/[lmdze]/trunk/Sources/phylmd/clmain.f
ViewVC logotype

Contents of /trunk/Sources/phylmd/clmain.f

Parent Directory Parent Directory | Revision Log Revision Log


Revision 244 - (show annotations)
Tue Nov 14 14:56:42 2017 UTC (6 years, 5 months ago) by guez
File size: 19972 byte(s)
In procedure clmain, rename ycoefh to coefh and coefh to ycoefh. Also
rename coefm to ycoefm. The convention is that variables beginning
with "y" are packed to knon. (Following LMDZ.) In physiq, rename
ycoefh to coefh.

1 module clmain_m
2
3 IMPLICIT NONE
4
5 contains
6
7 SUBROUTINE clmain(dtime, pctsrf, t, q, u, v, julien, mu0, ftsol, cdmmax, &
8 cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, paprs, pplay, fsnow, &
9 qsurf, evap, falbe, fluxlat, rain_fall, snow_f, fsolsw, fsollw, frugs, &
10 agesno, rugoro, d_t, d_q, d_u, d_v, d_ts, flux_t, flux_q, flux_u, &
11 flux_v, cdragh, cdragm, q2, dflux_t, dflux_q, coefh, t2m, q2m, &
12 u10m_srf, v10m_srf, pblh, capcl, oliqcl, cteicl, pblt, therm, trmb1, &
13 trmb2, trmb3, plcl, fqcalving, ffonte, run_off_lic_0)
14
15 ! From phylmd/clmain.F, version 1.6, 2005/11/16 14:47:19
16 ! Author: Z. X. Li (LMD/CNRS), date: 1993/08/18
17 ! Objet : interface de couche limite (diffusion verticale)
18
19 ! Tout ce qui a trait aux traceurs est dans "phytrac". Le calcul
20 ! de la couche limite pour les traceurs se fait avec "cltrac" et
21 ! ne tient pas compte de la diff\'erentiation des sous-fractions
22 ! de sol.
23
24 use clqh_m, only: clqh
25 use clvent_m, only: clvent
26 use coefkz_m, only: coefkz
27 use coefkzmin_m, only: coefkzmin
28 use coefkz2_m, only: coefkz2
29 USE conf_gcm_m, ONLY: lmt_pas
30 USE conf_phys_m, ONLY: iflag_pbl
31 USE dimphy, ONLY: klev, klon, zmasq
32 USE dimsoil, ONLY: nsoilmx
33 use hbtm_m, only: hbtm
34 USE indicesol, ONLY: epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf
35 USE interfoce_lim_m, ONLY: interfoce_lim
36 use stdlevvar_m, only: stdlevvar
37 USE suphec_m, ONLY: rd, rg, rkappa
38 use time_phylmdz, only: itap
39 use ustarhb_m, only: ustarhb
40 use yamada4_m, only: yamada4
41
42 REAL, INTENT(IN):: dtime ! interval du temps (secondes)
43
44 REAL, INTENT(inout):: pctsrf(klon, nbsrf)
45 ! tableau des pourcentages de surface de chaque maille
46
47 REAL, INTENT(IN):: t(klon, klev) ! temperature (K)
48 REAL, INTENT(IN):: q(klon, klev) ! vapeur d'eau (kg / kg)
49 REAL, INTENT(IN):: u(klon, klev), v(klon, klev) ! vitesse
50 INTEGER, INTENT(IN):: julien ! jour de l'annee en cours
51 REAL, intent(in):: mu0(klon) ! cosinus de l'angle solaire zenithal
52 REAL, INTENT(IN):: ftsol(:, :) ! (klon, nbsrf) temp\'erature du sol (en K)
53 REAL, INTENT(IN):: cdmmax, cdhmax ! seuils cdrm, cdrh
54 REAL, INTENT(IN):: ksta, ksta_ter
55 LOGICAL, INTENT(IN):: ok_kzmin
56
57 REAL, INTENT(inout):: ftsoil(klon, nsoilmx, nbsrf)
58 ! soil temperature of surface fraction
59
60 REAL, INTENT(inout):: qsol(:) ! (klon)
61 ! column-density of water in soil, in kg m-2
62
63 REAL, INTENT(IN):: paprs(klon, klev + 1) ! pression a intercouche (Pa)
64 REAL, INTENT(IN):: pplay(klon, klev) ! pression au milieu de couche (Pa)
65 REAL, INTENT(inout):: fsnow(:, :) ! (klon, nbsrf) \'epaisseur neigeuse
66 REAL qsurf(klon, nbsrf)
67 REAL evap(klon, nbsrf)
68 REAL, intent(inout):: falbe(klon, nbsrf)
69 REAL, intent(out):: fluxlat(:, :) ! (klon, nbsrf)
70
71 REAL, intent(in):: rain_fall(klon)
72 ! liquid water mass flux (kg / m2 / s), positive down
73
74 REAL, intent(in):: snow_f(klon)
75 ! solid water mass flux (kg / m2 / s), positive down
76
77 REAL, INTENT(IN):: fsolsw(klon, nbsrf), fsollw(klon, nbsrf)
78 REAL, intent(inout):: frugs(klon, nbsrf) ! longueur de rugosit\'e (en m)
79 real agesno(klon, nbsrf)
80 REAL, INTENT(IN):: rugoro(klon)
81
82 REAL d_t(klon, klev), d_q(klon, klev)
83 ! d_t------output-R- le changement pour "t"
84 ! d_q------output-R- le changement pour "q"
85
86 REAL, intent(out):: d_u(klon, klev), d_v(klon, klev)
87 ! changement pour "u" et "v"
88
89 REAL, intent(out):: d_ts(:, :) ! (klon, nbsrf) variation of ftsol
90
91 REAL, intent(out):: flux_t(klon, nbsrf)
92 ! flux de chaleur sensible (Cp T) (W / m2) (orientation positive vers
93 ! le bas) à la surface
94
95 REAL, intent(out):: flux_q(klon, nbsrf)
96 ! flux de vapeur d'eau (kg / m2 / s) à la surface
97
98 REAL, intent(out):: flux_u(klon, nbsrf), flux_v(klon, nbsrf)
99 ! tension du vent (flux turbulent de vent) à la surface, en Pa
100
101 REAL, INTENT(out):: cdragh(klon), cdragm(klon)
102 real q2(klon, klev + 1, nbsrf)
103
104 REAL, INTENT(out):: dflux_t(klon), dflux_q(klon)
105 ! dflux_t derive du flux sensible
106 ! dflux_q derive du flux latent
107 ! IM "slab" ocean
108
109 REAL, intent(out):: coefh(:, 2:) ! (klon, 2:klev)
110 ! Pour pouvoir extraire les coefficients d'\'echange, le champ
111 ! "coefh" a \'et\'e cr\'e\'e. Nous avons moyenn\'e les valeurs de
112 ! ce champ sur les quatre sous-surfaces du mod\`ele.
113
114 REAL, INTENT(inout):: t2m(klon, nbsrf), q2m(klon, nbsrf)
115
116 REAL, INTENT(inout):: u10m_srf(:, :), v10m_srf(:, :) ! (klon, nbsrf)
117 ! composantes du vent \`a 10m sans spirale d'Ekman
118
119 ! Ionela Musat. Cf. Anne Mathieu : planetary boundary layer, hbtm.
120 ! Comme les autres diagnostics on cumule dans physiq ce qui permet
121 ! de sortir les grandeurs par sous-surface.
122 REAL pblh(klon, nbsrf) ! height of planetary boundary layer
123 REAL capcl(klon, nbsrf)
124 REAL oliqcl(klon, nbsrf)
125 REAL cteicl(klon, nbsrf)
126 REAL, INTENT(inout):: pblt(klon, nbsrf) ! T au nveau HCL
127 REAL therm(klon, nbsrf)
128 REAL trmb1(klon, nbsrf)
129 ! trmb1-------deep_cape
130 REAL trmb2(klon, nbsrf)
131 ! trmb2--------inhibition
132 REAL trmb3(klon, nbsrf)
133 ! trmb3-------Point Omega
134 REAL plcl(klon, nbsrf)
135 REAL fqcalving(klon, nbsrf), ffonte(klon, nbsrf)
136 ! ffonte----Flux thermique utilise pour fondre la neige
137 ! fqcalving-Flux d'eau "perdue" par la surface et necessaire pour limiter la
138 ! hauteur de neige, en kg / m2 / s
139 REAL run_off_lic_0(klon)
140
141 ! Local:
142
143 LOGICAL:: firstcal = .true.
144
145 ! la nouvelle repartition des surfaces sortie de l'interface
146 REAL, save:: pctsrf_new_oce(klon)
147 REAL, save:: pctsrf_new_sic(klon)
148
149 REAL y_fqcalving(klon), y_ffonte(klon)
150 real y_run_off_lic_0(klon)
151 REAL rugmer(klon)
152 REAL ytsoil(klon, nsoilmx)
153 REAL yts(klon), yrugos(klon), ypct(klon), yz0_new(klon)
154 REAL yalb(klon)
155 REAL snow(klon), yqsurf(klon), yagesno(klon)
156 real yqsol(klon) ! column-density of water in soil, in kg m-2
157 REAL yrain_f(klon) ! liquid water mass flux (kg / m2 / s), positive down
158 REAL ysnow_f(klon) ! solid water mass flux (kg / m2 / s), positive down
159 REAL yrugm(klon), yrads(klon), yrugoro(klon)
160 REAL yfluxlat(klon)
161 REAL y_d_ts(klon)
162 REAL y_d_t(klon, klev), y_d_q(klon, klev)
163 REAL y_d_u(klon, klev), y_d_v(klon, klev)
164 REAL y_flux_t(klon), y_flux_q(klon)
165 REAL y_flux_u(klon), y_flux_v(klon)
166 REAL y_dflux_t(klon), y_dflux_q(klon)
167 REAL ycoefh(klon, 2:klev), ycoefm(klon, 2:klev)
168 real ycdragh(klon), ycdragm(klon)
169 REAL yu(klon, klev), yv(klon, klev)
170 REAL yt(klon, klev), yq(klon, klev)
171 REAL ypaprs(klon, klev + 1), ypplay(klon, klev), ydelp(klon, klev)
172 REAL ycoefm0(klon, 2:klev), ycoefh0(klon, 2:klev)
173 REAL yzlay(klon, klev), zlev(klon, klev + 1), yteta(klon, klev)
174 REAL ykmm(klon, klev + 1), ykmn(klon, klev + 1)
175 REAL yq2(klon, klev + 1)
176 REAL delp(klon, klev)
177 INTEGER i, k, nsrf
178 INTEGER ni(klon), knon, j
179
180 REAL pctsrf_pot(klon, nbsrf)
181 ! "pourcentage potentiel" pour tenir compte des \'eventuelles
182 ! apparitions ou disparitions de la glace de mer
183
184 REAL yt2m(klon), yq2m(klon), wind10m(klon)
185 REAL ustar(klon)
186
187 REAL yt10m(klon), yq10m(klon)
188 REAL ypblh(klon)
189 REAL ylcl(klon)
190 REAL ycapcl(klon)
191 REAL yoliqcl(klon)
192 REAL ycteicl(klon)
193 REAL ypblt(klon)
194 REAL ytherm(klon)
195 REAL ytrmb1(klon)
196 REAL ytrmb2(klon)
197 REAL ytrmb3(klon)
198 REAL u1(klon), v1(klon)
199 REAL tair1(klon), qair1(klon), tairsol(klon)
200 REAL psfce(klon), patm(klon)
201
202 REAL qairsol(klon), zgeo1(klon)
203 REAL rugo1(klon)
204
205 !------------------------------------------------------------
206
207 ytherm = 0.
208
209 DO k = 1, klev ! epaisseur de couche
210 DO i = 1, klon
211 delp(i, k) = paprs(i, k) - paprs(i, k + 1)
212 END DO
213 END DO
214
215 ! Initialization:
216 rugmer = 0.
217 cdragh = 0.
218 cdragm = 0.
219 dflux_t = 0.
220 dflux_q = 0.
221 ypct = 0.
222 yqsurf = 0.
223 yrain_f = 0.
224 ysnow_f = 0.
225 yrugos = 0.
226 ypaprs = 0.
227 ypplay = 0.
228 ydelp = 0.
229 yu = 0.
230 yv = 0.
231 yt = 0.
232 yq = 0.
233 y_dflux_t = 0.
234 y_dflux_q = 0.
235 yrugoro = 0.
236 d_ts = 0.
237 flux_t = 0.
238 flux_q = 0.
239 flux_u = 0.
240 flux_v = 0.
241 fluxlat = 0.
242 d_t = 0.
243 d_q = 0.
244 d_u = 0.
245 d_v = 0.
246 coefh = 0.
247
248 ! Initialisation des "pourcentages potentiels". On consid\`ere ici qu'on
249 ! peut avoir potentiellement de la glace sur tout le domaine oc\'eanique
250 ! (\`a affiner)
251
252 pctsrf_pot(:, is_ter) = pctsrf(:, is_ter)
253 pctsrf_pot(:, is_lic) = pctsrf(:, is_lic)
254 pctsrf_pot(:, is_oce) = 1. - zmasq
255 pctsrf_pot(:, is_sic) = 1. - zmasq
256
257 ! Tester si c'est le moment de lire le fichier:
258 if (mod(itap - 1, lmt_pas) == 0) then
259 CALL interfoce_lim(julien, pctsrf_new_oce, pctsrf_new_sic)
260 endif
261
262 ! Boucler sur toutes les sous-fractions du sol:
263
264 loop_surface: DO nsrf = 1, nbsrf
265 ! Chercher les indices :
266 ni = 0
267 knon = 0
268 DO i = 1, klon
269 ! Pour d\'eterminer le domaine \`a traiter, on utilise les surfaces
270 ! "potentielles"
271 IF (pctsrf_pot(i, nsrf) > epsfra) THEN
272 knon = knon + 1
273 ni(knon) = i
274 END IF
275 END DO
276
277 if_knon: IF (knon /= 0) then
278 DO j = 1, knon
279 i = ni(j)
280 ypct(j) = pctsrf(i, nsrf)
281 yts(j) = ftsol(i, nsrf)
282 snow(j) = fsnow(i, nsrf)
283 yqsurf(j) = qsurf(i, nsrf)
284 yalb(j) = falbe(i, nsrf)
285 yrain_f(j) = rain_fall(i)
286 ysnow_f(j) = snow_f(i)
287 yagesno(j) = agesno(i, nsrf)
288 yrugos(j) = frugs(i, nsrf)
289 yrugoro(j) = rugoro(i)
290 yrads(j) = fsolsw(i, nsrf) + fsollw(i, nsrf)
291 ypaprs(j, klev + 1) = paprs(i, klev + 1)
292 y_run_off_lic_0(j) = run_off_lic_0(i)
293 END DO
294
295 ! For continent, copy soil water content
296 IF (nsrf == is_ter) yqsol(:knon) = qsol(ni(:knon))
297
298 ytsoil(:knon, :) = ftsoil(ni(:knon), :, nsrf)
299
300 DO k = 1, klev
301 DO j = 1, knon
302 i = ni(j)
303 ypaprs(j, k) = paprs(i, k)
304 ypplay(j, k) = pplay(i, k)
305 ydelp(j, k) = delp(i, k)
306 yu(j, k) = u(i, k)
307 yv(j, k) = v(i, k)
308 yt(j, k) = t(i, k)
309 yq(j, k) = q(i, k)
310 END DO
311 END DO
312
313 CALL coefkz(nsrf, ypaprs, ypplay, ksta, ksta_ter, yts(:knon), &
314 yrugos, yu, yv, yt, yq, yqsurf(:knon), ycoefm(:knon, :), &
315 ycoefh(:knon, :), ycdragm(:knon), ycdragh(:knon))
316
317 IF (iflag_pbl == 1) THEN
318 CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0(:knon, :), &
319 ycoefh0(:knon, :))
320 ycoefm(:knon, :) = max(ycoefm(:knon, :), ycoefm0(:knon, :))
321 ycoefh(:knon, :) = max(ycoefh(:knon, :), ycoefh0(:knon, :))
322 ycdragm(:knon) = max(ycdragm(:knon), 0.)
323 ycdragh(:knon) = max(ycdragh(:knon), 0.)
324 END IF
325
326 ! on met un seuil pour ycdragm et ycdragh
327 IF (nsrf == is_oce) THEN
328 ycdragm(:knon) = min(ycdragm(:knon), cdmmax)
329 ycdragh(:knon) = min(ycdragh(:knon), cdhmax)
330 END IF
331
332 IF (ok_kzmin) THEN
333 ! Calcul d'une diffusion minimale pour les conditions tres stables
334 CALL coefkzmin(knon, ypaprs, ypplay, yu, yv, yt, yq, &
335 ycdragm(:knon), ycoefh0(:knon, :))
336 ycoefm0(:knon, :) = ycoefh0(:knon, :)
337 ycoefm(:knon, :) = max(ycoefm(:knon, :), ycoefm0(:knon, :))
338 ycoefh(:knon, :) = max(ycoefh(:knon, :), ycoefh0(:knon, :))
339 END IF
340
341 IF (iflag_pbl >= 6) THEN
342 ! Mellor et Yamada adapt\'e \`a Mars, Richard Fournier et
343 ! Fr\'ed\'eric Hourdin
344 yzlay(:knon, 1) = rd * yt(:knon, 1) / (0.5 * (ypaprs(:knon, 1) &
345 + ypplay(:knon, 1))) &
346 * (ypaprs(:knon, 1) - ypplay(:knon, 1)) / rg
347
348 DO k = 2, klev
349 yzlay(:knon, k) = yzlay(:knon, k-1) &
350 + rd * 0.5 * (yt(1:knon, k-1) + yt(1:knon, k)) &
351 / ypaprs(1:knon, k) &
352 * (ypplay(1:knon, k-1) - ypplay(1:knon, k)) / rg
353 END DO
354
355 DO k = 1, klev
356 yteta(1:knon, k) = yt(1:knon, k) * (ypaprs(1:knon, 1) &
357 / ypplay(1:knon, k))**rkappa * (1. + 0.61 * yq(1:knon, k))
358 END DO
359
360 zlev(:knon, 1) = 0.
361 zlev(:knon, klev + 1) = 2. * yzlay(:knon, klev) &
362 - yzlay(:knon, klev - 1)
363
364 DO k = 2, klev
365 zlev(:knon, k) = 0.5 * (yzlay(:knon, k) + yzlay(:knon, k-1))
366 END DO
367
368 DO k = 1, klev + 1
369 DO j = 1, knon
370 i = ni(j)
371 yq2(j, k) = q2(i, k, nsrf)
372 END DO
373 END DO
374
375 ustar(:knon) = ustarhb(yu(:knon, 1), yv(:knon, 1), ycdragm(:knon))
376 CALL yamada4(dtime, rg, zlev(:knon, :), yzlay(:knon, :), &
377 yu(:knon, :), yv(:knon, :), yteta(:knon, :), yq2(:knon, :), &
378 ykmm(:knon, :), ykmn(:knon, :), ustar(:knon))
379 ycoefm(:knon, :) = ykmm(:knon, 2:klev)
380 ycoefh(:knon, :) = ykmn(:knon, 2:klev)
381 END IF
382
383 CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), ycoefm(:knon, :), &
384 ycdragm(:knon), yt(:knon, :), yu(:knon, :), ypaprs(:knon, :), &
385 ypplay(:knon, :), ydelp(:knon, :), y_d_u(:knon, :), &
386 y_flux_u(:knon))
387 CALL clvent(dtime, yu(:knon, 1), yv(:knon, 1), ycoefm(:knon, :), &
388 ycdragm(:knon), yt(:knon, :), yv(:knon, :), ypaprs(:knon, :), &
389 ypplay(:knon, :), ydelp(:knon, :), y_d_v(:knon, :), &
390 y_flux_v(:knon))
391
392 ! calculer la diffusion de "q" et de "h"
393 CALL clqh(dtime, julien, firstcal, nsrf, ni(:knon), &
394 ytsoil(:knon, :), yqsol(:knon), mu0, yrugos, yrugoro, &
395 yu(:knon, 1), yv(:knon, 1), ycoefh(:knon, :), ycdragh(:knon), &
396 yt, yq, yts(:knon), ypaprs, ypplay, ydelp, yrads(:knon), &
397 yalb(:knon), snow(:knon), yqsurf, yrain_f, ysnow_f, &
398 yfluxlat(:knon), pctsrf_new_sic, yagesno(:knon), y_d_t, y_d_q, &
399 y_d_ts(:knon), yz0_new, y_flux_t(:knon), y_flux_q(:knon), &
400 y_dflux_t(:knon), y_dflux_q(:knon), y_fqcalving, y_ffonte, &
401 y_run_off_lic_0)
402
403 ! calculer la longueur de rugosite sur ocean
404 yrugm = 0.
405 IF (nsrf == is_oce) THEN
406 DO j = 1, knon
407 yrugm(j) = 0.018 * ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2) &
408 / rg + 0.11 * 14E-6 &
409 / sqrt(ycdragm(j) * (yu(j, 1)**2 + yv(j, 1)**2))
410 yrugm(j) = max(1.5E-05, yrugm(j))
411 END DO
412 END IF
413 DO j = 1, knon
414 y_dflux_t(j) = y_dflux_t(j) * ypct(j)
415 y_dflux_q(j) = y_dflux_q(j) * ypct(j)
416 END DO
417
418 DO k = 1, klev
419 DO j = 1, knon
420 i = ni(j)
421 y_d_t(j, k) = y_d_t(j, k) * ypct(j)
422 y_d_q(j, k) = y_d_q(j, k) * ypct(j)
423 y_d_u(j, k) = y_d_u(j, k) * ypct(j)
424 y_d_v(j, k) = y_d_v(j, k) * ypct(j)
425 END DO
426 END DO
427
428 flux_t(ni(:knon), nsrf) = y_flux_t(:knon)
429 flux_q(ni(:knon), nsrf) = y_flux_q(:knon)
430 flux_u(ni(:knon), nsrf) = y_flux_u(:knon)
431 flux_v(ni(:knon), nsrf) = y_flux_v(:knon)
432
433 evap(:, nsrf) = -flux_q(:, nsrf)
434
435 falbe(:, nsrf) = 0.
436 fsnow(:, nsrf) = 0.
437 qsurf(:, nsrf) = 0.
438 frugs(:, nsrf) = 0.
439 DO j = 1, knon
440 i = ni(j)
441 d_ts(i, nsrf) = y_d_ts(j)
442 falbe(i, nsrf) = yalb(j)
443 fsnow(i, nsrf) = snow(j)
444 qsurf(i, nsrf) = yqsurf(j)
445 frugs(i, nsrf) = yz0_new(j)
446 fluxlat(i, nsrf) = yfluxlat(j)
447 IF (nsrf == is_oce) THEN
448 rugmer(i) = yrugm(j)
449 frugs(i, nsrf) = yrugm(j)
450 END IF
451 agesno(i, nsrf) = yagesno(j)
452 fqcalving(i, nsrf) = y_fqcalving(j)
453 ffonte(i, nsrf) = y_ffonte(j)
454 cdragh(i) = cdragh(i) + ycdragh(j) * ypct(j)
455 cdragm(i) = cdragm(i) + ycdragm(j) * ypct(j)
456 dflux_t(i) = dflux_t(i) + y_dflux_t(j)
457 dflux_q(i) = dflux_q(i) + y_dflux_q(j)
458 END DO
459 IF (nsrf == is_ter) THEN
460 qsol(ni(:knon)) = yqsol(:knon)
461 else IF (nsrf == is_lic) THEN
462 DO j = 1, knon
463 i = ni(j)
464 run_off_lic_0(i) = y_run_off_lic_0(j)
465 END DO
466 END IF
467
468 ftsoil(:, :, nsrf) = 0.
469 ftsoil(ni(:knon), :, nsrf) = ytsoil(:knon, :)
470
471 DO j = 1, knon
472 i = ni(j)
473 DO k = 1, klev
474 d_t(i, k) = d_t(i, k) + y_d_t(j, k)
475 d_q(i, k) = d_q(i, k) + y_d_q(j, k)
476 d_u(i, k) = d_u(i, k) + y_d_u(j, k)
477 d_v(i, k) = d_v(i, k) + y_d_v(j, k)
478 END DO
479 END DO
480
481 forall (k = 2:klev) coefh(ni(:knon), k) &
482 = coefh(ni(:knon), k) + ycoefh(:knon, k) * ypct(:knon)
483
484 ! diagnostic t, q a 2m et u, v a 10m
485
486 DO j = 1, knon
487 i = ni(j)
488 u1(j) = yu(j, 1) + y_d_u(j, 1)
489 v1(j) = yv(j, 1) + y_d_v(j, 1)
490 tair1(j) = yt(j, 1) + y_d_t(j, 1)
491 qair1(j) = yq(j, 1) + y_d_q(j, 1)
492 zgeo1(j) = rd * tair1(j) / (0.5 * (ypaprs(j, 1) + ypplay(j, &
493 1))) * (ypaprs(j, 1)-ypplay(j, 1))
494 tairsol(j) = yts(j) + y_d_ts(j)
495 rugo1(j) = yrugos(j)
496 IF (nsrf == is_oce) THEN
497 rugo1(j) = frugs(i, nsrf)
498 END IF
499 psfce(j) = ypaprs(j, 1)
500 patm(j) = ypplay(j, 1)
501
502 qairsol(j) = yqsurf(j)
503 END DO
504
505 CALL stdlevvar(klon, knon, nsrf, u1(:knon), v1(:knon), tair1(:knon), &
506 qair1, zgeo1, tairsol, qairsol, rugo1, psfce, patm, yt2m, &
507 yq2m, yt10m, yq10m, wind10m(:knon), ustar)
508
509 DO j = 1, knon
510 i = ni(j)
511 t2m(i, nsrf) = yt2m(j)
512 q2m(i, nsrf) = yq2m(j)
513
514 u10m_srf(i, nsrf) = (wind10m(j) * u1(j)) &
515 / sqrt(u1(j)**2 + v1(j)**2)
516 v10m_srf(i, nsrf) = (wind10m(j) * v1(j)) &
517 / sqrt(u1(j)**2 + v1(j)**2)
518 END DO
519
520 CALL hbtm(ypaprs, ypplay, yt2m, yq2m, ustar(:knon), y_flux_t(:knon), &
521 y_flux_q(:knon), yu, yv, yt, yq, ypblh(:knon), ycapcl, &
522 yoliqcl, ycteicl, ypblt, ytherm, ytrmb1, ytrmb2, ytrmb3, ylcl)
523
524 DO j = 1, knon
525 i = ni(j)
526 pblh(i, nsrf) = ypblh(j)
527 plcl(i, nsrf) = ylcl(j)
528 capcl(i, nsrf) = ycapcl(j)
529 oliqcl(i, nsrf) = yoliqcl(j)
530 cteicl(i, nsrf) = ycteicl(j)
531 pblt(i, nsrf) = ypblt(j)
532 therm(i, nsrf) = ytherm(j)
533 trmb1(i, nsrf) = ytrmb1(j)
534 trmb2(i, nsrf) = ytrmb2(j)
535 trmb3(i, nsrf) = ytrmb3(j)
536 END DO
537
538 DO j = 1, knon
539 DO k = 1, klev + 1
540 i = ni(j)
541 q2(i, k, nsrf) = yq2(j, k)
542 END DO
543 END DO
544 else
545 fsnow(:, nsrf) = 0.
546 end IF if_knon
547 END DO loop_surface
548
549 ! On utilise les nouvelles surfaces
550 frugs(:, is_oce) = rugmer
551 pctsrf(:, is_oce) = pctsrf_new_oce
552 pctsrf(:, is_sic) = pctsrf_new_sic
553
554 firstcal = .false.
555
556 END SUBROUTINE clmain
557
558 end module clmain_m

  ViewVC Help
Powered by ViewVC 1.1.21