--- trunk/Sources/phylmd/clmain.f 2017/04/28 13:22:36 223 +++ trunk/Sources/phylmd/clmain.f 2017/10/16 12:35:41 225 @@ -9,8 +9,8 @@ qsurf, evap, falbe, fluxlat, rain_fall, snow_f, fsolsw, fsollw, frugs, & agesno, rugoro, d_t, d_q, d_u, d_v, d_ts, flux_t, flux_q, flux_u, & flux_v, cdragh, cdragm, q2, dflux_t, dflux_q, ycoefh, zu1, zv1, t2m, & - q2m, u10m, v10m, pblh, capcl, oliqcl, cteicl, pblt, therm, trmb1, & - trmb2, trmb3, plcl, fqcalving, ffonte, run_off_lic_0) + q2m, u10m_srf, v10m_srf, pblh, capcl, oliqcl, cteicl, pblt, therm, & + trmb1, trmb2, trmb3, plcl, fqcalving, ffonte, run_off_lic_0) ! From phylmd/clmain.F, version 1.6, 2005/11/16 14:47:19 ! Author: Z. X. Li (LMD/CNRS), date: 1993/08/18 @@ -50,7 +50,7 @@ ! tableau des pourcentages de surface de chaque maille REAL, INTENT(IN):: t(klon, klev) ! temperature (K) - REAL, INTENT(IN):: q(klon, klev) ! vapeur d'eau (kg/kg) + REAL, INTENT(IN):: q(klon, klev) ! vapeur d'eau (kg / kg) REAL, INTENT(IN):: u(klon, klev), v(klon, klev) ! vitesse INTEGER, INTENT(IN):: julien ! jour de l'annee en cours REAL, intent(in):: mu0(klon) ! cosinus de l'angle solaire zenithal @@ -62,10 +62,10 @@ REAL, INTENT(inout):: ftsoil(klon, nsoilmx, nbsrf) ! soil temperature of surface fraction - REAL, INTENT(inout):: qsol(klon) + REAL, INTENT(inout):: qsol(:) ! (klon) ! column-density of water in soil, in kg m-2 - REAL, INTENT(IN):: paprs(klon, klev+1) ! pression a intercouche (Pa) + REAL, INTENT(IN):: paprs(klon, klev + 1) ! pression a intercouche (Pa) REAL, INTENT(IN):: pplay(klon, klev) ! pression au milieu de couche (Pa) REAL, INTENT(inout):: fsnow(:, :) ! (klon, nbsrf) \'epaisseur neigeuse REAL qsurf(klon, nbsrf) @@ -74,10 +74,10 @@ REAL, intent(out):: fluxlat(:, :) ! (klon, nbsrf) REAL, intent(in):: rain_fall(klon) - ! liquid water mass flux (kg/m2/s), positive down + ! liquid water mass flux (kg / m2 / s), positive down REAL, intent(in):: snow_f(klon) - ! solid water mass flux (kg/m2/s), positive down + ! solid water mass flux (kg / m2 / s), positive down REAL, INTENT(IN):: fsolsw(klon, nbsrf), fsollw(klon, nbsrf) REAL, intent(inout):: frugs(klon, nbsrf) ! longueur de rugosit\'e (en m) @@ -94,17 +94,17 @@ REAL, intent(out):: d_ts(:, :) ! (klon, nbsrf) variation of ftsol REAL, intent(out):: flux_t(klon, nbsrf) - ! flux de chaleur sensible (Cp T) (W/m2) (orientation positive vers + ! flux de chaleur sensible (Cp T) (W / m2) (orientation positive vers ! le bas) à la surface REAL, intent(out):: flux_q(klon, nbsrf) - ! flux de vapeur d'eau (kg/m2/s) à la surface + ! flux de vapeur d'eau (kg / m2 / s) à la surface REAL, intent(out):: flux_u(klon, nbsrf), flux_v(klon, nbsrf) ! tension du vent à la surface, en Pa REAL, INTENT(out):: cdragh(klon), cdragm(klon) - real q2(klon, klev+1, nbsrf) + real q2(klon, klev + 1, nbsrf) REAL, INTENT(out):: dflux_t(klon), dflux_q(klon) ! dflux_t derive du flux sensible @@ -112,14 +112,15 @@ ! IM "slab" ocean REAL, intent(out):: ycoefh(klon, klev) - REAL, intent(out):: zu1(klon) - REAL zv1(klon) + REAL, intent(out):: zu1(klon), zv1(klon) REAL, INTENT(inout):: t2m(klon, nbsrf), q2m(klon, nbsrf) - REAL u10m(klon, nbsrf), v10m(klon, nbsrf) - ! Ionela Musat cf. Anne Mathieu : planetary boundary layer, hbtm - ! (Comme les autres diagnostics on cumule dans physiq ce qui - ! permet de sortir les grandeurs par sous-surface) + REAL, INTENT(inout):: u10m_srf(:, :), v10m_srf(:, :) ! (klon, nbsrf) + ! composantes du vent \`a 10m sans spirale d'Ekman + + ! Ionela Musat. Cf. Anne Mathieu : planetary boundary layer, hbtm. + ! Comme les autres diagnostics on cumule dans physiq ce qui permet + ! de sortir les grandeurs par sous-surface. REAL pblh(klon, nbsrf) ! height of planetary boundary layer REAL capcl(klon, nbsrf) REAL oliqcl(klon, nbsrf) @@ -136,7 +137,7 @@ REAL fqcalving(klon, nbsrf), ffonte(klon, nbsrf) ! ffonte----Flux thermique utilise pour fondre la neige ! fqcalving-Flux d'eau "perdue" par la surface et necessaire pour limiter la - ! hauteur de neige, en kg/m2/s + ! hauteur de neige, en kg / m2 / s REAL run_off_lic_0(klon) ! Local: @@ -154,21 +155,13 @@ REAL yts(klon), yrugos(klon), ypct(klon), yz0_new(klon) REAL yalb(klon) - REAL yu1(klon), yv1(klon) - ! On ajoute en output yu1 et yv1 qui sont les vents dans - ! la premi\`ere couche. + REAL u1lay(klon), v1lay(klon) ! vent dans la premi\`ere couche, pour + ! une sous-surface donnée REAL snow(klon), yqsurf(klon), yagesno(klon) - - real yqsol(klon) - ! column-density of water in soil, in kg m-2 - - REAL yrain_f(klon) - ! liquid water mass flux (kg/m2/s), positive down - - REAL ysnow_f(klon) - ! solid water mass flux (kg/m2/s), positive down - + real yqsol(klon) ! column-density of water in soil, in kg m-2 + REAL yrain_f(klon) ! liquid water mass flux (kg / m2 / s), positive down + REAL ysnow_f(klon) ! solid water mass flux (kg / m2 / s), positive down REAL yrugm(klon), yrads(klon), yrugoro(klon) REAL yfluxlat(klon) REAL y_d_ts(klon) @@ -180,17 +173,16 @@ REAL coefh(klon, klev), coefm(klon, klev) REAL yu(klon, klev), yv(klon, klev) REAL yt(klon, klev), yq(klon, klev) - REAL ypaprs(klon, klev+1), ypplay(klon, klev), ydelp(klon, klev) + REAL ypaprs(klon, klev + 1), ypplay(klon, klev), ydelp(klon, klev) REAL ycoefm0(klon, klev), ycoefh0(klon, klev) - REAL yzlay(klon, klev), yzlev(klon, klev+1), yteta(klon, klev) - REAL ykmm(klon, klev+1), ykmn(klon, klev+1) - REAL ykmq(klon, klev+1) - REAL yq2(klon, klev+1) - REAL q2diag(klon, klev+1) + REAL yzlay(klon, klev), yzlev(klon, klev + 1), yteta(klon, klev) + REAL ykmm(klon, klev + 1), ykmn(klon, klev + 1) + REAL ykmq(klon, klev + 1) + REAL yq2(klon, klev + 1) + REAL q2diag(klon, klev + 1) - REAL u1lay(klon), v1lay(klon) REAL delp(klon, klev) INTEGER i, k, nsrf @@ -200,8 +192,6 @@ ! "pourcentage potentiel" pour tenir compte des \'eventuelles ! apparitions ou disparitions de la glace de mer - REAL zx_alf1, zx_alf2 ! valeur ambiante par extrapolation - REAL yt2m(klon), yq2m(klon), yu10m(klon) REAL yustar(klon) @@ -233,15 +223,9 @@ DO k = 1, klev ! epaisseur de couche DO i = 1, klon - delp(i, k) = paprs(i, k) - paprs(i, k+1) + delp(i, k) = paprs(i, k) - paprs(i, k + 1) END DO END DO - DO i = 1, klon ! vent de la premiere couche - zx_alf1 = 1.0 - zx_alf2 = 1.0 - zx_alf1 - u1lay(i) = u(i, 1)*zx_alf1 + u(i, 2)*zx_alf2 - v1lay(i) = v(i, 1)*zx_alf1 + v(i, 2)*zx_alf2 - END DO ! Initialization: rugmer = 0. @@ -256,8 +240,6 @@ yrain_f = 0. ysnow_f = 0. yrugos = 0. - yu1 = 0. - yv1 = 0. ypaprs = 0. ypplay = 0. ydelp = 0. @@ -322,19 +304,15 @@ yagesno(j) = agesno(i, nsrf) yrugos(j) = frugs(i, nsrf) yrugoro(j) = rugoro(i) - yu1(j) = u1lay(i) - yv1(j) = v1lay(i) + u1lay(j) = u(i, 1) + v1lay(j) = v(i, 1) yrads(j) = fsolsw(i, nsrf) + fsollw(i, nsrf) - ypaprs(j, klev+1) = paprs(i, klev+1) + ypaprs(j, klev + 1) = paprs(i, klev + 1) y_run_off_lic_0(j) = run_off_lic_0(i) END DO ! For continent, copy soil water content - IF (nsrf == is_ter) THEN - yqsol(:knon) = qsol(ni(:knon)) - ELSE - yqsol = 0. - END IF + IF (nsrf == is_ter) yqsol(:knon) = qsol(ni(:knon)) ytsoil(:knon, :) = ftsoil(ni(:knon), :, nsrf) @@ -388,14 +366,14 @@ * (ypplay(1:knon, k-1) - ypplay(1:knon, k)) / rg END DO DO k = 1, klev - yteta(1:knon, k) = yt(1:knon, k)*(ypaprs(1:knon, 1) & - / ypplay(1:knon, k))**rkappa * (1.+0.61*yq(1:knon, k)) + yteta(1:knon, k) = yt(1:knon, k) * (ypaprs(1:knon, 1) & + / ypplay(1:knon, k))**rkappa * (1. + 0.61 * yq(1:knon, k)) END DO yzlev(1:knon, 1) = 0. - yzlev(:knon, klev+1) = 2. * yzlay(:knon, klev) & + yzlev(:knon, klev + 1) = 2. * yzlay(:knon, klev) & - yzlay(:knon, klev - 1) DO k = 2, klev - yzlev(1:knon, k) = 0.5*(yzlay(1:knon, k)+yzlay(1:knon, k-1)) + yzlev(1:knon, k) = 0.5 * (yzlay(1:knon, k) + yzlay(1:knon, k-1)) END DO DO k = 1, klev + 1 DO j = 1, knon @@ -423,46 +401,47 @@ END IF ! calculer la diffusion des vitesses "u" et "v" - CALL clvent(knon, dtime, yu1, yv1, coefm(:knon, :), yt, yu, ypaprs, & - ypplay, ydelp, y_d_u, y_flux_u(:knon)) - CALL clvent(knon, dtime, yu1, yv1, coefm(:knon, :), yt, yv, ypaprs, & - ypplay, ydelp, y_d_v, y_flux_v(:knon)) + CALL clvent(knon, dtime, u1lay(:knon), v1lay(:knon), & + coefm(:knon, :), yt, yu, ypaprs, ypplay, ydelp, y_d_u, & + y_flux_u(:knon)) + CALL clvent(knon, dtime, u1lay(:knon), v1lay(:knon), & + coefm(:knon, :), yt, yv, ypaprs, ypplay, ydelp, y_d_v, & + y_flux_v(:knon)) ! calculer la diffusion de "q" et de "h" CALL clqh(dtime, julien, firstcal, nsrf, ni(:knon), & - ytsoil(:knon, :), yqsol, mu0, yrugos, yrugoro, yu1, yv1, & - coefh(:knon, :), yt, yq, yts(:knon), ypaprs, ypplay, ydelp, & - yrads(:knon), yalb(:knon), snow(:knon), yqsurf, yrain_f, & - ysnow_f, yfluxlat(:knon), pctsrf_new_sic, yagesno(:knon), & - y_d_t, y_d_q, y_d_ts(:knon), yz0_new, y_flux_t(:knon), & - y_flux_q(:knon), y_dflux_t(:knon), y_dflux_q(:knon), & - y_fqcalving, y_ffonte, y_run_off_lic_0) + ytsoil(:knon, :), yqsol(:knon), mu0, yrugos, yrugoro, & + u1lay(:knon), v1lay(:knon), coefh(:knon, :), yt, yq, & + yts(:knon), ypaprs, ypplay, ydelp, yrads(:knon), yalb(:knon), & + snow(:knon), yqsurf, yrain_f, ysnow_f, yfluxlat(:knon), & + pctsrf_new_sic, yagesno(:knon), y_d_t, y_d_q, y_d_ts(:knon), & + yz0_new, y_flux_t(:knon), y_flux_q(:knon), y_dflux_t(:knon), & + y_dflux_q(:knon), y_fqcalving, y_ffonte, y_run_off_lic_0) ! calculer la longueur de rugosite sur ocean yrugm = 0. IF (nsrf == is_oce) THEN DO j = 1, knon - yrugm(j) = 0.018*coefm(j, 1)*(yu1(j)**2+yv1(j)**2)/rg + & - 0.11*14E-6/sqrt(coefm(j, 1)*(yu1(j)**2+yv1(j)**2)) + yrugm(j) = 0.018 * coefm(j, 1) * (u1lay(j)**2 + v1lay(j)**2) & + / rg + 0.11 * 14E-6 & + / sqrt(coefm(j, 1) * (u1lay(j)**2 + v1lay(j)**2)) yrugm(j) = max(1.5E-05, yrugm(j)) END DO END IF DO j = 1, knon - y_dflux_t(j) = y_dflux_t(j)*ypct(j) - y_dflux_q(j) = y_dflux_q(j)*ypct(j) - yu1(j) = yu1(j)*ypct(j) - yv1(j) = yv1(j)*ypct(j) + y_dflux_t(j) = y_dflux_t(j) * ypct(j) + y_dflux_q(j) = y_dflux_q(j) * ypct(j) END DO DO k = 1, klev DO j = 1, knon i = ni(j) - coefh(j, k) = coefh(j, k)*ypct(j) - coefm(j, k) = coefm(j, k)*ypct(j) - y_d_t(j, k) = y_d_t(j, k)*ypct(j) - y_d_q(j, k) = y_d_q(j, k)*ypct(j) - y_d_u(j, k) = y_d_u(j, k)*ypct(j) - y_d_v(j, k) = y_d_v(j, k)*ypct(j) + coefh(j, k) = coefh(j, k) * ypct(j) + coefm(j, k) = coefm(j, k) * ypct(j) + y_d_t(j, k) = y_d_t(j, k) * ypct(j) + y_d_q(j, k) = y_d_q(j, k) * ypct(j) + y_d_u(j, k) = y_d_u(j, k) * ypct(j) + y_d_v(j, k) = y_d_v(j, k) * ypct(j) END DO END DO @@ -496,8 +475,8 @@ cdragm(i) = cdragm(i) + coefm(j, 1) dflux_t(i) = dflux_t(i) + y_dflux_t(j) dflux_q(i) = dflux_q(i) + y_dflux_q(j) - zu1(i) = zu1(i) + yu1(j) - zv1(i) = zv1(i) + yv1(j) + zu1(i) = zu1(i) + u1lay(j) * ypct(j) + zv1(i) = zv1(i) + v1lay(j) * ypct(j) END DO IF (nsrf == is_ter) THEN qsol(ni(:knon)) = yqsol(:knon) @@ -530,8 +509,8 @@ vmer(j) = yv(j, 1) + y_d_v(j, 1) tair1(j) = yt(j, 1) + y_d_t(j, 1) qair1(j) = yq(j, 1) + y_d_q(j, 1) - zgeo1(j) = rd*tair1(j)/(0.5*(ypaprs(j, 1)+ypplay(j, & - 1)))*(ypaprs(j, 1)-ypplay(j, 1)) + zgeo1(j) = rd * tair1(j) / (0.5 * (ypaprs(j, 1) + ypplay(j, & + 1))) * (ypaprs(j, 1)-ypplay(j, 1)) tairsol(j) = yts(j) + y_d_ts(j) rugo1(j) = yrugos(j) IF (nsrf == is_oce) THEN @@ -543,18 +522,19 @@ qairsol(j) = yqsurf(j) END DO - CALL stdlevvar(klon, knon, nsrf, zxli, uzon, vmer, tair1, qair1, & - zgeo1, tairsol, qairsol, rugo1, psfce, patm, yt2m, yq2m, & - yt10m, yq10m, yu10m, yustar) + CALL stdlevvar(klon, knon, nsrf, zxli, uzon(:knon), vmer(:knon), & + tair1, qair1, zgeo1, tairsol, qairsol, rugo1, psfce, patm, & + yt2m, yq2m, yt10m, yq10m, yu10m, yustar) DO j = 1, knon i = ni(j) t2m(i, nsrf) = yt2m(j) q2m(i, nsrf) = yq2m(j) - ! u10m, v10m : composantes du vent a 10m sans spirale de Ekman - u10m(i, nsrf) = (yu10m(j)*uzon(j))/sqrt(uzon(j)**2+vmer(j)**2) - v10m(i, nsrf) = (yu10m(j)*vmer(j))/sqrt(uzon(j)**2+vmer(j)**2) + u10m_srf(i, nsrf) = (yu10m(j) * uzon(j)) & + / sqrt(uzon(j)**2 + vmer(j)**2) + v10m_srf(i, nsrf) = (yu10m(j) * vmer(j)) & + / sqrt(uzon(j)**2 + vmer(j)**2) END DO CALL hbtm(ypaprs, ypplay, yt2m, yq2m, yustar, y_flux_t(:knon), &