--- trunk/libf/phylmd/clmain.f90 2012/04/20 14:58:43 61 +++ trunk/libf/phylmd/clmain.f90 2012/07/26 14:37:37 62 @@ -4,85 +4,85 @@ contains - SUBROUTINE clmain(dtime, itap, date0, pctsrf, pctsrf_new, t, q, u, v,& - jour, rmu0, co2_ppm, ok_veget, ocean, npas, nexca, ts,& - soil_model, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil,& - qsol, paprs, pplay, snow, qsurf, evap, albe, alblw, fluxlat,& - rain_f, snow_f, solsw, sollw, sollwdown, fder, rlon, rlat, cufi,& - cvfi, rugos, debut, lafin, agesno, rugoro, d_t, d_q, d_u, d_v,& - d_ts, flux_t, flux_q, flux_u, flux_v, cdragh, cdragm, q2,& - dflux_t, dflux_q, zcoefh, zu1, zv1, t2m, q2m, u10m, v10m, pblh,& - capcl, oliqcl, cteicl, pblt, therm, trmb1, trmb2, trmb3, plcl,& + SUBROUTINE clmain(dtime, itap, date0, pctsrf, pctsrf_new, t, q, u, v, & + jour, rmu0, co2_ppm, ok_veget, ocean, npas, nexca, ts, & + soil_model, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, & + qsol, paprs, pplay, snow, qsurf, evap, albe, alblw, fluxlat, & + rain_fall, snow_f, solsw, sollw, sollwdown, fder, rlon, rlat, cufi, & + cvfi, rugos, debut, lafin, agesno, rugoro, d_t, d_q, d_u, d_v, & + d_ts, flux_t, flux_q, flux_u, flux_v, cdragh, cdragm, q2, & + dflux_t, dflux_q, zcoefh, zu1, zv1, t2m, q2m, u10m, v10m, pblh, & + capcl, oliqcl, cteicl, pblt, therm, trmb1, trmb2, trmb3, plcl, & fqcalving, ffonte, run_off_lic_0, flux_o, flux_g, tslab, seaice) ! From phylmd/clmain.F, version 1.6 2005/11/16 14:47:19 - ! Author: Z.X. Li (LMD/CNRS), date: 1993/08/18 - ! Objet : interface de "couche limite" (diffusion verticale) + ! Author: Z. X. Li (LMD/CNRS), date: 1993/08/18 + ! Objet : interface de couche limite (diffusion verticale) - ! Tout ce qui a trait aux traceurs est dans "phytrac" maintenant. - ! Pour l'instant le calcul de la couche limite pour les traceurs - ! se fait avec "cltrac" et ne tient pas compte de la différentiation - ! des sous-fractions de sol. + ! Tout ce qui a trait aux traceurs est dans "phytrac". Le calcul + ! de la couche limite pour les traceurs se fait avec "cltrac" et + ! ne tient pas compte de la différentiation des sous-fractions de + ! sol. ! Pour pouvoir extraire les coefficients d'échanges et le vent - ! dans la première couche, trois champs supplémentaires ont été - ! créés : "zcoefh", "zu1" et "zv1". Pour l'instant nous avons - ! moyenné les valeurs de ces trois champs sur les 4 sous-surfaces - ! du modèle. Dans l'avenir, si les informations des sous-surfaces - ! doivent être prises en compte, il faudra sortir ces mêmes champs - ! en leur ajoutant une dimension, c'est-à-dire "nbsrf" (nombre de - ! sous-surfaces). + ! dans la première couche, trois champs ont été créés : "zcoefh", + ! "zu1" et "zv1". Nous avons moyenné les valeurs de ces trois + ! champs sur les quatre sous-surfaces du modèle. - use calendar, ONLY : ymds2ju + use calendar, ONLY: ymds2ju use clqh_m, only: clqh + use clvent_m, only: clvent use coefkz_m, only: coefkz use coefkzmin_m, only: coefkzmin - USE conf_phys_m, ONLY : iflag_pbl - USE dimens_m, ONLY : iim, jjm - USE dimphy, ONLY : klev, klon, zmasq - USE dimsoil, ONLY : nsoilmx - USE dynetat0_m, ONLY : day_ini - USE gath_cpl, ONLY : gath2cpl + USE conf_gcm_m, ONLY: prt_level + USE conf_phys_m, ONLY: iflag_pbl + USE dimens_m, ONLY: iim, jjm + USE dimphy, ONLY: klev, klon, zmasq + USE dimsoil, ONLY: nsoilmx + USE dynetat0_m, ONLY: day_ini + USE gath_cpl, ONLY: gath2cpl use hbtm_m, only: hbtm - USE histsync_m, ONLY : histsync - USE histbeg_totreg_m, ONLY : histbeg_totreg - USE histend_m, ONLY : histend - USE histdef_m, ONLY : histdef + USE histbeg_totreg_m, ONLY: histbeg_totreg + USE histdef_m, ONLY: histdef + USE histend_m, ONLY: histend + USE histsync_m, ONLY: histsync use histwrite_m, only: histwrite - USE indicesol, ONLY : epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf - USE conf_gcm_m, ONLY : prt_level - USE suphec_m, ONLY : rd, rg, rkappa - USE temps, ONLY : annee_ref, itau_phy + USE indicesol, ONLY: epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf + USE suphec_m, ONLY: rd, rg, rkappa + USE temps, ONLY: annee_ref, itau_phy + use ustarhb_m, only: ustarhb + use vdif_kcay_m, only: vdif_kcay use yamada4_m, only: yamada4 ! Arguments: - REAL, INTENT (IN) :: dtime ! interval du temps (secondes) - REAL date0 - ! date0----input-R- jour initial - INTEGER, INTENT (IN) :: itap - ! itap-----input-I- numero du pas de temps - REAL, INTENT(IN):: t(klon, klev), q(klon, klev) - ! t--------input-R- temperature (K) - ! q--------input-R- vapeur d'eau (kg/kg) - REAL, INTENT (IN):: u(klon, klev), v(klon, klev) - ! u--------input-R- vitesse u - ! v--------input-R- vitesse v - REAL, INTENT (IN):: paprs(klon, klev+1) - ! paprs----input-R- pression a intercouche (Pa) - REAL, INTENT (IN):: pplay(klon, klev) - ! pplay----input-R- pression au milieu de couche (Pa) - REAL, INTENT (IN):: rlon(klon), rlat(klon) - ! rlat-----input-R- latitude en degree + REAL, INTENT(IN):: dtime ! interval du temps (secondes) + INTEGER, INTENT(IN):: itap ! numero du pas de temps + REAL, INTENT(IN):: date0 ! jour initial + REAL, INTENT(inout):: pctsrf(klon, nbsrf) + + ! la nouvelle repartition des surfaces sortie de l'interface + REAL, INTENT(out):: pctsrf_new(klon, nbsrf) + + REAL, INTENT(IN):: t(klon, klev) ! temperature (K) + REAL, INTENT(IN):: q(klon, klev) ! vapeur d'eau (kg/kg) + REAL, INTENT(IN):: u(klon, klev), v(klon, klev) ! vitesse + INTEGER, INTENT(IN):: jour ! jour de l'annee en cours + REAL, intent(in):: rmu0(klon) ! cosinus de l'angle solaire zenithal + REAL, INTENT(IN):: paprs(klon, klev+1) ! pression a intercouche (Pa) + REAL, INTENT(IN):: pplay(klon, klev) ! pression au milieu de couche (Pa) + REAL, INTENT(IN):: rlon(klon) + REAL, INTENT(IN):: rlat(klon) ! latitude en degrés REAL cufi(klon), cvfi(klon) ! cufi-----input-R- resolution des mailles en x (m) ! cvfi-----input-R- resolution des mailles en y (m) REAL d_t(klon, klev), d_q(klon, klev) ! d_t------output-R- le changement pour "t" ! d_q------output-R- le changement pour "q" - REAL d_u(klon, klev), d_v(klon, klev) - ! d_u------output-R- le changement pour "u" - ! d_v------output-R- le changement pour "v" + + REAL, intent(out):: d_u(klon, klev), d_v(klon, klev) + ! changement pour "u" et "v" + REAL flux_t(klon, klev, nbsrf), flux_q(klon, klev, nbsrf) ! flux_t---output-R- flux de chaleur sensible (CpT) J/m**2/s (W/m**2) ! (orientation positive vers le bas) @@ -112,20 +112,16 @@ ! flux_u---output-R- tension du vent X: (kg m/s)/(m**2 s) ou Pascal ! flux_v---output-R- tension du vent Y: (kg m/s)/(m**2 s) ou Pascal REAL rugmer(klon), agesno(klon, nbsrf) - REAL, INTENT (IN) :: rugoro(klon) - REAL cdragh(klon), cdragm(klon) - ! jour de l'annee en cours - INTEGER jour - REAL rmu0(klon) ! cosinus de l'angle solaire zenithal + REAL, INTENT(IN):: rugoro(klon) + REAL, INTENT(out):: cdragh(klon), cdragm(klon) ! taux CO2 atmosphere REAL co2_ppm - LOGICAL, INTENT (IN) :: debut - LOGICAL, INTENT (IN) :: lafin + LOGICAL, INTENT(IN):: debut + LOGICAL, INTENT(IN):: lafin LOGICAL ok_veget - CHARACTER (len=*), INTENT (IN) :: ocean + CHARACTER(len=*), INTENT(IN):: ocean INTEGER npas, nexca - REAL pctsrf(klon, nbsrf) REAL ts(klon, nbsrf) ! ts-------input-R- temperature du sol (en Kelvin) REAL d_ts(klon, nbsrf) @@ -138,21 +134,19 @@ REAL fluxlat(klon, nbsrf) - REAL rain_f(klon), snow_f(klon) + REAL, intent(in):: rain_fall(klon), snow_f(klon) REAL fder(klon) REAL sollw(klon, nbsrf), solsw(klon, nbsrf), sollwdown(klon) REAL rugos(klon, nbsrf) ! rugos----input-R- longeur de rugosite (en m) - ! la nouvelle repartition des surfaces sortie de l'interface - REAL pctsrf_new(klon, nbsrf) REAL zcoefh(klon, klev) REAL zu1(klon) REAL zv1(klon) !$$$ PB ajout pour soil - LOGICAL, INTENT (IN) :: soil_model + LOGICAL, INTENT(IN):: soil_model !IM ajout seuils cdrm, cdrh REAL cdmmax, cdhmax @@ -163,8 +157,6 @@ REAL ytsoil(klon, nsoilmx) REAL qsol(klon) - EXTERNAL clvent, calbeta, cltrac - REAL yts(klon), yrugos(klon), ypct(klon), yz0_new(klon) REAL yalb(klon) REAL yalblw(klon) @@ -185,7 +177,7 @@ REAL y_flux_t(klon, klev), y_flux_q(klon, klev) REAL y_flux_u(klon, klev), y_flux_v(klon, klev) REAL y_dflux_t(klon), y_dflux_q(klon) - REAL ycoefh(klon, klev), ycoefm(klon, klev) + REAL coefh(klon, klev), coefm(klon, klev) REAL yu(klon, klev), yv(klon, klev) REAL yt(klon, klev), yq(klon, klev) REAL ypaprs(klon, klev+1), ypplay(klon, klev), ydelp(klon, klev) @@ -214,9 +206,9 @@ ! maf pour sorties IOISPL en cas de debugagage - CHARACTER (80) cldebug + CHARACTER(80) cldebug SAVE cldebug - CHARACTER (8) cl_surf(nbsrf) + CHARACTER(8) cl_surf(nbsrf) SAVE cl_surf INTEGER nhoridbg, nidbg SAVE nhoridbg, nidbg @@ -227,7 +219,7 @@ LOGICAL first_appel SAVE first_appel DATA first_appel/ .TRUE./ - LOGICAL :: debugindex = .FALSE. + LOGICAL:: debugindex = .FALSE. INTEGER idayref REAL t2m(klon, nbsrf), q2m(klon, nbsrf) REAL u10m(klon, nbsrf), v10m(klon, nbsrf) @@ -268,7 +260,6 @@ REAL ytrmb1(klon) REAL ytrmb2(klon) REAL ytrmb3(klon) - REAL y_cd_h(klon), y_cd_m(klon) REAL uzon(klon), vmer(klon) REAL tair1(klon), qair1(klon), tairsol(klon) REAL psfce(klon), patm(klon) @@ -284,7 +275,7 @@ REAL t_coup PARAMETER (t_coup=273.15) - CHARACTER (len=20) :: modname = 'clmain' + CHARACTER(len=20):: modname = 'clmain' !------------------------------------------------------------ @@ -425,364 +416,349 @@ CALL histwrite(nidbg, cl_surf(nsrf), itap, debugtab) END IF - IF (knon == 0) CYCLE - - DO j = 1, knon - i = ni(j) - ypct(j) = pctsrf(i, nsrf) - yts(j) = ts(i, nsrf) - ytslab(i) = tslab(i) - ysnow(j) = snow(i, nsrf) - yqsurf(j) = qsurf(i, nsrf) - yalb(j) = albe(i, nsrf) - yalblw(j) = alblw(i, nsrf) - yrain_f(j) = rain_f(i) - ysnow_f(j) = snow_f(i) - yagesno(j) = agesno(i, nsrf) - yfder(j) = fder(i) - ytaux(j) = flux_u(i, 1, nsrf) - ytauy(j) = flux_v(i, 1, nsrf) - ysolsw(j) = solsw(i, nsrf) - ysollw(j) = sollw(i, nsrf) - ysollwdown(j) = sollwdown(i) - yrugos(j) = rugos(i, nsrf) - yrugoro(j) = rugoro(i) - yu1(j) = u1lay(i) - yv1(j) = v1lay(i) - yrads(j) = ysolsw(j) + ysollw(j) - ypaprs(j, klev+1) = paprs(i, klev+1) - y_run_off_lic_0(j) = run_off_lic_0(i) - yu10mx(j) = u10m(i, nsrf) - yu10my(j) = v10m(i, nsrf) - ywindsp(j) = sqrt(yu10mx(j)*yu10mx(j)+yu10my(j)*yu10my(j)) - END DO - - ! IF bucket model for continent, copy soil water content - IF (nsrf == is_ter .AND. .NOT. ok_veget) THEN - DO j = 1, knon - i = ni(j) - yqsol(j) = qsol(i) - END DO - ELSE - yqsol = 0. - END IF - !$$$ PB ajour pour soil - DO k = 1, nsoilmx - DO j = 1, knon - i = ni(j) - ytsoil(j, k) = ftsoil(i, k, nsrf) - END DO - END DO - DO k = 1, klev + if_knon: IF (knon /= 0) then DO j = 1, knon i = ni(j) - ypaprs(j, k) = paprs(i, k) - ypplay(j, k) = pplay(i, k) - ydelp(j, k) = delp(i, k) - yu(j, k) = u(i, k) - yv(j, k) = v(i, k) - yt(j, k) = t(i, k) - yq(j, k) = q(i, k) + ypct(j) = pctsrf(i, nsrf) + yts(j) = ts(i, nsrf) + ytslab(i) = tslab(i) + ysnow(j) = snow(i, nsrf) + yqsurf(j) = qsurf(i, nsrf) + yalb(j) = albe(i, nsrf) + yalblw(j) = alblw(i, nsrf) + yrain_f(j) = rain_fall(i) + ysnow_f(j) = snow_f(i) + yagesno(j) = agesno(i, nsrf) + yfder(j) = fder(i) + ytaux(j) = flux_u(i, 1, nsrf) + ytauy(j) = flux_v(i, 1, nsrf) + ysolsw(j) = solsw(i, nsrf) + ysollw(j) = sollw(i, nsrf) + ysollwdown(j) = sollwdown(i) + yrugos(j) = rugos(i, nsrf) + yrugoro(j) = rugoro(i) + yu1(j) = u1lay(i) + yv1(j) = v1lay(i) + yrads(j) = ysolsw(j) + ysollw(j) + ypaprs(j, klev+1) = paprs(i, klev+1) + y_run_off_lic_0(j) = run_off_lic_0(i) + yu10mx(j) = u10m(i, nsrf) + yu10my(j) = v10m(i, nsrf) + ywindsp(j) = sqrt(yu10mx(j)*yu10mx(j)+yu10my(j)*yu10my(j)) END DO - END DO - ! calculer Cdrag et les coefficients d'echange - CALL coefkz(nsrf, knon, ypaprs, ypplay, ksta, ksta_ter, yts,& - yrugos, yu, yv, yt, yq, yqsurf, ycoefm, ycoefh) - IF (iflag_pbl == 1) THEN - CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0, ycoefh0) - DO k = 1, klev - DO i = 1, knon - ycoefm(i, k) = max(ycoefm(i, k), ycoefm0(i, k)) - ycoefh(i, k) = max(ycoefh(i, k), ycoefh0(i, k)) + ! IF bucket model for continent, copy soil water content + IF (nsrf == is_ter .AND. .NOT. ok_veget) THEN + DO j = 1, knon + i = ni(j) + yqsol(j) = qsol(i) END DO - END DO - END IF - - ! on seuille ycoefm et ycoefh - IF (nsrf == is_oce) THEN - DO j = 1, knon - ycoefm(j, 1) = min(ycoefm(j, 1), cdmmax) - ycoefh(j, 1) = min(ycoefh(j, 1), cdhmax) - END DO - END IF - - IF (ok_kzmin) THEN - ! Calcul d'une diffusion minimale pour les conditions tres stables - CALL coefkzmin(knon, ypaprs, ypplay, yu, yv, yt, yq, ycoefm(:, 1), & - ycoefm0, ycoefh0) + ELSE + yqsol = 0. + END IF - DO k = 1, klev - DO i = 1, knon - ycoefm(i, k) = max(ycoefm(i, k), ycoefm0(i, k)) - ycoefh(i, k) = max(ycoefh(i, k), ycoefh0(i, k)) + DO k = 1, nsoilmx + DO j = 1, knon + i = ni(j) + ytsoil(j, k) = ftsoil(i, k, nsrf) END DO END DO - END IF - IF (iflag_pbl >= 3) THEN - ! MELLOR ET YAMADA adapté à Mars, Richard Fournier et Frédéric Hourdin - yzlay(1:knon, 1) = rd*yt(1:knon, 1)/(0.5*(ypaprs(1:knon, & - 1)+ypplay(1:knon, 1)))*(ypaprs(1:knon, 1)-ypplay(1:knon, 1))/rg - DO k = 2, klev - yzlay(1:knon, k) = yzlay(1:knon, k-1) & - + rd * 0.5 * (yt(1:knon, k-1) + yt(1:knon, k)) & - / ypaprs(1:knon, k) & - * (ypplay(1:knon, k-1) - ypplay(1:knon, k)) / rg - END DO DO k = 1, klev - yteta(1:knon, k) = yt(1:knon, k)*(ypaprs(1:knon, 1) & - / ypplay(1:knon, k))**rkappa * (1.+0.61*yq(1:knon, k)) - END DO - yzlev(1:knon, 1) = 0. - yzlev(1:knon, klev+1) = 2.*yzlay(1:knon, klev) - yzlay(1:knon, klev-1) - DO k = 2, klev - yzlev(1:knon, k) = 0.5*(yzlay(1:knon, k)+yzlay(1:knon, k-1)) - END DO - DO k = 1, klev + 1 DO j = 1, knon i = ni(j) - yq2(j, k) = q2(i, k, nsrf) + ypaprs(j, k) = paprs(i, k) + ypplay(j, k) = pplay(i, k) + ydelp(j, k) = delp(i, k) + yu(j, k) = u(i, k) + yv(j, k) = v(i, k) + yt(j, k) = t(i, k) + yq(j, k) = q(i, k) END DO END DO - y_cd_m(1:knon) = ycoefm(1:knon, 1) - y_cd_h(1:knon) = ycoefh(1:knon, 1) - CALL ustarhb(knon, yu, yv, y_cd_m, yustar) + ! calculer Cdrag et les coefficients d'echange + CALL coefkz(nsrf, knon, ypaprs, ypplay, ksta, ksta_ter, yts, yrugos, & + yu, yv, yt, yq, yqsurf, coefm(:knon, :), coefh(:knon, :)) + IF (iflag_pbl == 1) THEN + CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0, ycoefh0) + coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :)) + coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, :)) + END IF - IF (prt_level>9) THEN - PRINT *, 'USTAR = ', yustar + ! on seuille coefm et coefh + IF (nsrf == is_oce) THEN + coefm(:knon, 1) = min(coefm(:knon, 1), cdmmax) + coefh(:knon, 1) = min(coefh(:knon, 1), cdhmax) END IF - ! iflag_pbl peut être utilisé comme longueur de mélange + IF (ok_kzmin) THEN + ! Calcul d'une diffusion minimale pour les conditions tres stables + CALL coefkzmin(knon, ypaprs, ypplay, yu, yv, yt, yq, & + coefm(:, 1), ycoefm0, ycoefh0) + coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :)) + coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, :)) + END IF + + IF (iflag_pbl >= 3) THEN + ! MELLOR ET YAMADA adapté à Mars, Richard Fournier et + ! Frédéric Hourdin + yzlay(:knon, 1) = rd * yt(:knon, 1) / (0.5 * (ypaprs(:knon, 1) & + + ypplay(:knon, 1))) & + * (ypaprs(:knon, 1) - ypplay(:knon, 1)) / rg + DO k = 2, klev + yzlay(1:knon, k) = yzlay(1:knon, k-1) & + + rd * 0.5 * (yt(1:knon, k-1) + yt(1:knon, k)) & + / ypaprs(1:knon, k) & + * (ypplay(1:knon, k-1) - ypplay(1:knon, k)) / rg + END DO + DO k = 1, klev + yteta(1:knon, k) = yt(1:knon, k)*(ypaprs(1:knon, 1) & + / ypplay(1:knon, k))**rkappa * (1.+0.61*yq(1:knon, k)) + END DO + yzlev(1:knon, 1) = 0. + yzlev(:knon, klev+1) = 2. * yzlay(:knon, klev) & + - yzlay(:knon, klev - 1) + DO k = 2, klev + yzlev(1:knon, k) = 0.5*(yzlay(1:knon, k)+yzlay(1:knon, k-1)) + END DO + DO k = 1, klev + 1 + DO j = 1, knon + i = ni(j) + yq2(j, k) = q2(i, k, nsrf) + END DO + END DO - IF (iflag_pbl >= 11) THEN - CALL vdif_kcay(knon, dtime, rg, rd, ypaprs, yt, yzlev, yzlay, & - yu, yv, yteta, y_cd_m, yq2, q2diag, ykmm, ykmn, yustar, & - iflag_pbl) - ELSE - CALL yamada4(knon, dtime, rg, yzlev, yzlay, yu, yv, yteta, & - y_cd_m, yq2, ykmm, ykmn, ykmq, yustar, iflag_pbl) + CALL ustarhb(knon, yu, yv, coefm(:knon, 1), yustar) + + IF (prt_level > 9) THEN + PRINT *, 'USTAR = ', yustar + END IF + + ! iflag_pbl peut être utilisé comme longueur de mélange + + IF (iflag_pbl >= 11) THEN + CALL vdif_kcay(knon, dtime, rg, rd, ypaprs, yt, yzlev, yzlay, & + yu, yv, yteta, coefm(:knon, 1), yq2, q2diag, ykmm, ykmn, & + yustar, iflag_pbl) + ELSE + CALL yamada4(knon, dtime, rg, yzlev, yzlay, yu, yv, yteta, & + coefm(:knon, 1), yq2, ykmm, ykmn, ykmq, yustar, iflag_pbl) + END IF + + coefm(:knon, 2:) = ykmm(:knon, 2:klev) + coefh(:knon, 2:) = ykmn(:knon, 2:klev) END IF - ycoefm(1:knon, 1) = y_cd_m(1:knon) - ycoefh(1:knon, 1) = y_cd_h(1:knon) - ycoefm(1:knon, 2:klev) = ykmm(1:knon, 2:klev) - ycoefh(1:knon, 2:klev) = ykmn(1:knon, 2:klev) - END IF + ! calculer la diffusion des vitesses "u" et "v" + CALL clvent(knon, dtime, yu1, yv1, coefm, yt, yu, ypaprs, ypplay, & + ydelp, y_d_u, y_flux_u) + CALL clvent(knon, dtime, yu1, yv1, coefm, yt, yv, ypaprs, ypplay, & + ydelp, y_d_v, y_flux_v) + + ! pour le couplage + ytaux = y_flux_u(:, 1) + ytauy = y_flux_v(:, 1) + + ! calculer la diffusion de "q" et de "h" + CALL clqh(dtime, itap, date0, jour, debut, lafin, rlon, rlat, & + cufi, cvfi, knon, nsrf, ni, pctsrf, soil_model, ytsoil, & + yqsol, ok_veget, ocean, npas, nexca, rmu0, co2_ppm, yrugos, & + yrugoro, yu1, yv1, coefh, yt, yq, yts, ypaprs, ypplay, & + ydelp, yrads, yalb, yalblw, ysnow, yqsurf, yrain_f, ysnow_f, & + yfder, ytaux, ytauy, ywindsp, ysollw, ysollwdown, ysolsw, & + yfluxlat, pctsrf_new, yagesno, y_d_t, y_d_q, y_d_ts, & + yz0_new, y_flux_t, y_flux_q, y_dflux_t, y_dflux_q, & + y_fqcalving, y_ffonte, y_run_off_lic_0, y_flux_o, y_flux_g, & + ytslab, y_seaice) - ! calculer la diffusion des vitesses "u" et "v" - CALL clvent(knon, dtime, yu1, yv1, ycoefm, yt, yu, ypaprs, ypplay, & - ydelp, y_d_u, y_flux_u) - CALL clvent(knon, dtime, yu1, yv1, ycoefm, yt, yv, ypaprs, ypplay, & - ydelp, y_d_v, y_flux_v) - - ! pour le couplage - ytaux = y_flux_u(:, 1) - ytauy = y_flux_v(:, 1) - - ! calculer la diffusion de "q" et de "h" - CALL clqh(dtime, itap, date0, jour, debut, lafin, rlon, rlat,& - cufi, cvfi, knon, nsrf, ni, pctsrf, soil_model, ytsoil,& - yqsol, ok_veget, ocean, npas, nexca, rmu0, co2_ppm, yrugos,& - yrugoro, yu1, yv1, ycoefh, yt, yq, yts, ypaprs, ypplay,& - ydelp, yrads, yalb, yalblw, ysnow, yqsurf, yrain_f, ysnow_f, & - yfder, ytaux, ytauy, ywindsp, ysollw, ysollwdown, ysolsw,& - yfluxlat, pctsrf_new, yagesno, y_d_t, y_d_q, y_d_ts,& - yz0_new, y_flux_t, y_flux_q, y_dflux_t, y_dflux_q,& - y_fqcalving, y_ffonte, y_run_off_lic_0, y_flux_o, y_flux_g,& - ytslab, y_seaice) - - ! calculer la longueur de rugosite sur ocean - yrugm = 0. - IF (nsrf == is_oce) THEN + ! calculer la longueur de rugosite sur ocean + yrugm = 0. + IF (nsrf == is_oce) THEN + DO j = 1, knon + yrugm(j) = 0.018*coefm(j, 1)*(yu1(j)**2+yv1(j)**2)/rg + & + 0.11*14E-6/sqrt(coefm(j, 1)*(yu1(j)**2+yv1(j)**2)) + yrugm(j) = max(1.5E-05, yrugm(j)) + END DO + END IF DO j = 1, knon - yrugm(j) = 0.018*ycoefm(j, 1)*(yu1(j)**2+yv1(j)**2)/rg + & - 0.11*14E-6/sqrt(ycoefm(j, 1)*(yu1(j)**2+yv1(j)**2)) - yrugm(j) = max(1.5E-05, yrugm(j)) + y_dflux_t(j) = y_dflux_t(j)*ypct(j) + y_dflux_q(j) = y_dflux_q(j)*ypct(j) + yu1(j) = yu1(j)*ypct(j) + yv1(j) = yv1(j)*ypct(j) END DO - END IF - DO j = 1, knon - y_dflux_t(j) = y_dflux_t(j)*ypct(j) - y_dflux_q(j) = y_dflux_q(j)*ypct(j) - yu1(j) = yu1(j)*ypct(j) - yv1(j) = yv1(j)*ypct(j) - END DO - DO k = 1, klev - DO j = 1, knon - i = ni(j) - ycoefh(j, k) = ycoefh(j, k)*ypct(j) - ycoefm(j, k) = ycoefm(j, k)*ypct(j) - y_d_t(j, k) = y_d_t(j, k)*ypct(j) - y_d_q(j, k) = y_d_q(j, k)*ypct(j) - flux_t(i, k, nsrf) = y_flux_t(j, k) - flux_q(i, k, nsrf) = y_flux_q(j, k) - flux_u(i, k, nsrf) = y_flux_u(j, k) - flux_v(i, k, nsrf) = y_flux_v(j, k) - y_d_u(j, k) = y_d_u(j, k)*ypct(j) - y_d_v(j, k) = y_d_v(j, k)*ypct(j) + DO k = 1, klev + DO j = 1, knon + i = ni(j) + coefh(j, k) = coefh(j, k)*ypct(j) + coefm(j, k) = coefm(j, k)*ypct(j) + y_d_t(j, k) = y_d_t(j, k)*ypct(j) + y_d_q(j, k) = y_d_q(j, k)*ypct(j) + flux_t(i, k, nsrf) = y_flux_t(j, k) + flux_q(i, k, nsrf) = y_flux_q(j, k) + flux_u(i, k, nsrf) = y_flux_u(j, k) + flux_v(i, k, nsrf) = y_flux_v(j, k) + y_d_u(j, k) = y_d_u(j, k)*ypct(j) + y_d_v(j, k) = y_d_v(j, k)*ypct(j) + END DO END DO - END DO - evap(:, nsrf) = -flux_q(:, 1, nsrf) + evap(:, nsrf) = -flux_q(:, 1, nsrf) - albe(:, nsrf) = 0. - alblw(:, nsrf) = 0. - snow(:, nsrf) = 0. - qsurf(:, nsrf) = 0. - rugos(:, nsrf) = 0. - fluxlat(:, nsrf) = 0. - DO j = 1, knon - i = ni(j) - d_ts(i, nsrf) = y_d_ts(j) - albe(i, nsrf) = yalb(j) - alblw(i, nsrf) = yalblw(j) - snow(i, nsrf) = ysnow(j) - qsurf(i, nsrf) = yqsurf(j) - rugos(i, nsrf) = yz0_new(j) - fluxlat(i, nsrf) = yfluxlat(j) - IF (nsrf == is_oce) THEN - rugmer(i) = yrugm(j) - rugos(i, nsrf) = yrugm(j) - END IF - agesno(i, nsrf) = yagesno(j) - fqcalving(i, nsrf) = y_fqcalving(j) - ffonte(i, nsrf) = y_ffonte(j) - cdragh(i) = cdragh(i) + ycoefh(j, 1) - cdragm(i) = cdragm(i) + ycoefm(j, 1) - dflux_t(i) = dflux_t(i) + y_dflux_t(j) - dflux_q(i) = dflux_q(i) + y_dflux_q(j) - zu1(i) = zu1(i) + yu1(j) - zv1(i) = zv1(i) + yv1(j) - END DO - IF (nsrf == is_ter) THEN + albe(:, nsrf) = 0. + alblw(:, nsrf) = 0. + snow(:, nsrf) = 0. + qsurf(:, nsrf) = 0. + rugos(:, nsrf) = 0. + fluxlat(:, nsrf) = 0. DO j = 1, knon i = ni(j) - qsol(i) = yqsol(j) + d_ts(i, nsrf) = y_d_ts(j) + albe(i, nsrf) = yalb(j) + alblw(i, nsrf) = yalblw(j) + snow(i, nsrf) = ysnow(j) + qsurf(i, nsrf) = yqsurf(j) + rugos(i, nsrf) = yz0_new(j) + fluxlat(i, nsrf) = yfluxlat(j) + IF (nsrf == is_oce) THEN + rugmer(i) = yrugm(j) + rugos(i, nsrf) = yrugm(j) + END IF + agesno(i, nsrf) = yagesno(j) + fqcalving(i, nsrf) = y_fqcalving(j) + ffonte(i, nsrf) = y_ffonte(j) + cdragh(i) = cdragh(i) + coefh(j, 1) + cdragm(i) = cdragm(i) + coefm(j, 1) + dflux_t(i) = dflux_t(i) + y_dflux_t(j) + dflux_q(i) = dflux_q(i) + y_dflux_q(j) + zu1(i) = zu1(i) + yu1(j) + zv1(i) = zv1(i) + yv1(j) END DO - END IF - IF (nsrf == is_lic) THEN + IF (nsrf == is_ter) THEN + DO j = 1, knon + i = ni(j) + qsol(i) = yqsol(j) + END DO + END IF + IF (nsrf == is_lic) THEN + DO j = 1, knon + i = ni(j) + run_off_lic_0(i) = y_run_off_lic_0(j) + END DO + END IF + !$$$ PB ajout pour soil + ftsoil(:, :, nsrf) = 0. + DO k = 1, nsoilmx + DO j = 1, knon + i = ni(j) + ftsoil(i, k, nsrf) = ytsoil(j, k) + END DO + END DO + DO j = 1, knon i = ni(j) - run_off_lic_0(i) = y_run_off_lic_0(j) + DO k = 1, klev + d_t(i, k) = d_t(i, k) + y_d_t(j, k) + d_q(i, k) = d_q(i, k) + y_d_q(j, k) + d_u(i, k) = d_u(i, k) + y_d_u(j, k) + d_v(i, k) = d_v(i, k) + y_d_v(j, k) + zcoefh(i, k) = zcoefh(i, k) + coefh(j, k) + END DO END DO - END IF - !$$$ PB ajout pour soil - ftsoil(:, :, nsrf) = 0. - DO k = 1, nsoilmx + + !cc diagnostic t, q a 2m et u, v a 10m + DO j = 1, knon i = ni(j) - ftsoil(i, k, nsrf) = ytsoil(j, k) - END DO - END DO + uzon(j) = yu(j, 1) + y_d_u(j, 1) + vmer(j) = yv(j, 1) + y_d_v(j, 1) + tair1(j) = yt(j, 1) + y_d_t(j, 1) + qair1(j) = yq(j, 1) + y_d_q(j, 1) + zgeo1(j) = rd*tair1(j)/(0.5*(ypaprs(j, 1)+ypplay(j, & + 1)))*(ypaprs(j, 1)-ypplay(j, 1)) + tairsol(j) = yts(j) + y_d_ts(j) + rugo1(j) = yrugos(j) + IF (nsrf == is_oce) THEN + rugo1(j) = rugos(i, nsrf) + END IF + psfce(j) = ypaprs(j, 1) + patm(j) = ypplay(j, 1) - DO j = 1, knon - i = ni(j) - DO k = 1, klev - d_t(i, k) = d_t(i, k) + y_d_t(j, k) - d_q(i, k) = d_q(i, k) + y_d_q(j, k) - d_u(i, k) = d_u(i, k) + y_d_u(j, k) - d_v(i, k) = d_v(i, k) + y_d_v(j, k) - zcoefh(i, k) = zcoefh(i, k) + ycoefh(j, k) + qairsol(j) = yqsurf(j) END DO - END DO - - !cc diagnostic t, q a 2m et u, v a 10m - DO j = 1, knon - i = ni(j) - uzon(j) = yu(j, 1) + y_d_u(j, 1) - vmer(j) = yv(j, 1) + y_d_v(j, 1) - tair1(j) = yt(j, 1) + y_d_t(j, 1) - qair1(j) = yq(j, 1) + y_d_q(j, 1) - zgeo1(j) = rd*tair1(j)/(0.5*(ypaprs(j, 1)+ypplay(j, & - 1)))*(ypaprs(j, 1)-ypplay(j, 1)) - tairsol(j) = yts(j) + y_d_ts(j) - rugo1(j) = yrugos(j) - IF (nsrf == is_oce) THEN - rugo1(j) = rugos(i, nsrf) - END IF - psfce(j) = ypaprs(j, 1) - patm(j) = ypplay(j, 1) + CALL stdlevvar(klon, knon, nsrf, zxli, uzon, vmer, tair1, qair1, & + zgeo1, tairsol, qairsol, rugo1, psfce, patm, yt2m, yq2m, & + yt10m, yq10m, yu10m, yustar) - qairsol(j) = yqsurf(j) - END DO + DO j = 1, knon + i = ni(j) + t2m(i, nsrf) = yt2m(j) + q2m(i, nsrf) = yq2m(j) - CALL stdlevvar(klon, knon, nsrf, zxli, uzon, vmer, tair1, qair1, zgeo1, & - tairsol, qairsol, rugo1, psfce, patm, yt2m, yq2m, yt10m, yq10m, & - yu10m, yustar) - - DO j = 1, knon - i = ni(j) - t2m(i, nsrf) = yt2m(j) - q2m(i, nsrf) = yq2m(j) - - ! u10m, v10m : composantes du vent a 10m sans spirale de Ekman - u10m(i, nsrf) = (yu10m(j)*uzon(j))/sqrt(uzon(j)**2+vmer(j)**2) - v10m(i, nsrf) = (yu10m(j)*vmer(j))/sqrt(uzon(j)**2+vmer(j)**2) + ! u10m, v10m : composantes du vent a 10m sans spirale de Ekman + u10m(i, nsrf) = (yu10m(j)*uzon(j))/sqrt(uzon(j)**2+vmer(j)**2) + v10m(i, nsrf) = (yu10m(j)*vmer(j))/sqrt(uzon(j)**2+vmer(j)**2) - END DO + END DO - DO i = 1, knon - y_cd_h(i) = ycoefh(i, 1) - y_cd_m(i) = ycoefm(i, 1) - END DO - CALL hbtm(knon, ypaprs, ypplay, yt2m, yt10m, yq2m, yq10m, yustar, & - y_flux_t, y_flux_q, yu, yv, yt, yq, ypblh, ycapcl, yoliqcl, & - ycteicl, ypblt, ytherm, ytrmb1, ytrmb2, ytrmb3, ylcl) - - DO j = 1, knon - i = ni(j) - pblh(i, nsrf) = ypblh(j) - plcl(i, nsrf) = ylcl(j) - capcl(i, nsrf) = ycapcl(j) - oliqcl(i, nsrf) = yoliqcl(j) - cteicl(i, nsrf) = ycteicl(j) - pblt(i, nsrf) = ypblt(j) - therm(i, nsrf) = ytherm(j) - trmb1(i, nsrf) = ytrmb1(j) - trmb2(i, nsrf) = ytrmb2(j) - trmb3(i, nsrf) = ytrmb3(j) - END DO + CALL hbtm(knon, ypaprs, ypplay, yt2m, yt10m, yq2m, yq10m, yustar, & + y_flux_t, y_flux_q, yu, yv, yt, yq, ypblh, ycapcl, yoliqcl, & + ycteicl, ypblt, ytherm, ytrmb1, ytrmb2, ytrmb3, ylcl) - DO j = 1, knon - DO k = 1, klev + 1 - i = ni(j) - q2(i, k, nsrf) = yq2(j, k) - END DO - END DO - !IM "slab" ocean - IF (nsrf == is_oce) THEN DO j = 1, knon - ! on projette sur la grille globale i = ni(j) - IF (pctsrf_new(i, is_oce)>epsfra) THEN - flux_o(i) = y_flux_o(j) - ELSE - flux_o(i) = 0. - END IF + pblh(i, nsrf) = ypblh(j) + plcl(i, nsrf) = ylcl(j) + capcl(i, nsrf) = ycapcl(j) + oliqcl(i, nsrf) = yoliqcl(j) + cteicl(i, nsrf) = ycteicl(j) + pblt(i, nsrf) = ypblt(j) + therm(i, nsrf) = ytherm(j) + trmb1(i, nsrf) = ytrmb1(j) + trmb2(i, nsrf) = ytrmb2(j) + trmb3(i, nsrf) = ytrmb3(j) END DO - END IF - IF (nsrf == is_sic) THEN DO j = 1, knon - i = ni(j) - ! On pondère lorsque l'on fait le bilan au sol : - IF (pctsrf_new(i, is_sic)>epsfra) THEN - flux_g(i) = y_flux_g(j) - ELSE - flux_g(i) = 0. - END IF + DO k = 1, klev + 1 + i = ni(j) + q2(i, k, nsrf) = yq2(j, k) + END DO END DO - - END IF - IF (ocean == 'slab ') THEN + !IM "slab" ocean IF (nsrf == is_oce) THEN - tslab(1:klon) = ytslab(1:klon) - seaice(1:klon) = y_seaice(1:klon) + DO j = 1, knon + ! on projette sur la grille globale + i = ni(j) + IF (pctsrf_new(i, is_oce)>epsfra) THEN + flux_o(i) = y_flux_o(j) + ELSE + flux_o(i) = 0. + END IF + END DO END IF - END IF + + IF (nsrf == is_sic) THEN + DO j = 1, knon + i = ni(j) + ! On pondère lorsque l'on fait le bilan au sol : + IF (pctsrf_new(i, is_sic)>epsfra) THEN + flux_g(i) = y_flux_g(j) + ELSE + flux_g(i) = 0. + END IF + END DO + + END IF + IF (ocean == 'slab ') THEN + IF (nsrf == is_oce) THEN + tslab(1:klon) = ytslab(1:klon) + seaice(1:klon) = y_seaice(1:klon) + END IF + END IF + end IF if_knon END DO loop_surface ! On utilise les nouvelles surfaces