/[lmdze]/trunk/Sources/phylmd/clmain.f
ViewVC logotype

Contents of /trunk/Sources/phylmd/clmain.f

Parent Directory Parent Directory | Revision Log Revision Log


Revision 236 - (show annotations)
Thu Nov 9 12:47:25 2017 UTC (6 years, 6 months ago) by guez
File size: 20014 byte(s)
In procedure clqh, tq_cdrag from local variable to dummy argument, and
recieve only eddy diffusion coefficient in dummy argument coef.

1 module clmain_m
2
3 IMPLICIT NONE
4
5 contains
6
7 SUBROUTINE clmain(dtime, pctsrf, t, q, u, v, julien, mu0, ftsol, cdmmax, &
8 cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, paprs, pplay, fsnow, &
9 qsurf, evap, falbe, fluxlat, rain_fall, snow_f, fsolsw, fsollw, frugs, &
10 agesno, rugoro, d_t, d_q, d_u, d_v, d_ts, flux_t, flux_q, flux_u, &
11 flux_v, cdragh, cdragm, q2, dflux_t, dflux_q, ycoefh, t2m, q2m, &
12 u10m_srf, v10m_srf, pblh, capcl, oliqcl, cteicl, pblt, therm, trmb1, &
13 trmb2, trmb3, plcl, fqcalving, ffonte, run_off_lic_0)
14
15 ! From phylmd/clmain.F, version 1.6, 2005/11/16 14:47:19
16 ! Author: Z. X. Li (LMD/CNRS), date: 1993/08/18
17 ! Objet : interface de couche limite (diffusion verticale)
18
19 ! Tout ce qui a trait aux traceurs est dans "phytrac". Le calcul
20 ! de la couche limite pour les traceurs se fait avec "cltrac" et
21 ! ne tient pas compte de la diff\'erentiation des sous-fractions
22 ! de sol.
23
24 use clqh_m, only: clqh
25 use clvent_m, only: clvent
26 use coefkz_m, only: coefkz
27 use coefkzmin_m, only: coefkzmin
28 use coefkz2_m, only: coefkz2
29 USE conf_gcm_m, ONLY: lmt_pas
30 USE conf_phys_m, ONLY: iflag_pbl
31 USE dimphy, ONLY: klev, klon, zmasq
32 USE dimsoil, ONLY: nsoilmx
33 use hbtm_m, only: hbtm
34 USE indicesol, ONLY: epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf
35 USE interfoce_lim_m, ONLY: interfoce_lim
36 use stdlevvar_m, only: stdlevvar
37 USE suphec_m, ONLY: rd, rg, rkappa
38 use time_phylmdz, only: itap
39 use ustarhb_m, only: ustarhb
40 use yamada4_m, only: yamada4
41
42 REAL, INTENT(IN):: dtime ! interval du temps (secondes)
43
44 REAL, INTENT(inout):: pctsrf(klon, nbsrf)
45 ! tableau des pourcentages de surface de chaque maille
46
47 REAL, INTENT(IN):: t(klon, klev) ! temperature (K)
48 REAL, INTENT(IN):: q(klon, klev) ! vapeur d'eau (kg / kg)
49 REAL, INTENT(IN):: u(klon, klev), v(klon, klev) ! vitesse
50 INTEGER, INTENT(IN):: julien ! jour de l'annee en cours
51 REAL, intent(in):: mu0(klon) ! cosinus de l'angle solaire zenithal
52 REAL, INTENT(IN):: ftsol(:, :) ! (klon, nbsrf) temp\'erature du sol (en K)
53 REAL, INTENT(IN):: cdmmax, cdhmax ! seuils cdrm, cdrh
54 REAL, INTENT(IN):: ksta, ksta_ter
55 LOGICAL, INTENT(IN):: ok_kzmin
56
57 REAL, INTENT(inout):: ftsoil(klon, nsoilmx, nbsrf)
58 ! soil temperature of surface fraction
59
60 REAL, INTENT(inout):: qsol(:) ! (klon)
61 ! column-density of water in soil, in kg m-2
62
63 REAL, INTENT(IN):: paprs(klon, klev + 1) ! pression a intercouche (Pa)
64 REAL, INTENT(IN):: pplay(klon, klev) ! pression au milieu de couche (Pa)
65 REAL, INTENT(inout):: fsnow(:, :) ! (klon, nbsrf) \'epaisseur neigeuse
66 REAL qsurf(klon, nbsrf)
67 REAL evap(klon, nbsrf)
68 REAL, intent(inout):: falbe(klon, nbsrf)
69 REAL, intent(out):: fluxlat(:, :) ! (klon, nbsrf)
70
71 REAL, intent(in):: rain_fall(klon)
72 ! liquid water mass flux (kg / m2 / s), positive down
73
74 REAL, intent(in):: snow_f(klon)
75 ! solid water mass flux (kg / m2 / s), positive down
76
77 REAL, INTENT(IN):: fsolsw(klon, nbsrf), fsollw(klon, nbsrf)
78 REAL, intent(inout):: frugs(klon, nbsrf) ! longueur de rugosit\'e (en m)
79 real agesno(klon, nbsrf)
80 REAL, INTENT(IN):: rugoro(klon)
81
82 REAL d_t(klon, klev), d_q(klon, klev)
83 ! d_t------output-R- le changement pour "t"
84 ! d_q------output-R- le changement pour "q"
85
86 REAL, intent(out):: d_u(klon, klev), d_v(klon, klev)
87 ! changement pour "u" et "v"
88
89 REAL, intent(out):: d_ts(:, :) ! (klon, nbsrf) variation of ftsol
90
91 REAL, intent(out):: flux_t(klon, nbsrf)
92 ! flux de chaleur sensible (Cp T) (W / m2) (orientation positive vers
93 ! le bas) à la surface
94
95 REAL, intent(out):: flux_q(klon, nbsrf)
96 ! flux de vapeur d'eau (kg / m2 / s) à la surface
97
98 REAL, intent(out):: flux_u(klon, nbsrf), flux_v(klon, nbsrf)
99 ! tension du vent (flux turbulent de vent) à la surface, en Pa
100
101 REAL, INTENT(out):: cdragh(klon), cdragm(klon)
102 real q2(klon, klev + 1, nbsrf)
103
104 REAL, INTENT(out):: dflux_t(klon), dflux_q(klon)
105 ! dflux_t derive du flux sensible
106 ! dflux_q derive du flux latent
107 ! IM "slab" ocean
108
109 REAL, intent(out):: ycoefh(klon, klev)
110 ! Pour pouvoir extraire les coefficients d'\'echange, le champ
111 ! "ycoefh" a \'et\'e cr\'e\'e. Nous avons moyenn\'e les valeurs de
112 ! ce champ sur les quatre sous-surfaces du mod\`ele.
113
114 REAL, INTENT(inout):: t2m(klon, nbsrf), q2m(klon, nbsrf)
115
116 REAL, INTENT(inout):: u10m_srf(:, :), v10m_srf(:, :) ! (klon, nbsrf)
117 ! composantes du vent \`a 10m sans spirale d'Ekman
118
119 ! Ionela Musat. Cf. Anne Mathieu : planetary boundary layer, hbtm.
120 ! Comme les autres diagnostics on cumule dans physiq ce qui permet
121 ! de sortir les grandeurs par sous-surface.
122 REAL pblh(klon, nbsrf) ! height of planetary boundary layer
123 REAL capcl(klon, nbsrf)
124 REAL oliqcl(klon, nbsrf)
125 REAL cteicl(klon, nbsrf)
126 REAL, INTENT(inout):: pblt(klon, nbsrf) ! T au nveau HCL
127 REAL therm(klon, nbsrf)
128 REAL trmb1(klon, nbsrf)
129 ! trmb1-------deep_cape
130 REAL trmb2(klon, nbsrf)
131 ! trmb2--------inhibition
132 REAL trmb3(klon, nbsrf)
133 ! trmb3-------Point Omega
134 REAL plcl(klon, nbsrf)
135 REAL fqcalving(klon, nbsrf), ffonte(klon, nbsrf)
136 ! ffonte----Flux thermique utilise pour fondre la neige
137 ! fqcalving-Flux d'eau "perdue" par la surface et necessaire pour limiter la
138 ! hauteur de neige, en kg / m2 / s
139 REAL run_off_lic_0(klon)
140
141 ! Local:
142
143 LOGICAL:: firstcal = .true.
144
145 ! la nouvelle repartition des surfaces sortie de l'interface
146 REAL, save:: pctsrf_new_oce(klon)
147 REAL, save:: pctsrf_new_sic(klon)
148
149 REAL y_fqcalving(klon), y_ffonte(klon)
150 real y_run_off_lic_0(klon)
151 REAL rugmer(klon)
152 REAL ytsoil(klon, nsoilmx)
153 REAL yts(klon), yrugos(klon), ypct(klon), yz0_new(klon)
154 REAL yalb(klon)
155 REAL snow(klon), yqsurf(klon), yagesno(klon)
156 real yqsol(klon) ! column-density of water in soil, in kg m-2
157 REAL yrain_f(klon) ! liquid water mass flux (kg / m2 / s), positive down
158 REAL ysnow_f(klon) ! solid water mass flux (kg / m2 / s), positive down
159 REAL yrugm(klon), yrads(klon), yrugoro(klon)
160 REAL yfluxlat(klon)
161 REAL y_d_ts(klon)
162 REAL y_d_t(klon, klev), y_d_q(klon, klev)
163 REAL y_d_u(klon, klev), y_d_v(klon, klev)
164 REAL y_flux_t(klon), y_flux_q(klon)
165 REAL y_flux_u(klon), y_flux_v(klon)
166 REAL y_dflux_t(klon), y_dflux_q(klon)
167 REAL coefh(klon, klev), coefm(klon, klev)
168 REAL yu(klon, klev), yv(klon, klev)
169 REAL yt(klon, klev), yq(klon, klev)
170 REAL ypaprs(klon, klev + 1), ypplay(klon, klev), ydelp(klon, klev)
171 REAL ycoefm0(klon, klev), ycoefh0(klon, klev)
172 REAL yzlay(klon, klev), zlev(klon, klev + 1), yteta(klon, klev)
173 REAL ykmm(klon, klev + 1), ykmn(klon, klev + 1)
174 REAL ykmq(klon, klev + 1)
175 REAL yq2(klon, klev + 1)
176 REAL delp(klon, klev)
177 INTEGER i, k, nsrf
178 INTEGER ni(klon), knon, j
179
180 REAL pctsrf_pot(klon, nbsrf)
181 ! "pourcentage potentiel" pour tenir compte des \'eventuelles
182 ! apparitions ou disparitions de la glace de mer
183
184 REAL yt2m(klon), yq2m(klon), wind10m(klon)
185 REAL ustar(klon)
186
187 REAL yt10m(klon), yq10m(klon)
188 REAL ypblh(klon)
189 REAL ylcl(klon)
190 REAL ycapcl(klon)
191 REAL yoliqcl(klon)
192 REAL ycteicl(klon)
193 REAL ypblt(klon)
194 REAL ytherm(klon)
195 REAL ytrmb1(klon)
196 REAL ytrmb2(klon)
197 REAL ytrmb3(klon)
198 REAL u1(klon), v1(klon)
199 REAL tair1(klon), qair1(klon), tairsol(klon)
200 REAL psfce(klon), patm(klon)
201
202 REAL qairsol(klon), zgeo1(klon)
203 REAL rugo1(klon)
204
205 !------------------------------------------------------------
206
207 ytherm = 0.
208
209 DO k = 1, klev ! epaisseur de couche
210 DO i = 1, klon
211 delp(i, k) = paprs(i, k) - paprs(i, k + 1)
212 END DO
213 END DO
214
215 ! Initialization:
216 rugmer = 0.
217 cdragh = 0.
218 cdragm = 0.
219 dflux_t = 0.
220 dflux_q = 0.
221 ypct = 0.
222 yqsurf = 0.
223 yrain_f = 0.
224 ysnow_f = 0.
225 yrugos = 0.
226 ypaprs = 0.
227 ypplay = 0.
228 ydelp = 0.
229 yu = 0.
230 yv = 0.
231 yt = 0.
232 yq = 0.
233 y_dflux_t = 0.
234 y_dflux_q = 0.
235 yrugoro = 0.
236 d_ts = 0.
237 flux_t = 0.
238 flux_q = 0.
239 flux_u = 0.
240 flux_v = 0.
241 fluxlat = 0.
242 d_t = 0.
243 d_q = 0.
244 d_u = 0.
245 d_v = 0.
246 ycoefh = 0.
247
248 ! Initialisation des "pourcentages potentiels". On consid\`ere ici qu'on
249 ! peut avoir potentiellement de la glace sur tout le domaine oc\'eanique
250 ! (\`a affiner)
251
252 pctsrf_pot(:, is_ter) = pctsrf(:, is_ter)
253 pctsrf_pot(:, is_lic) = pctsrf(:, is_lic)
254 pctsrf_pot(:, is_oce) = 1. - zmasq
255 pctsrf_pot(:, is_sic) = 1. - zmasq
256
257 ! Tester si c'est le moment de lire le fichier:
258 if (mod(itap - 1, lmt_pas) == 0) then
259 CALL interfoce_lim(julien, pctsrf_new_oce, pctsrf_new_sic)
260 endif
261
262 ! Boucler sur toutes les sous-fractions du sol:
263
264 loop_surface: DO nsrf = 1, nbsrf
265 ! Chercher les indices :
266 ni = 0
267 knon = 0
268 DO i = 1, klon
269 ! Pour d\'eterminer le domaine \`a traiter, on utilise les surfaces
270 ! "potentielles"
271 IF (pctsrf_pot(i, nsrf) > epsfra) THEN
272 knon = knon + 1
273 ni(knon) = i
274 END IF
275 END DO
276
277 if_knon: IF (knon /= 0) then
278 DO j = 1, knon
279 i = ni(j)
280 ypct(j) = pctsrf(i, nsrf)
281 yts(j) = ftsol(i, nsrf)
282 snow(j) = fsnow(i, nsrf)
283 yqsurf(j) = qsurf(i, nsrf)
284 yalb(j) = falbe(i, nsrf)
285 yrain_f(j) = rain_fall(i)
286 ysnow_f(j) = snow_f(i)
287 yagesno(j) = agesno(i, nsrf)
288 yrugos(j) = frugs(i, nsrf)
289 yrugoro(j) = rugoro(i)
290 yrads(j) = fsolsw(i, nsrf) + fsollw(i, nsrf)
291 ypaprs(j, klev + 1) = paprs(i, klev + 1)
292 y_run_off_lic_0(j) = run_off_lic_0(i)
293 END DO
294
295 ! For continent, copy soil water content
296 IF (nsrf == is_ter) yqsol(:knon) = qsol(ni(:knon))
297
298 ytsoil(:knon, :) = ftsoil(ni(:knon), :, nsrf)
299
300 DO k = 1, klev
301 DO j = 1, knon
302 i = ni(j)
303 ypaprs(j, k) = paprs(i, k)
304 ypplay(j, k) = pplay(i, k)
305 ydelp(j, k) = delp(i, k)
306 yu(j, k) = u(i, k)
307 yv(j, k) = v(i, k)
308 yt(j, k) = t(i, k)
309 yq(j, k) = q(i, k)
310 END DO
311 END DO
312
313 ! calculer Cdrag et les coefficients d'echange
314 CALL coefkz(nsrf, ypaprs, ypplay, ksta, ksta_ter, yts(:knon), &
315 yrugos, yu, yv, yt, yq, yqsurf(:knon), coefm(:knon, 2:), &
316 coefh(:knon, 2:), coefm(:knon, 1), coefh(:knon, 1))
317
318 IF (iflag_pbl == 1) THEN
319 CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0(:knon, 2:), &
320 ycoefh0(:knon, 2:))
321 ycoefm0(:knon, 1) = 0.
322 ycoefh0(:knon, 1) = 0.
323 coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :))
324 coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, :))
325 END IF
326
327 ! on met un seuil pour coefm et coefh
328 IF (nsrf == is_oce) THEN
329 coefm(:knon, 1) = min(coefm(:knon, 1), cdmmax)
330 coefh(:knon, 1) = min(coefh(:knon, 1), cdhmax)
331 END IF
332
333 IF (ok_kzmin) THEN
334 ! Calcul d'une diffusion minimale pour les conditions tres stables
335 CALL coefkzmin(knon, ypaprs, ypplay, yu, yv, yt, yq, &
336 coefm(:knon, 1), ycoefm0(:knon, 2:), ycoefh0(:knon, 2:))
337 coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :))
338 coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, :))
339 END IF
340
341 IF (iflag_pbl >= 6) THEN
342 ! Mellor et Yamada adapt\'e \`a Mars, Richard Fournier et
343 ! Fr\'ed\'eric Hourdin
344 yzlay(:knon, 1) = rd * yt(:knon, 1) / (0.5 * (ypaprs(:knon, 1) &
345 + ypplay(:knon, 1))) &
346 * (ypaprs(:knon, 1) - ypplay(:knon, 1)) / rg
347
348 DO k = 2, klev
349 yzlay(:knon, k) = yzlay(:knon, k-1) &
350 + rd * 0.5 * (yt(1:knon, k-1) + yt(1:knon, k)) &
351 / ypaprs(1:knon, k) &
352 * (ypplay(1:knon, k-1) - ypplay(1:knon, k)) / rg
353 END DO
354
355 DO k = 1, klev
356 yteta(1:knon, k) = yt(1:knon, k) * (ypaprs(1:knon, 1) &
357 / ypplay(1:knon, k))**rkappa * (1. + 0.61 * yq(1:knon, k))
358 END DO
359
360 zlev(:knon, 1) = 0.
361 zlev(:knon, klev + 1) = 2. * yzlay(:knon, klev) &
362 - yzlay(:knon, klev - 1)
363
364 DO k = 2, klev
365 zlev(:knon, k) = 0.5 * (yzlay(:knon, k) + yzlay(:knon, k-1))
366 END DO
367
368 DO k = 1, klev + 1
369 DO j = 1, knon
370 i = ni(j)
371 yq2(j, k) = q2(i, k, nsrf)
372 END DO
373 END DO
374
375 ustar(:knon) = ustarhb(yu(:knon, 1), yv(:knon, 1), coefm(:knon, 1))
376 CALL yamada4(dtime, rg, zlev(:knon, :), yzlay(:knon, :), &
377 yu(:knon, :), yv(:knon, :), yteta(:knon, :), &
378 coefm(:knon, 1), yq2(:knon, :), ykmm(:knon, :), &
379 ykmn(:knon, :), ykmq(:knon, :), ustar(:knon))
380 coefm(:knon, 2:) = ykmm(:knon, 2:klev)
381 coefh(:knon, 2:) = ykmn(:knon, 2:klev)
382 END IF
383
384 CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), coefm(:knon, 2:), &
385 coefm(:knon, 1), yt(:knon, :), yu(:knon, :), ypaprs(:knon, :), &
386 ypplay(:knon, :), ydelp(:knon, :), y_d_u(:knon, :), &
387 y_flux_u(:knon))
388 CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), coefm(:knon, 2:), &
389 coefm(:knon, 1), yt(:knon, :), yv(:knon, :), ypaprs(:knon, :), &
390 ypplay(:knon, :), ydelp(:knon, :), y_d_v(:knon, :), &
391 y_flux_v(:knon))
392
393 ! calculer la diffusion de "q" et de "h"
394 CALL clqh(dtime, julien, firstcal, nsrf, ni(:knon), &
395 ytsoil(:knon, :), yqsol(:knon), mu0, yrugos, yrugoro, &
396 yu(:knon, 1), yv(:knon, 1), coefh(:knon, 2:), coefh(:knon, 1), &
397 yt, yq, yts(:knon), ypaprs, ypplay, ydelp, yrads(:knon), &
398 yalb(:knon), snow(:knon), yqsurf, yrain_f, ysnow_f, &
399 yfluxlat(:knon), pctsrf_new_sic, yagesno(:knon), y_d_t, y_d_q, &
400 y_d_ts(:knon), yz0_new, y_flux_t(:knon), y_flux_q(:knon), &
401 y_dflux_t(:knon), y_dflux_q(:knon), y_fqcalving, y_ffonte, &
402 y_run_off_lic_0)
403
404 ! calculer la longueur de rugosite sur ocean
405 yrugm = 0.
406 IF (nsrf == is_oce) THEN
407 DO j = 1, knon
408 yrugm(j) = 0.018 * coefm(j, 1) * (yu(j, 1)**2 + yv(j, 1)**2) &
409 / rg + 0.11 * 14E-6 &
410 / sqrt(coefm(j, 1) * (yu(j, 1)**2 + yv(j, 1)**2))
411 yrugm(j) = max(1.5E-05, yrugm(j))
412 END DO
413 END IF
414 DO j = 1, knon
415 y_dflux_t(j) = y_dflux_t(j) * ypct(j)
416 y_dflux_q(j) = y_dflux_q(j) * ypct(j)
417 END DO
418
419 DO k = 1, klev
420 DO j = 1, knon
421 i = ni(j)
422 coefh(j, k) = coefh(j, k) * ypct(j)
423 coefm(j, k) = coefm(j, k) * ypct(j)
424 y_d_t(j, k) = y_d_t(j, k) * ypct(j)
425 y_d_q(j, k) = y_d_q(j, k) * ypct(j)
426 y_d_u(j, k) = y_d_u(j, k) * ypct(j)
427 y_d_v(j, k) = y_d_v(j, k) * ypct(j)
428 END DO
429 END DO
430
431 flux_t(ni(:knon), nsrf) = y_flux_t(:knon)
432 flux_q(ni(:knon), nsrf) = y_flux_q(:knon)
433 flux_u(ni(:knon), nsrf) = y_flux_u(:knon)
434 flux_v(ni(:knon), nsrf) = y_flux_v(:knon)
435
436 evap(:, nsrf) = -flux_q(:, nsrf)
437
438 falbe(:, nsrf) = 0.
439 fsnow(:, nsrf) = 0.
440 qsurf(:, nsrf) = 0.
441 frugs(:, nsrf) = 0.
442 DO j = 1, knon
443 i = ni(j)
444 d_ts(i, nsrf) = y_d_ts(j)
445 falbe(i, nsrf) = yalb(j)
446 fsnow(i, nsrf) = snow(j)
447 qsurf(i, nsrf) = yqsurf(j)
448 frugs(i, nsrf) = yz0_new(j)
449 fluxlat(i, nsrf) = yfluxlat(j)
450 IF (nsrf == is_oce) THEN
451 rugmer(i) = yrugm(j)
452 frugs(i, nsrf) = yrugm(j)
453 END IF
454 agesno(i, nsrf) = yagesno(j)
455 fqcalving(i, nsrf) = y_fqcalving(j)
456 ffonte(i, nsrf) = y_ffonte(j)
457 cdragh(i) = cdragh(i) + coefh(j, 1)
458 cdragm(i) = cdragm(i) + coefm(j, 1)
459 dflux_t(i) = dflux_t(i) + y_dflux_t(j)
460 dflux_q(i) = dflux_q(i) + y_dflux_q(j)
461 END DO
462 IF (nsrf == is_ter) THEN
463 qsol(ni(:knon)) = yqsol(:knon)
464 else IF (nsrf == is_lic) THEN
465 DO j = 1, knon
466 i = ni(j)
467 run_off_lic_0(i) = y_run_off_lic_0(j)
468 END DO
469 END IF
470
471 ftsoil(:, :, nsrf) = 0.
472 ftsoil(ni(:knon), :, nsrf) = ytsoil(:knon, :)
473
474 DO j = 1, knon
475 i = ni(j)
476 DO k = 1, klev
477 d_t(i, k) = d_t(i, k) + y_d_t(j, k)
478 d_q(i, k) = d_q(i, k) + y_d_q(j, k)
479 d_u(i, k) = d_u(i, k) + y_d_u(j, k)
480 d_v(i, k) = d_v(i, k) + y_d_v(j, k)
481 ycoefh(i, k) = ycoefh(i, k) + coefh(j, k)
482 END DO
483 END DO
484
485 ! diagnostic t, q a 2m et u, v a 10m
486
487 DO j = 1, knon
488 i = ni(j)
489 u1(j) = yu(j, 1) + y_d_u(j, 1)
490 v1(j) = yv(j, 1) + y_d_v(j, 1)
491 tair1(j) = yt(j, 1) + y_d_t(j, 1)
492 qair1(j) = yq(j, 1) + y_d_q(j, 1)
493 zgeo1(j) = rd * tair1(j) / (0.5 * (ypaprs(j, 1) + ypplay(j, &
494 1))) * (ypaprs(j, 1)-ypplay(j, 1))
495 tairsol(j) = yts(j) + y_d_ts(j)
496 rugo1(j) = yrugos(j)
497 IF (nsrf == is_oce) THEN
498 rugo1(j) = frugs(i, nsrf)
499 END IF
500 psfce(j) = ypaprs(j, 1)
501 patm(j) = ypplay(j, 1)
502
503 qairsol(j) = yqsurf(j)
504 END DO
505
506 CALL stdlevvar(klon, knon, nsrf, u1(:knon), v1(:knon), tair1(:knon), &
507 qair1, zgeo1, tairsol, qairsol, rugo1, psfce, patm, yt2m, &
508 yq2m, yt10m, yq10m, wind10m(:knon), ustar)
509
510 DO j = 1, knon
511 i = ni(j)
512 t2m(i, nsrf) = yt2m(j)
513 q2m(i, nsrf) = yq2m(j)
514
515 u10m_srf(i, nsrf) = (wind10m(j) * u1(j)) &
516 / sqrt(u1(j)**2 + v1(j)**2)
517 v10m_srf(i, nsrf) = (wind10m(j) * v1(j)) &
518 / sqrt(u1(j)**2 + v1(j)**2)
519 END DO
520
521 CALL hbtm(ypaprs, ypplay, yt2m, yq2m, ustar(:knon), y_flux_t(:knon), &
522 y_flux_q(:knon), yu, yv, yt, yq, ypblh(:knon), ycapcl, &
523 yoliqcl, ycteicl, ypblt, ytherm, ytrmb1, ytrmb2, ytrmb3, ylcl)
524
525 DO j = 1, knon
526 i = ni(j)
527 pblh(i, nsrf) = ypblh(j)
528 plcl(i, nsrf) = ylcl(j)
529 capcl(i, nsrf) = ycapcl(j)
530 oliqcl(i, nsrf) = yoliqcl(j)
531 cteicl(i, nsrf) = ycteicl(j)
532 pblt(i, nsrf) = ypblt(j)
533 therm(i, nsrf) = ytherm(j)
534 trmb1(i, nsrf) = ytrmb1(j)
535 trmb2(i, nsrf) = ytrmb2(j)
536 trmb3(i, nsrf) = ytrmb3(j)
537 END DO
538
539 DO j = 1, knon
540 DO k = 1, klev + 1
541 i = ni(j)
542 q2(i, k, nsrf) = yq2(j, k)
543 END DO
544 END DO
545 else
546 fsnow(:, nsrf) = 0.
547 end IF if_knon
548 END DO loop_surface
549
550 ! On utilise les nouvelles surfaces
551 frugs(:, is_oce) = rugmer
552 pctsrf(:, is_oce) = pctsrf_new_oce
553 pctsrf(:, is_sic) = pctsrf_new_sic
554
555 firstcal = .false.
556
557 END SUBROUTINE clmain
558
559 end module clmain_m

  ViewVC Help
Powered by ViewVC 1.1.21