REAL q2diag(klon, klev + 1) - REAL u1lay(klon), v1lay(klon) REAL delp(klon, klev) INTEGER i, k, nsrf @@ -210,8 +192,6 @@ ! "pourcentage potentiel" pour tenir compte des \'eventuelles ! apparitions ou disparitions de la glace de mer - REAL zx_alf1, zx_alf2 ! valeur ambiante par extrapolation - REAL yt2m(klon), yq2m(klon), yu10m(klon) REAL yustar(klon) @@ -243,15 +223,9 @@ DO k = 1, klev ! epaisseur de couche DO i = 1, klon - delp(i, k) = paprs(i, k) - paprs(i, k+1) + delp(i, k) = paprs(i, k) - paprs(i, k + 1) END DO END DO - DO i = 1, klon ! vent de la premiere couche - zx_alf1 = 1.0 - zx_alf2 = 1.0 - zx_alf1 - u1lay(i) = u(i, 1)*zx_alf1 + u(i, 2)*zx_alf2 - v1lay(i) = v(i, 1)*zx_alf1 + v(i, 2)*zx_alf2 - END DO ! Initialization: rugmer = 0. @@ -262,16 +236,10 @@ zu1 = 0. zv1 = 0. ypct = 0. - yts = 0. - ysnow = 0. yqsurf = 0. yrain_f = 0. ysnow_f = 0. - yfder = 0. yrugos = 0. - yu1 = 0. - yv1 = 0. - yrads = 0. ypaprs = 0. ypplay = 0. ydelp = 0. @@ -281,14 +249,13 @@ yq = 0. y_dflux_t = 0. y_dflux_q = 0. - ytsoil = 999999. yrugoro = 0. d_ts = 0. - yfluxlat = 0. flux_t = 0. flux_q = 0. flux_u = 0. flux_v = 0. + fluxlat = 0. d_t = 0. d_q = 0. d_u = 0. @@ -306,7 +273,7 @@ ! Tester si c'est le moment de lire le fichier: if (mod(itap - 1, lmt_pas) == 0) then - CALL interfoce_lim(jour, pctsrf_new_oce, pctsrf_new_sic) + CALL interfoce_lim(julien, pctsrf_new_oce, pctsrf_new_sic) endif ! Boucler sur toutes les sous-fractions du sol: @@ -328,36 +295,26 @@ DO j = 1, knon i = ni(j) ypct(j) = pctsrf(i, nsrf) - yts(j) = ts(i, nsrf) - ysnow(j) = snow(i, nsrf) + yts(j) = ftsol(i, nsrf) + snow(j) = fsnow(i, nsrf) yqsurf(j) = qsurf(i, nsrf) yalb(j) = falbe(i, nsrf) yrain_f(j) = rain_fall(i) ysnow_f(j) = snow_f(i) yagesno(j) = agesno(i, nsrf) - yfder(j) = fder(i) - yrugos(j) = rugos(i, nsrf) + yrugos(j) = frugs(i, nsrf) yrugoro(j) = rugoro(i) - yu1(j) = u1lay(i) - yv1(j) = v1lay(i) - yrads(j) = solsw(i, nsrf) + sollw(i, nsrf) - ypaprs(j, klev+1) = paprs(i, klev+1) + u1lay(j) = u(i, 1) + v1lay(j) = v(i, 1) + yrads(j) = fsolsw(i, nsrf) + fsollw(i, nsrf) + ypaprs(j, klev + 1) = paprs(i, klev + 1) y_run_off_lic_0(j) = run_off_lic_0(i) END DO ! For continent, copy soil water content - IF (nsrf == is_ter) THEN - yqsol(:knon) = qsol(ni(:knon)) - ELSE - yqsol = 0. - END IF + IF (nsrf == is_ter) yqsol(:knon) = qsol(ni(:knon)) - DO k = 1, nsoilmx - DO j = 1, knon - i = ni(j) - ytsoil(j, k) = ftsoil(i, k, nsrf) - END DO - END DO + ytsoil(:knon, :) = ftsoil(ni(:knon), :, nsrf) DO k = 1, klev DO j = 1, knon @@ -373,8 +330,9 @@ END DO ! calculer Cdrag et les coefficients d'echange - CALL coefkz(nsrf, knon, ypaprs, ypplay, ksta, ksta_ter, yts, yrugos, & - yu, yv, yt, yq, yqsurf, coefm(:knon, :), coefh(:knon, :)) + CALL coefkz(nsrf, ypaprs, ypplay, ksta, ksta_ter, yts(:knon), & + yrugos, yu, yv, yt, yq, yqsurf(:knon), coefm(:knon, :), & + coefh(:knon, :)) IF (iflag_pbl == 1) THEN CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0, ycoefh0) coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :)) @@ -408,14 +366,14 @@ * (ypplay(1:knon, k-1) - ypplay(1:knon, k)) / rg END DO DO k = 1, klev - yteta(1:knon, k) = yt(1:knon, k)*(ypaprs(1:knon, 1) & - / ypplay(1:knon, k))**rkappa * (1.+0.61*yq(1:knon, k)) + yteta(1:knon, k) = yt(1:knon, k) * (ypaprs(1:knon, 1) & + / ypplay(1:knon, k))**rkappa * (1. + 0.61 * yq(1:knon, k)) END DO yzlev(1:knon, 1) = 0. - yzlev(:knon, klev+1) = 2. * yzlay(:knon, klev) & + yzlev(:knon, klev + 1) = 2. * yzlay(:knon, klev) & - yzlay(:knon, klev - 1) DO k = 2, klev - yzlev(1:knon, k) = 0.5*(yzlay(1:knon, k)+yzlay(1:knon, k-1)) + yzlev(1:knon, k) = 0.5 * (yzlay(1:knon, k) + yzlay(1:knon, k-1)) END DO DO k = 1, klev + 1 DO j = 1, knon @@ -443,74 +401,72 @@ END IF ! calculer la diffusion des vitesses "u" et "v" - CALL clvent(knon, dtime, yu1, yv1, coefm(:knon, :), yt, yu, ypaprs, & - ypplay, ydelp, y_d_u, y_flux_u(:knon)) - CALL clvent(knon, dtime, yu1, yv1, coefm(:knon, :), yt, yv, ypaprs, & - ypplay, ydelp, y_d_v, y_flux_v(:knon)) + CALL clvent(knon, dtime, u1lay(:knon), v1lay(:knon), & + coefm(:knon, :), yt, yu, ypaprs, ypplay, ydelp, y_d_u, & + y_flux_u(:knon)) + CALL clvent(knon, dtime, u1lay(:knon), v1lay(:knon), & + coefm(:knon, :), yt, yv, ypaprs, ypplay, ydelp, y_d_v, & + y_flux_v(:knon)) ! calculer la diffusion de "q" et de "h" - CALL clqh(dtime, jour, firstcal, rlat, nsrf, ni(:knon), ytsoil, & - yqsol, rmu0, yrugos, yrugoro, yu1, yv1, coefh(:knon, :), yt, & - yq, yts, ypaprs, ypplay, ydelp, yrads, yalb(:knon), ysnow, & - yqsurf, yrain_f, ysnow_f, yfder, yfluxlat, pctsrf_new_sic, & - yagesno(:knon), y_d_t, y_d_q, y_d_ts(:knon), yz0_new, & - y_flux_t(:knon), y_flux_q(:knon), y_dflux_t, y_dflux_q, & - y_fqcalving, y_ffonte, y_run_off_lic_0) + CALL clqh(dtime, julien, firstcal, nsrf, ni(:knon), & + ytsoil(:knon, :), yqsol(:knon), mu0, yrugos, yrugoro, & + u1lay(:knon), v1lay(:knon), coefh(:knon, :), yt, yq, & + yts(:knon), ypaprs, ypplay, ydelp, yrads(:knon), yalb(:knon), & + snow(:knon), yqsurf, yrain_f, ysnow_f, yfluxlat(:knon), & + pctsrf_new_sic, yagesno(:knon), y_d_t, y_d_q, y_d_ts(:knon), & + yz0_new, y_flux_t(:knon), y_flux_q(:knon), y_dflux_t(:knon), & + y_dflux_q(:knon), y_fqcalving, y_ffonte, y_run_off_lic_0) ! calculer la longueur de rugosite sur ocean yrugm = 0. IF (nsrf == is_oce) THEN DO j = 1, knon - yrugm(j) = 0.018*coefm(j, 1)*(yu1(j)**2+yv1(j)**2)/rg + & - 0.11*14E-6/sqrt(coefm(j, 1)*(yu1(j)**2+yv1(j)**2)) + yrugm(j) = 0.018 * coefm(j, 1) * (u1lay(j)**2 + v1lay(j)**2) & + / rg + 0.11 * 14E-6 & + / sqrt(coefm(j, 1) * (u1lay(j)**2 + v1lay(j)**2)) yrugm(j) = max(1.5E-05, yrugm(j)) END DO END IF DO j = 1, knon - y_dflux_t(j) = y_dflux_t(j)*ypct(j) - y_dflux_q(j) = y_dflux_q(j)*ypct(j) - yu1(j) = yu1(j)*ypct(j) - yv1(j) = yv1(j)*ypct(j) + y_dflux_t(j) = y_dflux_t(j) * ypct(j) + y_dflux_q(j) = y_dflux_q(j) * ypct(j) END DO DO k = 1, klev DO j = 1, knon i = ni(j) - coefh(j, k) = coefh(j, k)*ypct(j) - coefm(j, k) = coefm(j, k)*ypct(j) - y_d_t(j, k) = y_d_t(j, k)*ypct(j) - y_d_q(j, k) = y_d_q(j, k)*ypct(j) - y_d_u(j, k) = y_d_u(j, k)*ypct(j) - y_d_v(j, k) = y_d_v(j, k)*ypct(j) + coefh(j, k) = coefh(j, k) * ypct(j) + coefm(j, k) = coefm(j, k) * ypct(j) + y_d_t(j, k) = y_d_t(j, k) * ypct(j) + y_d_q(j, k) = y_d_q(j, k) * ypct(j) + y_d_u(j, k) = y_d_u(j, k) * ypct(j) + y_d_v(j, k) = y_d_v(j, k) * ypct(j) END DO END DO - DO j = 1, knon - i = ni(j) - flux_t(i, nsrf) = y_flux_t(j) - flux_q(i, nsrf) = y_flux_q(j) - flux_u(i, nsrf) = y_flux_u(j) - flux_v(i, nsrf) = y_flux_v(j) - END DO + flux_t(ni(:knon), nsrf) = y_flux_t(:knon) + flux_q(ni(:knon), nsrf) = y_flux_q(:knon) + flux_u(ni(:knon), nsrf) = y_flux_u(:knon) + flux_v(ni(:knon), nsrf) = y_flux_v(:knon) evap(:, nsrf) = -flux_q(:, nsrf) falbe(:, nsrf) = 0. - snow(:, nsrf) = 0. + fsnow(:, nsrf) = 0. qsurf(:, nsrf) = 0. - rugos(:, nsrf) = 0. - fluxlat(:, nsrf) = 0. + frugs(:, nsrf) = 0. DO j = 1, knon i = ni(j) d_ts(i, nsrf) = y_d_ts(j) falbe(i, nsrf) = yalb(j) - snow(i, nsrf) = ysnow(j) + fsnow(i, nsrf) = snow(j) qsurf(i, nsrf) = yqsurf(j) - rugos(i, nsrf) = yz0_new(j) + frugs(i, nsrf) = yz0_new(j) fluxlat(i, nsrf) = yfluxlat(j) IF (nsrf == is_oce) THEN rugmer(i) = yrugm(j) - rugos(i, nsrf) = yrugm(j) + frugs(i, nsrf) = yrugm(j) END IF agesno(i, nsrf) = yagesno(j) fqcalving(i, nsrf) = y_fqcalving(j) @@ -519,8 +475,8 @@ cdragm(i) = cdragm(i) + coefm(j, 1) dflux_t(i) = dflux_t(i) + y_dflux_t(j) dflux_q(i) = dflux_q(i) + y_dflux_q(j) - zu1(i) = zu1(i) + yu1(j) - zv1(i) = zv1(i) + yv1(j) + zu1(i) = zu1(i) + u1lay(j) * ypct(j) + zv1(i) = zv1(i) + v1lay(j) * ypct(j) END DO IF (nsrf == is_ter) THEN qsol(ni(:knon)) = yqsol(:knon) @@ -532,12 +488,7 @@ END IF ftsoil(:, :, nsrf) = 0. - DO k = 1, nsoilmx - DO j = 1, knon - i = ni(j) - ftsoil(i, k, nsrf) = ytsoil(j, k) - END DO - END DO + ftsoil(ni(:knon), :, nsrf) = ytsoil(:knon, :) DO j = 1, knon i = ni(j) @@ -558,12 +509,12 @@ vmer(j) = yv(j, 1) + y_d_v(j, 1) tair1(j) = yt(j, 1) + y_d_t(j, 1) qair1(j) = yq(j, 1) + y_d_q(j, 1) - zgeo1(j) = rd*tair1(j)/(0.5*(ypaprs(j, 1)+ypplay(j, & - 1)))*(ypaprs(j, 1)-ypplay(j, 1)) + zgeo1(j) = rd * tair1(j) / (0.5 * (ypaprs(j, 1) + ypplay(j, & + 1))) * (ypaprs(j, 1)-ypplay(j, 1)) tairsol(j) = yts(j) + y_d_ts(j) rugo1(j) = yrugos(j) IF (nsrf == is_oce) THEN - rugo1(j) = rugos(i, nsrf) + rugo1(j) = frugs(i, nsrf) END IF psfce(j) = ypaprs(j, 1) patm(j) = ypplay(j, 1) @@ -571,19 +522,19 @@ qairsol(j) = yqsurf(j) END DO - CALL stdlevvar(klon, knon, nsrf, zxli, uzon, vmer, tair1, qair1, & - zgeo1, tairsol, qairsol, rugo1, psfce, patm, yt2m, yq2m, & - yt10m, yq10m, yu10m, yustar) + CALL stdlevvar(klon, knon, nsrf, zxli, uzon(:knon), vmer(:knon), & + tair1, qair1, zgeo1, tairsol, qairsol, rugo1, psfce, patm, & + yt2m, yq2m, yt10m, yq10m, yu10m, yustar) DO j = 1, knon i = ni(j) t2m(i, nsrf) = yt2m(j) q2m(i, nsrf) = yq2m(j) - ! u10m, v10m : composantes du vent a 10m sans spirale de Ekman - u10m(i, nsrf) = (yu10m(j)*uzon(j))/sqrt(uzon(j)**2+vmer(j)**2) - v10m(i, nsrf) = (yu10m(j)*vmer(j))/sqrt(uzon(j)**2+vmer(j)**2) - + u10m_srf(i, nsrf) = (yu10m(j) * uzon(j)) & + / sqrt(uzon(j)**2 + vmer(j)**2) + v10m_srf(i, nsrf) = (yu10m(j) * vmer(j)) & + / sqrt(uzon(j)**2 + vmer(j)**2) END DO CALL hbtm(ypaprs, ypplay, yt2m, yq2m, yustar, y_flux_t(:knon), & @@ -610,11 +561,13 @@ q2(i, k, nsrf) = yq2(j, k) END DO END DO + else + fsnow(:, nsrf) = 0. end IF if_knon END DO loop_surface ! On utilise les nouvelles surfaces - rugos(:, is_oce) = rugmer + frugs(:, is_oce) = rugmer pctsrf(:, is_oce) = pctsrf_new_oce pctsrf(:, is_sic) = pctsrf_new_sic