/[lmdze]/trunk/Sources/phylmd/clmain.f
ViewVC logotype

Contents of /trunk/Sources/phylmd/clmain.f

Parent Directory Parent Directory | Revision Log Revision Log


Revision 241 - (show annotations)
Mon Nov 13 11:51:04 2017 UTC (6 years, 6 months ago) by guez
File size: 20405 byte(s)
In procedure phytrac, separate dummy argument coefh(klon, klev) into
coefh(klon, 2:klev) and cdragh(klon).

1 module clmain_m
2
3 IMPLICIT NONE
4
5 contains
6
7 SUBROUTINE clmain(dtime, pctsrf, t, q, u, v, julien, mu0, ftsol, cdmmax, &
8 cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, paprs, pplay, fsnow, &
9 qsurf, evap, falbe, fluxlat, rain_fall, snow_f, fsolsw, fsollw, frugs, &
10 agesno, rugoro, d_t, d_q, d_u, d_v, d_ts, flux_t, flux_q, flux_u, &
11 flux_v, cdragh, cdragm, q2, dflux_t, dflux_q, ycoefh, t2m, q2m, &
12 u10m_srf, v10m_srf, pblh, capcl, oliqcl, cteicl, pblt, therm, trmb1, &
13 trmb2, trmb3, plcl, fqcalving, ffonte, run_off_lic_0)
14
15 ! From phylmd/clmain.F, version 1.6, 2005/11/16 14:47:19
16 ! Author: Z. X. Li (LMD/CNRS), date: 1993/08/18
17 ! Objet : interface de couche limite (diffusion verticale)
18
19 ! Tout ce qui a trait aux traceurs est dans "phytrac". Le calcul
20 ! de la couche limite pour les traceurs se fait avec "cltrac" et
21 ! ne tient pas compte de la diff\'erentiation des sous-fractions
22 ! de sol.
23
24 use clqh_m, only: clqh
25 use clvent_m, only: clvent
26 use coefkz_m, only: coefkz
27 use coefkzmin_m, only: coefkzmin
28 use coefkz2_m, only: coefkz2
29 USE conf_gcm_m, ONLY: lmt_pas
30 USE conf_phys_m, ONLY: iflag_pbl
31 USE dimphy, ONLY: klev, klon, zmasq
32 USE dimsoil, ONLY: nsoilmx
33 use hbtm_m, only: hbtm
34 USE indicesol, ONLY: epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf
35 USE interfoce_lim_m, ONLY: interfoce_lim
36 use stdlevvar_m, only: stdlevvar
37 USE suphec_m, ONLY: rd, rg, rkappa
38 use time_phylmdz, only: itap
39 use ustarhb_m, only: ustarhb
40 use yamada4_m, only: yamada4
41
42 REAL, INTENT(IN):: dtime ! interval du temps (secondes)
43
44 REAL, INTENT(inout):: pctsrf(klon, nbsrf)
45 ! tableau des pourcentages de surface de chaque maille
46
47 REAL, INTENT(IN):: t(klon, klev) ! temperature (K)
48 REAL, INTENT(IN):: q(klon, klev) ! vapeur d'eau (kg / kg)
49 REAL, INTENT(IN):: u(klon, klev), v(klon, klev) ! vitesse
50 INTEGER, INTENT(IN):: julien ! jour de l'annee en cours
51 REAL, intent(in):: mu0(klon) ! cosinus de l'angle solaire zenithal
52 REAL, INTENT(IN):: ftsol(:, :) ! (klon, nbsrf) temp\'erature du sol (en K)
53 REAL, INTENT(IN):: cdmmax, cdhmax ! seuils cdrm, cdrh
54 REAL, INTENT(IN):: ksta, ksta_ter
55 LOGICAL, INTENT(IN):: ok_kzmin
56
57 REAL, INTENT(inout):: ftsoil(klon, nsoilmx, nbsrf)
58 ! soil temperature of surface fraction
59
60 REAL, INTENT(inout):: qsol(:) ! (klon)
61 ! column-density of water in soil, in kg m-2
62
63 REAL, INTENT(IN):: paprs(klon, klev + 1) ! pression a intercouche (Pa)
64 REAL, INTENT(IN):: pplay(klon, klev) ! pression au milieu de couche (Pa)
65 REAL, INTENT(inout):: fsnow(:, :) ! (klon, nbsrf) \'epaisseur neigeuse
66 REAL qsurf(klon, nbsrf)
67 REAL evap(klon, nbsrf)
68 REAL, intent(inout):: falbe(klon, nbsrf)
69 REAL, intent(out):: fluxlat(:, :) ! (klon, nbsrf)
70
71 REAL, intent(in):: rain_fall(klon)
72 ! liquid water mass flux (kg / m2 / s), positive down
73
74 REAL, intent(in):: snow_f(klon)
75 ! solid water mass flux (kg / m2 / s), positive down
76
77 REAL, INTENT(IN):: fsolsw(klon, nbsrf), fsollw(klon, nbsrf)
78 REAL, intent(inout):: frugs(klon, nbsrf) ! longueur de rugosit\'e (en m)
79 real agesno(klon, nbsrf)
80 REAL, INTENT(IN):: rugoro(klon)
81
82 REAL d_t(klon, klev), d_q(klon, klev)
83 ! d_t------output-R- le changement pour "t"
84 ! d_q------output-R- le changement pour "q"
85
86 REAL, intent(out):: d_u(klon, klev), d_v(klon, klev)
87 ! changement pour "u" et "v"
88
89 REAL, intent(out):: d_ts(:, :) ! (klon, nbsrf) variation of ftsol
90
91 REAL, intent(out):: flux_t(klon, nbsrf)
92 ! flux de chaleur sensible (Cp T) (W / m2) (orientation positive vers
93 ! le bas) à la surface
94
95 REAL, intent(out):: flux_q(klon, nbsrf)
96 ! flux de vapeur d'eau (kg / m2 / s) à la surface
97
98 REAL, intent(out):: flux_u(klon, nbsrf), flux_v(klon, nbsrf)
99 ! tension du vent (flux turbulent de vent) à la surface, en Pa
100
101 REAL, INTENT(out):: cdragh(klon), cdragm(klon)
102 real q2(klon, klev + 1, nbsrf)
103
104 REAL, INTENT(out):: dflux_t(klon), dflux_q(klon)
105 ! dflux_t derive du flux sensible
106 ! dflux_q derive du flux latent
107 ! IM "slab" ocean
108
109 REAL, intent(out):: ycoefh(:, :) ! (klon, klev)
110 ! Pour pouvoir extraire les coefficients d'\'echange, le champ
111 ! "ycoefh" a \'et\'e cr\'e\'e. Nous avons moyenn\'e les valeurs de
112 ! ce champ sur les quatre sous-surfaces du mod\`ele.
113
114 REAL, INTENT(inout):: t2m(klon, nbsrf), q2m(klon, nbsrf)
115
116 REAL, INTENT(inout):: u10m_srf(:, :), v10m_srf(:, :) ! (klon, nbsrf)
117 ! composantes du vent \`a 10m sans spirale d'Ekman
118
119 ! Ionela Musat. Cf. Anne Mathieu : planetary boundary layer, hbtm.
120 ! Comme les autres diagnostics on cumule dans physiq ce qui permet
121 ! de sortir les grandeurs par sous-surface.
122 REAL pblh(klon, nbsrf) ! height of planetary boundary layer
123 REAL capcl(klon, nbsrf)
124 REAL oliqcl(klon, nbsrf)
125 REAL cteicl(klon, nbsrf)
126 REAL, INTENT(inout):: pblt(klon, nbsrf) ! T au nveau HCL
127 REAL therm(klon, nbsrf)
128 REAL trmb1(klon, nbsrf)
129 ! trmb1-------deep_cape
130 REAL trmb2(klon, nbsrf)
131 ! trmb2--------inhibition
132 REAL trmb3(klon, nbsrf)
133 ! trmb3-------Point Omega
134 REAL plcl(klon, nbsrf)
135 REAL fqcalving(klon, nbsrf), ffonte(klon, nbsrf)
136 ! ffonte----Flux thermique utilise pour fondre la neige
137 ! fqcalving-Flux d'eau "perdue" par la surface et necessaire pour limiter la
138 ! hauteur de neige, en kg / m2 / s
139 REAL run_off_lic_0(klon)
140
141 ! Local:
142
143 LOGICAL:: firstcal = .true.
144
145 ! la nouvelle repartition des surfaces sortie de l'interface
146 REAL, save:: pctsrf_new_oce(klon)
147 REAL, save:: pctsrf_new_sic(klon)
148
149 REAL y_fqcalving(klon), y_ffonte(klon)
150 real y_run_off_lic_0(klon)
151 REAL rugmer(klon)
152 REAL ytsoil(klon, nsoilmx)
153 REAL yts(klon), yrugos(klon), ypct(klon), yz0_new(klon)
154 REAL yalb(klon)
155 REAL snow(klon), yqsurf(klon), yagesno(klon)
156 real yqsol(klon) ! column-density of water in soil, in kg m-2
157 REAL yrain_f(klon) ! liquid water mass flux (kg / m2 / s), positive down
158 REAL ysnow_f(klon) ! solid water mass flux (kg / m2 / s), positive down
159 REAL yrugm(klon), yrads(klon), yrugoro(klon)
160 REAL yfluxlat(klon)
161 REAL y_d_ts(klon)
162 REAL y_d_t(klon, klev), y_d_q(klon, klev)
163 REAL y_d_u(klon, klev), y_d_v(klon, klev)
164 REAL y_flux_t(klon), y_flux_q(klon)
165 REAL y_flux_u(klon), y_flux_v(klon)
166 REAL y_dflux_t(klon), y_dflux_q(klon)
167 REAL coefh(klon, 2:klev), coefm(klon, 2:klev)
168 real ycdragh(klon), ycdragm(klon)
169 REAL yu(klon, klev), yv(klon, klev)
170 REAL yt(klon, klev), yq(klon, klev)
171 REAL ypaprs(klon, klev + 1), ypplay(klon, klev), ydelp(klon, klev)
172 REAL ycoefm0(klon, 2:klev), ycoefh0(klon, 2:klev)
173 REAL yzlay(klon, klev), zlev(klon, klev + 1), yteta(klon, klev)
174 REAL ykmm(klon, klev + 1), ykmn(klon, klev + 1)
175 REAL yq2(klon, klev + 1)
176 REAL delp(klon, klev)
177 INTEGER i, k, nsrf
178 INTEGER ni(klon), knon, j
179
180 REAL pctsrf_pot(klon, nbsrf)
181 ! "pourcentage potentiel" pour tenir compte des \'eventuelles
182 ! apparitions ou disparitions de la glace de mer
183
184 REAL yt2m(klon), yq2m(klon), wind10m(klon)
185 REAL ustar(klon)
186
187 REAL yt10m(klon), yq10m(klon)
188 REAL ypblh(klon)
189 REAL ylcl(klon)
190 REAL ycapcl(klon)
191 REAL yoliqcl(klon)
192 REAL ycteicl(klon)
193 REAL ypblt(klon)
194 REAL ytherm(klon)
195 REAL ytrmb1(klon)
196 REAL ytrmb2(klon)
197 REAL ytrmb3(klon)
198 REAL u1(klon), v1(klon)
199 REAL tair1(klon), qair1(klon), tairsol(klon)
200 REAL psfce(klon), patm(klon)
201
202 REAL qairsol(klon), zgeo1(klon)
203 REAL rugo1(klon)
204
205 !------------------------------------------------------------
206
207 ytherm = 0.
208
209 DO k = 1, klev ! epaisseur de couche
210 DO i = 1, klon
211 delp(i, k) = paprs(i, k) - paprs(i, k + 1)
212 END DO
213 END DO
214
215 ! Initialization:
216 rugmer = 0.
217 cdragh = 0.
218 cdragm = 0.
219 dflux_t = 0.
220 dflux_q = 0.
221 ypct = 0.
222 yqsurf = 0.
223 yrain_f = 0.
224 ysnow_f = 0.
225 yrugos = 0.
226 ypaprs = 0.
227 ypplay = 0.
228 ydelp = 0.
229 yu = 0.
230 yv = 0.
231 yt = 0.
232 yq = 0.
233 y_dflux_t = 0.
234 y_dflux_q = 0.
235 yrugoro = 0.
236 d_ts = 0.
237 flux_t = 0.
238 flux_q = 0.
239 flux_u = 0.
240 flux_v = 0.
241 fluxlat = 0.
242 d_t = 0.
243 d_q = 0.
244 d_u = 0.
245 d_v = 0.
246 ycoefh = 0.
247
248 ! Initialisation des "pourcentages potentiels". On consid\`ere ici qu'on
249 ! peut avoir potentiellement de la glace sur tout le domaine oc\'eanique
250 ! (\`a affiner)
251
252 pctsrf_pot(:, is_ter) = pctsrf(:, is_ter)
253 pctsrf_pot(:, is_lic) = pctsrf(:, is_lic)
254 pctsrf_pot(:, is_oce) = 1. - zmasq
255 pctsrf_pot(:, is_sic) = 1. - zmasq
256
257 ! Tester si c'est le moment de lire le fichier:
258 if (mod(itap - 1, lmt_pas) == 0) then
259 CALL interfoce_lim(julien, pctsrf_new_oce, pctsrf_new_sic)
260 endif
261
262 ! Boucler sur toutes les sous-fractions du sol:
263
264 loop_surface: DO nsrf = 1, nbsrf
265 ! Chercher les indices :
266 ni = 0
267 knon = 0
268 DO i = 1, klon
269 ! Pour d\'eterminer le domaine \`a traiter, on utilise les surfaces
270 ! "potentielles"
271 IF (pctsrf_pot(i, nsrf) > epsfra) THEN
272 knon = knon + 1
273 ni(knon) = i
274 END IF
275 END DO
276
277 if_knon: IF (knon /= 0) then
278 DO j = 1, knon
279 i = ni(j)
280 ypct(j) = pctsrf(i, nsrf)
281 yts(j) = ftsol(i, nsrf)
282 snow(j) = fsnow(i, nsrf)
283 yqsurf(j) = qsurf(i, nsrf)
284 yalb(j) = falbe(i, nsrf)
285 yrain_f(j) = rain_fall(i)
286 ysnow_f(j) = snow_f(i)
287 yagesno(j) = agesno(i, nsrf)
288 yrugos(j) = frugs(i, nsrf)
289 yrugoro(j) = rugoro(i)
290 yrads(j) = fsolsw(i, nsrf) + fsollw(i, nsrf)
291 ypaprs(j, klev + 1) = paprs(i, klev + 1)
292 y_run_off_lic_0(j) = run_off_lic_0(i)
293 END DO
294
295 ! For continent, copy soil water content
296 IF (nsrf == is_ter) yqsol(:knon) = qsol(ni(:knon))
297
298 ytsoil(:knon, :) = ftsoil(ni(:knon), :, nsrf)
299
300 DO k = 1, klev
301 DO j = 1, knon
302 i = ni(j)
303 ypaprs(j, k) = paprs(i, k)
304 ypplay(j, k) = pplay(i, k)
305 ydelp(j, k) = delp(i, k)
306 yu(j, k) = u(i, k)
307 yv(j, k) = v(i, k)
308 yt(j, k) = t(i, k)
309 yq(j, k) = q(i, k)
310 END DO
311 END DO
312
313 ! calculer Cdrag et les coefficients d'echange
314 CALL coefkz(nsrf, ypaprs, ypplay, ksta, ksta_ter, yts(:knon), &
315 yrugos, yu, yv, yt, yq, yqsurf(:knon), coefm(:knon, :), &
316 coefh(:knon, :), ycdragm(:knon), ycdragh(:knon))
317
318 IF (iflag_pbl == 1) THEN
319 CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0(:knon, :), &
320 ycoefh0(:knon, :))
321 coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :))
322 coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, :))
323 ycdragm(:knon) = max(ycdragm(:knon), 0.)
324 ycdragh(:knon) = max(ycdragh(:knon), 0.)
325 END IF
326
327 ! on met un seuil pour ycdragm et ycdragh
328 IF (nsrf == is_oce) THEN
329 ycdragm(:knon) = min(ycdragm(:knon), cdmmax)
330 ycdragh(:knon) = min(ycdragh(:knon), cdhmax)
331 END IF
332
333 IF (ok_kzmin) THEN
334 ! Calcul d'une diffusion minimale pour les conditions tres stables
335 CALL coefkzmin(knon, ypaprs, ypplay, yu, yv, yt, yq, &
336 ycdragm(:knon), ycoefh0(:knon, :))
337 ycoefm0(:knon, :) = ycoefh0(:knon, :)
338 coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :))
339 coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, :))
340 END IF
341
342 IF (iflag_pbl >= 6) THEN
343 ! Mellor et Yamada adapt\'e \`a Mars, Richard Fournier et
344 ! Fr\'ed\'eric Hourdin
345 yzlay(:knon, 1) = rd * yt(:knon, 1) / (0.5 * (ypaprs(:knon, 1) &
346 + ypplay(:knon, 1))) &
347 * (ypaprs(:knon, 1) - ypplay(:knon, 1)) / rg
348
349 DO k = 2, klev
350 yzlay(:knon, k) = yzlay(:knon, k-1) &
351 + rd * 0.5 * (yt(1:knon, k-1) + yt(1:knon, k)) &
352 / ypaprs(1:knon, k) &
353 * (ypplay(1:knon, k-1) - ypplay(1:knon, k)) / rg
354 END DO
355
356 DO k = 1, klev
357 yteta(1:knon, k) = yt(1:knon, k) * (ypaprs(1:knon, 1) &
358 / ypplay(1:knon, k))**rkappa * (1. + 0.61 * yq(1:knon, k))
359 END DO
360
361 zlev(:knon, 1) = 0.
362 zlev(:knon, klev + 1) = 2. * yzlay(:knon, klev) &
363 - yzlay(:knon, klev - 1)
364
365 DO k = 2, klev
366 zlev(:knon, k) = 0.5 * (yzlay(:knon, k) + yzlay(:knon, k-1))
367 END DO
368
369 DO k = 1, klev + 1
370 DO j = 1, knon
371 i = ni(j)
372 yq2(j, k) = q2(i, k, nsrf)
373 END DO
374 END DO
375
376 ustar(:knon) = ustarhb(yu(:knon, 1), yv(:knon, 1), ycdragm(:knon))
377 CALL yamada4(dtime, rg, zlev(:knon, :), yzlay(:knon, :), &
378 yu(:knon, :), yv(:knon, :), yteta(:knon, :), yq2(:knon, :), &
379 ykmm(:knon, :), ykmn(:knon, :), ustar(:knon))
380 coefm(:knon, :) = ykmm(:knon, 2:klev)
381 coefh(:knon, :) = ykmn(:knon, 2:klev)
382 END IF
383
384 CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), coefm(:knon, :), &
385 ycdragm(:knon), yt(:knon, :), yu(:knon, :), ypaprs(:knon, :), &
386 ypplay(:knon, :), ydelp(:knon, :), y_d_u(:knon, :), &
387 y_flux_u(:knon))
388 CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), coefm(:knon, :), &
389 ycdragm(:knon), yt(:knon, :), yv(:knon, :), ypaprs(:knon, :), &
390 ypplay(:knon, :), ydelp(:knon, :), y_d_v(:knon, :), &
391 y_flux_v(:knon))
392
393 ! calculer la diffusion de "q" et de "h"
394 CALL clqh(dtime, julien, firstcal, nsrf, ni(:knon), &
395 ytsoil(:knon, :), yqsol(:knon), mu0, yrugos, yrugoro, &
396 yu(:knon, 1), yv(:knon, 1), coefh(:knon, :), ycdragh(:knon), &
397 yt, yq, yts(:knon), ypaprs, ypplay, ydelp, yrads(:knon), &
398 yalb(:knon), snow(:knon), yqsurf, yrain_f, ysnow_f, &
399 yfluxlat(:knon), pctsrf_new_sic, yagesno(:knon), y_d_t, y_d_q, &
400 y_d_ts(:knon), yz0_new, y_flux_t(:knon), y_flux_q(:knon), &
401 y_dflux_t(:knon), y_dflux_q(:knon), y_fqcalving, y_ffonte, &
402 y_run_off_lic_0)
403
404 ! calculer la longueur de rugosite sur ocean
405 yrugm = 0.
406 IF (nsrf == is_oce) THEN
407 DO j = 1, knon
408 yrugm(j) = 0.018 * ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2) &
409 / rg + 0.11 * 14E-6 &
410 / sqrt(ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2))
411 yrugm(j) = max(1.5E-05, yrugm(j))
412 END DO
413 END IF
414 DO j = 1, knon
415 y_dflux_t(j) = y_dflux_t(j) * ypct(j)
416 y_dflux_q(j) = y_dflux_q(j) * ypct(j)
417 END DO
418
419 DO k = 2, klev
420 DO j = 1, knon
421 i = ni(j)
422 coefh(j, k) = coefh(j, k) * ypct(j)
423 coefm(j, k) = coefm(j, k) * ypct(j)
424 END DO
425 END DO
426 DO j = 1, knon
427 i = ni(j)
428 ycdragh(j) = ycdragh(j) * ypct(j)
429 ycdragm(j) = ycdragm(j) * ypct(j)
430 END DO
431 DO k = 1, klev
432 DO j = 1, knon
433 i = ni(j)
434 y_d_t(j, k) = y_d_t(j, k) * ypct(j)
435 y_d_q(j, k) = y_d_q(j, k) * ypct(j)
436 y_d_u(j, k) = y_d_u(j, k) * ypct(j)
437 y_d_v(j, k) = y_d_v(j, k) * ypct(j)
438 END DO
439 END DO
440
441 flux_t(ni(:knon), nsrf) = y_flux_t(:knon)
442 flux_q(ni(:knon), nsrf) = y_flux_q(:knon)
443 flux_u(ni(:knon), nsrf) = y_flux_u(:knon)
444 flux_v(ni(:knon), nsrf) = y_flux_v(:knon)
445
446 evap(:, nsrf) = -flux_q(:, nsrf)
447
448 falbe(:, nsrf) = 0.
449 fsnow(:, nsrf) = 0.
450 qsurf(:, nsrf) = 0.
451 frugs(:, nsrf) = 0.
452 DO j = 1, knon
453 i = ni(j)
454 d_ts(i, nsrf) = y_d_ts(j)
455 falbe(i, nsrf) = yalb(j)
456 fsnow(i, nsrf) = snow(j)
457 qsurf(i, nsrf) = yqsurf(j)
458 frugs(i, nsrf) = yz0_new(j)
459 fluxlat(i, nsrf) = yfluxlat(j)
460 IF (nsrf == is_oce) THEN
461 rugmer(i) = yrugm(j)
462 frugs(i, nsrf) = yrugm(j)
463 END IF
464 agesno(i, nsrf) = yagesno(j)
465 fqcalving(i, nsrf) = y_fqcalving(j)
466 ffonte(i, nsrf) = y_ffonte(j)
467 cdragh(i) = cdragh(i) + ycdragh(j)
468 cdragm(i) = cdragm(i) + ycdragm(j)
469 dflux_t(i) = dflux_t(i) + y_dflux_t(j)
470 dflux_q(i) = dflux_q(i) + y_dflux_q(j)
471 END DO
472 IF (nsrf == is_ter) THEN
473 qsol(ni(:knon)) = yqsol(:knon)
474 else IF (nsrf == is_lic) THEN
475 DO j = 1, knon
476 i = ni(j)
477 run_off_lic_0(i) = y_run_off_lic_0(j)
478 END DO
479 END IF
480
481 ftsoil(:, :, nsrf) = 0.
482 ftsoil(ni(:knon), :, nsrf) = ytsoil(:knon, :)
483
484 DO j = 1, knon
485 i = ni(j)
486 DO k = 1, klev
487 d_t(i, k) = d_t(i, k) + y_d_t(j, k)
488 d_q(i, k) = d_q(i, k) + y_d_q(j, k)
489 d_u(i, k) = d_u(i, k) + y_d_u(j, k)
490 d_v(i, k) = d_v(i, k) + y_d_v(j, k)
491 END DO
492 END DO
493
494 ycoefh(ni(:knon), 2:) = ycoefh(ni(:knon), 2:) + coefh(:knon, :)
495 ycoefh(ni(:knon), 1) = ycoefh(ni(:knon), 1) + ycdragh(:knon)
496
497 ! diagnostic t, q a 2m et u, v a 10m
498
499 DO j = 1, knon
500 i = ni(j)
501 u1(j) = yu(j, 1) + y_d_u(j, 1)
502 v1(j) = yv(j, 1) + y_d_v(j, 1)
503 tair1(j) = yt(j, 1) + y_d_t(j, 1)
504 qair1(j) = yq(j, 1) + y_d_q(j, 1)
505 zgeo1(j) = rd * tair1(j) / (0.5 * (ypaprs(j, 1) + ypplay(j, &
506 1))) * (ypaprs(j, 1)-ypplay(j, 1))
507 tairsol(j) = yts(j) + y_d_ts(j)
508 rugo1(j) = yrugos(j)
509 IF (nsrf == is_oce) THEN
510 rugo1(j) = frugs(i, nsrf)
511 END IF
512 psfce(j) = ypaprs(j, 1)
513 patm(j) = ypplay(j, 1)
514
515 qairsol(j) = yqsurf(j)
516 END DO
517
518 CALL stdlevvar(klon, knon, nsrf, u1(:knon), v1(:knon), tair1(:knon), &
519 qair1, zgeo1, tairsol, qairsol, rugo1, psfce, patm, yt2m, &
520 yq2m, yt10m, yq10m, wind10m(:knon), ustar)
521
522 DO j = 1, knon
523 i = ni(j)
524 t2m(i, nsrf) = yt2m(j)
525 q2m(i, nsrf) = yq2m(j)
526
527 u10m_srf(i, nsrf) = (wind10m(j) * u1(j)) &
528 / sqrt(u1(j)**2 + v1(j)**2)
529 v10m_srf(i, nsrf) = (wind10m(j) * v1(j)) &
530 / sqrt(u1(j)**2 + v1(j)**2)
531 END DO
532
533 CALL hbtm(ypaprs, ypplay, yt2m, yq2m, ustar(:knon), y_flux_t(:knon), &
534 y_flux_q(:knon), yu, yv, yt, yq, ypblh(:knon), ycapcl, &
535 yoliqcl, ycteicl, ypblt, ytherm, ytrmb1, ytrmb2, ytrmb3, ylcl)
536
537 DO j = 1, knon
538 i = ni(j)
539 pblh(i, nsrf) = ypblh(j)
540 plcl(i, nsrf) = ylcl(j)
541 capcl(i, nsrf) = ycapcl(j)
542 oliqcl(i, nsrf) = yoliqcl(j)
543 cteicl(i, nsrf) = ycteicl(j)
544 pblt(i, nsrf) = ypblt(j)
545 therm(i, nsrf) = ytherm(j)
546 trmb1(i, nsrf) = ytrmb1(j)
547 trmb2(i, nsrf) = ytrmb2(j)
548 trmb3(i, nsrf) = ytrmb3(j)
549 END DO
550
551 DO j = 1, knon
552 DO k = 1, klev + 1
553 i = ni(j)
554 q2(i, k, nsrf) = yq2(j, k)
555 END DO
556 END DO
557 else
558 fsnow(:, nsrf) = 0.
559 end IF if_knon
560 END DO loop_surface
561
562 ! On utilise les nouvelles surfaces
563 frugs(:, is_oce) = rugmer
564 pctsrf(:, is_oce) = pctsrf_new_oce
565 pctsrf(:, is_sic) = pctsrf_new_sic
566
567 firstcal = .false.
568
569 END SUBROUTINE clmain
570
571 end module clmain_m

  ViewVC Help
Powered by ViewVC 1.1.21