/[lmdze]/trunk/Sources/phylmd/clmain.f
ViewVC logotype

Diff of /trunk/Sources/phylmd/clmain.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/libf/phylmd/clmain.f90 revision 37 by guez, Tue Dec 21 15:45:48 2010 UTC trunk/Sources/phylmd/clmain.f revision 225 by guez, Mon Oct 16 12:35:41 2017 UTC
# Line 1  Line 1 
1  SUBROUTINE clmain(dtime, itap, date0, pctsrf, pctsrf_new, t, q, u, v,&  module clmain_m
      jour, rmu0, co2_ppm, ok_veget, ocean, npas, nexca, ts,&  
      soil_model, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil,&  
      qsol, paprs, pplay, snow, qsurf, evap, albe, alblw, fluxlat,&  
      rain_f, snow_f, solsw, sollw, sollwdown, fder, rlon, rlat, cufi,&  
      cvfi, rugos, debut, lafin, agesno, rugoro, d_t, d_q, d_u, d_v,&  
      d_ts, flux_t, flux_q, flux_u, flux_v, cdragh, cdragm, q2,&  
      dflux_t, dflux_q, zcoefh, zu1, zv1, t2m, q2m, u10m, v10m, pblh,&  
      capcl, oliqcl, cteicl, pblt, therm, trmb1, trmb2, trmb3, plcl,&  
      fqcalving, ffonte, run_off_lic_0, flux_o, flux_g, tslab, seaice)  
   
   ! From phylmd/clmain.F, v 1.6 2005/11/16 14:47:19  
   
   !AA Tout ce qui a trait au traceurs est dans phytrac maintenant  
   !AA pour l'instant le calcul de la couche limite pour les traceurs  
   !AA se fait avec cltrac et ne tient pas compte de la differentiation  
   !AA des sous-fraction de sol.  
   
   !AA Pour pouvoir extraire les coefficient d'echanges et le vent  
   !AA dans la premiere couche, 3 champs supplementaires ont ete crees  
   !AA zcoefh, zu1 et zv1. Pour l'instant nous avons moyenne les valeurs  
   !AA de ces trois champs sur les 4 subsurfaces du modele. Dans l'avenir  
   !AA si les informations des subsurfaces doivent etre prises en compte  
   !AA il faudra sortir ces memes champs en leur ajoutant une dimension,  
   !AA c'est a dire nbsrf (nbre de subsurface).  
   
   ! Auteur(s) Z.X. Li (LMD/CNRS) date: 19930818  
   ! Objet: interface de "couche limite" (diffusion verticale)  
   
   ! Arguments:  
   ! dtime----input-R- interval du temps (secondes)  
   ! itap-----input-I- numero du pas de temps  
   ! date0----input-R- jour initial  
   ! t--------input-R- temperature (K)  
   ! q--------input-R- vapeur d'eau (kg/kg)  
   ! u--------input-R- vitesse u  
   ! v--------input-R- vitesse v  
   ! ts-------input-R- temperature du sol (en Kelvin)  
   ! paprs----input-R- pression a intercouche (Pa)  
   ! pplay----input-R- pression au milieu de couche (Pa)  
   ! radsol---input-R- flux radiatif net (positif vers le sol) en W/m**2  
   ! rlat-----input-R- latitude en degree  
   ! rugos----input-R- longeur de rugosite (en m)  
   ! cufi-----input-R- resolution des mailles en x (m)  
   ! cvfi-----input-R- resolution des mailles en y (m)  
   
   ! d_t------output-R- le changement pour "t"  
   ! d_q------output-R- le changement pour "q"  
   ! d_u------output-R- le changement pour "u"  
   ! d_v------output-R- le changement pour "v"  
   ! d_ts-----output-R- le changement pour "ts"  
   ! flux_t---output-R- flux de chaleur sensible (CpT) J/m**2/s (W/m**2)  
   !                    (orientation positive vers le bas)  
   ! flux_q---output-R- flux de vapeur d'eau (kg/m**2/s)  
   ! flux_u---output-R- tension du vent X: (kg m/s)/(m**2 s) ou Pascal  
   ! flux_v---output-R- tension du vent Y: (kg m/s)/(m**2 s) ou Pascal  
   ! dflux_t derive du flux sensible  
   ! dflux_q derive du flux latent  
   !IM "slab" ocean  
   ! flux_g---output-R-  flux glace (pour OCEAN='slab  ')  
   ! flux_o---output-R-  flux ocean (pour OCEAN='slab  ')  
   ! tslab-in/output-R temperature du slab ocean (en Kelvin) ! uniqmnt pour slab  
   ! seaice---output-R-  glace de mer (kg/m2) (pour OCEAN='slab  ')  
   !cc  
   ! ffonte----Flux thermique utilise pour fondre la neige  
   ! fqcalving-Flux d'eau "perdue" par la surface et necessaire pour limiter la  
   !           hauteur de neige, en kg/m2/s  
   !AA on rajoute en output yu1 et yv1 qui sont les vents dans  
   !AA la premiere couche  
   !AA ces 4 variables sont maintenant traites dans phytrac  
   ! itr--------input-I- nombre de traceurs  
   ! tr---------input-R- q. de traceurs  
   ! flux_surf--input-R- flux de traceurs a la surface  
   ! d_tr-------output-R tendance de traceurs  
   !IM cf. AM : PBL  
   ! trmb1-------deep_cape  
   ! trmb2--------inhibition  
   ! trmb3-------Point Omega  
   ! Cape(klon)-------Cape du thermique  
   ! EauLiq(klon)-------Eau liqu integr du thermique  
   ! ctei(klon)-------Critere d'instab d'entrainmt des nuages de CL  
   ! lcl------- Niveau de condensation  
   ! pblh------- HCL  
   ! pblT------- T au nveau HCL  
   
   !$$$ PB ajout pour soil  
   
   USE histcom, ONLY : histbeg_totreg, histdef, histend, histsync  
   use histwrite_m, only: histwrite  
   use calendar, ONLY : ymds2ju  
   USE dimens_m, ONLY : iim, jjm  
   USE indicesol, ONLY : epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf  
   USE dimphy, ONLY : klev, klon, zmasq  
   USE dimsoil, ONLY : nsoilmx  
   USE temps, ONLY : annee_ref, itau_phy  
   USE dynetat0_m, ONLY : day_ini  
   USE iniprint, ONLY : prt_level  
   USE yomcst, ONLY : rd, rg, rkappa  
   USE conf_phys_m, ONLY : iflag_pbl  
   USE gath_cpl, ONLY : gath2cpl  
   use hbtm_m, only: hbtm  
2    
3    IMPLICIT NONE    IMPLICIT NONE
4    
5    REAL, INTENT (IN) :: dtime  contains
   REAL date0  
   INTEGER, INTENT (IN) :: itap  
   REAL t(klon, klev), q(klon, klev)  
   REAL u(klon, klev), v(klon, klev)  
   REAL, INTENT (IN) :: paprs(klon, klev+1)  
   REAL, INTENT (IN) :: pplay(klon, klev)  
   REAL, INTENT (IN) :: rlon(klon), rlat(klon)  
   REAL cufi(klon), cvfi(klon)  
   REAL d_t(klon, klev), d_q(klon, klev)  
   REAL d_u(klon, klev), d_v(klon, klev)  
   REAL flux_t(klon, klev, nbsrf), flux_q(klon, klev, nbsrf)  
   REAL dflux_t(klon), dflux_q(klon)  
   !IM "slab" ocean  
   REAL flux_o(klon), flux_g(klon)  
   REAL y_flux_o(klon), y_flux_g(klon)  
   REAL tslab(klon), ytslab(klon)  
   REAL seaice(klon), y_seaice(klon)  
   REAL y_fqcalving(klon), y_ffonte(klon)  
   REAL fqcalving(klon, nbsrf), ffonte(klon, nbsrf)  
   REAL run_off_lic_0(klon), y_run_off_lic_0(klon)  
   
   REAL flux_u(klon, klev, nbsrf), flux_v(klon, klev, nbsrf)  
   REAL rugmer(klon), agesno(klon, nbsrf)  
   REAL, INTENT (IN) :: rugoro(klon)  
   REAL cdragh(klon), cdragm(klon)  
   ! jour de l'annee en cours                  
   INTEGER jour  
   REAL rmu0(klon) ! cosinus de l'angle solaire zenithal      
   ! taux CO2 atmosphere                      
   REAL co2_ppm  
   LOGICAL, INTENT (IN) :: debut  
   LOGICAL, INTENT (IN) :: lafin  
   LOGICAL ok_veget  
   CHARACTER (len=*), INTENT (IN) :: ocean  
   INTEGER npas, nexca  
   
   REAL pctsrf(klon, nbsrf)  
   REAL ts(klon, nbsrf)  
   REAL d_ts(klon, nbsrf)  
   REAL snow(klon, nbsrf)  
   REAL qsurf(klon, nbsrf)  
   REAL evap(klon, nbsrf)  
   REAL albe(klon, nbsrf)  
   REAL alblw(klon, nbsrf)  
   
   REAL fluxlat(klon, nbsrf)  
   
   REAL rain_f(klon), snow_f(klon)  
   REAL fder(klon)  
   
   REAL sollw(klon, nbsrf), solsw(klon, nbsrf), sollwdown(klon)  
   REAL rugos(klon, nbsrf)  
   ! la nouvelle repartition des surfaces sortie de l'interface  
   REAL pctsrf_new(klon, nbsrf)  
   
   REAL zcoefh(klon, klev)  
   REAL zu1(klon)  
   REAL zv1(klon)  
   
   !$$$ PB ajout pour soil  
   LOGICAL, INTENT (IN) :: soil_model  
   !IM ajout seuils cdrm, cdrh  
   REAL cdmmax, cdhmax  
   
   REAL ksta, ksta_ter  
   LOGICAL ok_kzmin  
   
   REAL ftsoil(klon, nsoilmx, nbsrf)  
   REAL ytsoil(klon, nsoilmx)  
   REAL qsol(klon)  
   
   EXTERNAL clqh, clvent, coefkz, calbeta, cltrac  
   
   REAL yts(klon), yrugos(klon), ypct(klon), yz0_new(klon)  
   REAL yalb(klon)  
   REAL yalblw(klon)  
   REAL yu1(klon), yv1(klon)  
   REAL ysnow(klon), yqsurf(klon), yagesno(klon), yqsol(klon)  
   REAL yrain_f(klon), ysnow_f(klon)  
   REAL ysollw(klon), ysolsw(klon), ysollwdown(klon)  
   REAL yfder(klon), ytaux(klon), ytauy(klon)  
   REAL yrugm(klon), yrads(klon), yrugoro(klon)  
   
   REAL yfluxlat(klon)  
   
   REAL y_d_ts(klon)  
   REAL y_d_t(klon, klev), y_d_q(klon, klev)  
   REAL y_d_u(klon, klev), y_d_v(klon, klev)  
   REAL y_flux_t(klon, klev), y_flux_q(klon, klev)  
   REAL y_flux_u(klon, klev), y_flux_v(klon, klev)  
   REAL y_dflux_t(klon), y_dflux_q(klon)  
   REAL ycoefh(klon, klev), ycoefm(klon, klev)  
   REAL yu(klon, klev), yv(klon, klev)  
   REAL yt(klon, klev), yq(klon, klev)  
   REAL ypaprs(klon, klev+1), ypplay(klon, klev), ydelp(klon, klev)  
   
   LOGICAL ok_nonloc  
   PARAMETER (ok_nonloc=.FALSE.)  
   REAL ycoefm0(klon, klev), ycoefh0(klon, klev)  
   
   !IM 081204 hcl_Anne ? BEG  
   REAL yzlay(klon, klev), yzlev(klon, klev+1), yteta(klon, klev)  
   REAL ykmm(klon, klev+1), ykmn(klon, klev+1)  
   REAL ykmq(klon, klev+1)  
   REAL yq2(klon, klev+1), q2(klon, klev+1, nbsrf)  
   REAL q2diag(klon, klev+1)  
   !IM 081204 hcl_Anne ? END  
   
   REAL u1lay(klon), v1lay(klon)  
   REAL delp(klon, klev)  
   INTEGER i, k, nsrf  
   
   INTEGER ni(klon), knon, j  
   ! Introduction d'une variable "pourcentage potentiel" pour tenir compte  
   ! des eventuelles apparitions et/ou disparitions de la glace de mer  
   REAL pctsrf_pot(klon, nbsrf)  
   
   REAL zx_alf1, zx_alf2 !valeur ambiante par extrapola.  
   
   ! maf pour sorties IOISPL en cas de debugagage  
   
   CHARACTER (80) cldebug  
   SAVE cldebug  
   CHARACTER (8) cl_surf(nbsrf)  
   SAVE cl_surf  
   INTEGER nhoridbg, nidbg  
   SAVE nhoridbg, nidbg  
   INTEGER ndexbg(iim*(jjm+1))  
   REAL zx_lon(iim, jjm+1), zx_lat(iim, jjm+1), zjulian  
   REAL tabindx(klon)  
   REAL debugtab(iim, jjm+1)  
   LOGICAL first_appel  
   SAVE first_appel  
   DATA first_appel/ .TRUE./  
   LOGICAL :: debugindex = .FALSE.  
   INTEGER idayref  
   REAL t2m(klon, nbsrf), q2m(klon, nbsrf)  
   REAL u10m(klon, nbsrf), v10m(klon, nbsrf)  
   
   REAL yt2m(klon), yq2m(klon), yu10m(klon)  
   REAL yustar(klon)  
   ! -- LOOP  
   REAL yu10mx(klon)  
   REAL yu10my(klon)  
   REAL ywindsp(klon)  
   ! -- LOOP  
   
   REAL yt10m(klon), yq10m(klon)  
   !IM cf. AM : pbl, hbtm (Comme les autres diagnostics on cumule ds  
   ! physiq ce qui permet de sortir les grdeurs par sous surface)  
   REAL pblh(klon, nbsrf)  
   REAL plcl(klon, nbsrf)  
   REAL capcl(klon, nbsrf)  
   REAL oliqcl(klon, nbsrf)  
   REAL cteicl(klon, nbsrf)  
   REAL pblt(klon, nbsrf)  
   REAL therm(klon, nbsrf)  
   REAL trmb1(klon, nbsrf)  
   REAL trmb2(klon, nbsrf)  
   REAL trmb3(klon, nbsrf)  
   REAL ypblh(klon)  
   REAL ylcl(klon)  
   REAL ycapcl(klon)  
   REAL yoliqcl(klon)  
   REAL ycteicl(klon)  
   REAL ypblt(klon)  
   REAL ytherm(klon)  
   REAL ytrmb1(klon)  
   REAL ytrmb2(klon)  
   REAL ytrmb3(klon)  
   REAL y_cd_h(klon), y_cd_m(klon)  
   REAL uzon(klon), vmer(klon)  
   REAL tair1(klon), qair1(klon), tairsol(klon)  
   REAL psfce(klon), patm(klon)  
   
   REAL qairsol(klon), zgeo1(klon)  
   REAL rugo1(klon)  
   
   ! utiliser un jeu de fonctions simples                
   LOGICAL zxli  
   PARAMETER (zxli=.FALSE.)  
   
   REAL zt, zqs, zdelta, zcor  
   REAL t_coup  
   PARAMETER (t_coup=273.15)  
   
   CHARACTER (len=20) :: modname = 'clmain'  
   
   !------------------------------------------------------------  
   
   ! initialisation Anne  
   ytherm = 0.  
   
   IF (debugindex .AND. first_appel) THEN  
      first_appel = .FALSE.  
   
      ! initialisation sorties netcdf  
   
      idayref = day_ini  
      CALL ymds2ju(annee_ref, 1, idayref, 0.0, zjulian)  
      CALL gr_fi_ecrit(1, klon, iim, jjm+1, rlon, zx_lon)  
      DO i = 1, iim  
         zx_lon(i, 1) = rlon(i+1)  
         zx_lon(i, jjm+1) = rlon(i+1)  
      END DO  
      CALL gr_fi_ecrit(1, klon, iim, jjm+1, rlat, zx_lat)  
      cldebug = 'sous_index'  
      CALL histbeg_totreg(cldebug, zx_lon(:, 1), zx_lat(1, :), 1, &  
           iim, 1, jjm+1, itau_phy, zjulian, dtime, nhoridbg, nidbg)  
      ! no vertical axis  
      cl_surf(1) = 'ter'  
      cl_surf(2) = 'lic'  
      cl_surf(3) = 'oce'  
      cl_surf(4) = 'sic'  
      DO nsrf = 1, nbsrf  
         CALL histdef(nidbg, cl_surf(nsrf), cl_surf(nsrf), '-', iim, jjm+1, &  
              nhoridbg, 1, 1, 1, -99, 'inst', dtime, dtime)  
      END DO  
      CALL histend(nidbg)  
      CALL histsync(nidbg)  
   END IF  
   
   DO k = 1, klev ! epaisseur de couche  
      DO i = 1, klon  
         delp(i, k) = paprs(i, k) - paprs(i, k+1)  
      END DO  
   END DO  
   DO i = 1, klon ! vent de la premiere couche  
      zx_alf1 = 1.0  
      zx_alf2 = 1.0 - zx_alf1  
      u1lay(i) = u(i, 1)*zx_alf1 + u(i, 2)*zx_alf2  
      v1lay(i) = v(i, 1)*zx_alf1 + v(i, 2)*zx_alf2  
   END DO  
   
   ! initialisation:  
   
   DO i = 1, klon  
      rugmer(i) = 0.0  
      cdragh(i) = 0.0  
      cdragm(i) = 0.0  
      dflux_t(i) = 0.0  
      dflux_q(i) = 0.0  
      zu1(i) = 0.0  
      zv1(i) = 0.0  
   END DO  
   ypct = 0.0  
   yts = 0.0  
   ysnow = 0.0  
   yqsurf = 0.0  
   yalb = 0.0  
   yalblw = 0.0  
   yrain_f = 0.0  
   ysnow_f = 0.0  
   yfder = 0.0  
   ytaux = 0.0  
   ytauy = 0.0  
   ysolsw = 0.0  
   ysollw = 0.0  
   ysollwdown = 0.0  
   yrugos = 0.0  
   yu1 = 0.0  
   yv1 = 0.0  
   yrads = 0.0  
   ypaprs = 0.0  
   ypplay = 0.0  
   ydelp = 0.0  
   yu = 0.0  
   yv = 0.0  
   yt = 0.0  
   yq = 0.0  
   pctsrf_new = 0.0  
   y_flux_u = 0.0  
   y_flux_v = 0.0  
   !$$ PB  
   y_dflux_t = 0.0  
   y_dflux_q = 0.0  
   ytsoil = 999999.  
   yrugoro = 0.  
   ! -- LOOP  
   yu10mx = 0.0  
   yu10my = 0.0  
   ywindsp = 0.0  
   ! -- LOOP  
   DO nsrf = 1, nbsrf  
      DO i = 1, klon  
         d_ts(i, nsrf) = 0.0  
      END DO  
   END DO  
   !§§§ PB  
   yfluxlat = 0.  
   flux_t = 0.  
   flux_q = 0.  
   flux_u = 0.  
   flux_v = 0.  
   DO k = 1, klev  
      DO i = 1, klon  
         d_t(i, k) = 0.0  
         d_q(i, k) = 0.0  
         !$$$         flux_t(i, k) = 0.0  
         !$$$         flux_q(i, k) = 0.0  
         d_u(i, k) = 0.0  
         d_v(i, k) = 0.0  
         !$$$         flux_u(i, k) = 0.0  
         !$$$         flux_v(i, k) = 0.0  
         zcoefh(i, k) = 0.0  
      END DO  
   END DO  
   !AA      IF (itr.GE.1) THEN  
   !AA      DO it = 1, itr  
   !AA      DO k = 1, klev  
   !AA      DO i = 1, klon  
   !AA         d_tr(i, k, it) = 0.0  
   !AA      ENDDO  
   !AA      ENDDO  
   !AA      ENDDO  
   !AA      ENDIF  
   
   
   ! Boucler sur toutes les sous-fractions du sol:  
   
   ! Initialisation des "pourcentages potentiels". On considere ici qu'on  
   ! peut avoir potentiellementdela glace sur tout le domaine oceanique  
   ! (a affiner)  
   
   pctsrf_pot = pctsrf  
   pctsrf_pot(:, is_oce) = 1. - zmasq  
   pctsrf_pot(:, is_sic) = 1. - zmasq  
   
   DO nsrf = 1, nbsrf  
      ! chercher les indices:  
      ni = 0  
      knon = 0  
      DO i = 1, klon  
         ! pour determiner le domaine a traiter on utilise les surfaces  
         ! "potentielles"  
         IF (pctsrf_pot(i, nsrf) > epsfra) THEN  
            knon = knon + 1  
            ni(knon) = i  
         END IF  
      END DO  
   
      ! variables pour avoir une sortie IOIPSL des INDEX  
      IF (debugindex) THEN  
         tabindx = 0.  
         DO i = 1, knon  
            tabindx(i) = real(i)  
         END DO  
         debugtab = 0.  
         ndexbg = 0  
         CALL gath2cpl(tabindx, debugtab, klon, knon, iim, jjm, ni)  
         CALL histwrite(nidbg, cl_surf(nsrf), itap, debugtab)  
      END IF  
   
      IF (knon==0) CYCLE  
   
      DO j = 1, knon  
         i = ni(j)  
         ypct(j) = pctsrf(i, nsrf)  
         yts(j) = ts(i, nsrf)  
         ytslab(i) = tslab(i)  
         ysnow(j) = snow(i, nsrf)  
         yqsurf(j) = qsurf(i, nsrf)  
         yalb(j) = albe(i, nsrf)  
         yalblw(j) = alblw(i, nsrf)  
         yrain_f(j) = rain_f(i)  
         ysnow_f(j) = snow_f(i)  
         yagesno(j) = agesno(i, nsrf)  
         yfder(j) = fder(i)  
         ytaux(j) = flux_u(i, 1, nsrf)  
         ytauy(j) = flux_v(i, 1, nsrf)  
         ysolsw(j) = solsw(i, nsrf)  
         ysollw(j) = sollw(i, nsrf)  
         ysollwdown(j) = sollwdown(i)  
         yrugos(j) = rugos(i, nsrf)  
         yrugoro(j) = rugoro(i)  
         yu1(j) = u1lay(i)  
         yv1(j) = v1lay(i)  
         yrads(j) = ysolsw(j) + ysollw(j)  
         ypaprs(j, klev+1) = paprs(i, klev+1)  
         y_run_off_lic_0(j) = run_off_lic_0(i)  
         yu10mx(j) = u10m(i, nsrf)  
         yu10my(j) = v10m(i, nsrf)  
         ywindsp(j) = sqrt(yu10mx(j)*yu10mx(j)+yu10my(j)*yu10my(j))  
      END DO  
   
      !     IF bucket model for continent, copy soil water content  
      IF (nsrf==is_ter .AND. .NOT. ok_veget) THEN  
         DO j = 1, knon  
            i = ni(j)  
            yqsol(j) = qsol(i)  
         END DO  
      ELSE  
         yqsol = 0.  
      END IF  
      !$$$ PB ajour pour soil  
      DO k = 1, nsoilmx  
         DO j = 1, knon  
            i = ni(j)  
            ytsoil(j, k) = ftsoil(i, k, nsrf)  
         END DO  
      END DO  
      DO k = 1, klev  
         DO j = 1, knon  
            i = ni(j)  
            ypaprs(j, k) = paprs(i, k)  
            ypplay(j, k) = pplay(i, k)  
            ydelp(j, k) = delp(i, k)  
            yu(j, k) = u(i, k)  
            yv(j, k) = v(i, k)  
            yt(j, k) = t(i, k)  
            yq(j, k) = q(i, k)  
         END DO  
      END DO  
   
      ! calculer Cdrag et les coefficients d'echange  
      CALL coefkz(nsrf, knon, ypaprs, ypplay, ksta, ksta_ter, yts,&  
           yrugos, yu, yv, yt, yq, yqsurf, ycoefm, ycoefh)  
      !IM 081204 BEG  
      !CR test  
      IF (iflag_pbl==1) THEN  
         !IM 081204 END  
         CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0, ycoefh0)  
         DO k = 1, klev  
            DO i = 1, knon  
               ycoefm(i, k) = max(ycoefm(i, k), ycoefm0(i, k))  
               ycoefh(i, k) = max(ycoefh(i, k), ycoefh0(i, k))  
            END DO  
         END DO  
      END IF  
   
      !IM cf JLD : on seuille ycoefm et ycoefh  
      IF (nsrf==is_oce) THEN  
         DO j = 1, knon  
            !           ycoefm(j, 1)=min(ycoefm(j, 1), 1.1E-3)  
            ycoefm(j, 1) = min(ycoefm(j, 1), cdmmax)  
            !           ycoefh(j, 1)=min(ycoefh(j, 1), 1.1E-3)  
            ycoefh(j, 1) = min(ycoefh(j, 1), cdhmax)  
         END DO  
      END IF  
   
   
      !IM: 261103  
      IF (ok_kzmin) THEN  
         !IM cf FH: 201103 BEG  
         !   Calcul d'une diffusion minimale pour les conditions tres stables.  
         CALL coefkzmin(knon, ypaprs, ypplay, yu, yv, yt, yq, ycoefm, ycoefm0, &  
              ycoefh0)  
         !      call dump2d(iim, jjm-1, ycoefm(2:klon-1, 2), 'KZ         ')  
         !      call dump2d(iim, jjm-1, ycoefm0(2:klon-1, 2), 'KZMIN      ')  
   
         IF (1==1) THEN  
            DO k = 1, klev  
               DO i = 1, knon  
                  ycoefm(i, k) = max(ycoefm(i, k), ycoefm0(i, k))  
                  ycoefh(i, k) = max(ycoefh(i, k), ycoefh0(i, k))  
               END DO  
            END DO  
         END IF  
         !IM cf FH: 201103 END  
         !IM: 261103  
      END IF !ok_kzmin  
   
      IF (iflag_pbl>=3) THEN  
   
         !ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc  
         ! MELLOR ET YAMADA adapte a Mars Richard Fournier et Frederic Hourdin  
         !ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc  
   
         yzlay(1:knon, 1) = rd*yt(1:knon, 1)/(0.5*(ypaprs(1:knon, &  
              1)+ypplay(1:knon, 1)))*(ypaprs(1:knon, 1)-ypplay(1:knon, 1))/rg  
         DO k = 2, klev  
            yzlay(1:knon, k) = yzlay(1:knon, k-1) &  
                 + rd*0.5*(yt(1:knon, k-1) +yt(1: knon, k)) &  
                 / ypaprs(1:knon, k) *(ypplay(1:knon, k-1)-ypplay(1:knon, k))/ &  
                 rg  
         END DO  
         DO k = 1, klev  
            yteta(1:knon, k) = yt(1:knon, k)*(ypaprs(1:knon, 1) &  
                 / ypplay(1:knon, k))**rkappa * (1.+0.61*yq(1:knon, k))  
         END DO  
         yzlev(1:knon, 1) = 0.  
         yzlev(1:knon, klev+1) = 2.*yzlay(1:knon, klev) - yzlay(1:knon, klev-1)  
         DO k = 2, klev  
            yzlev(1:knon, k) = 0.5*(yzlay(1:knon, k)+yzlay(1:knon, k-1))  
         END DO  
         DO k = 1, klev + 1  
            DO j = 1, knon  
               i = ni(j)  
               yq2(j, k) = q2(i, k, nsrf)  
            END DO  
         END DO  
   
   
         !   Bug introduit volontairement pour converger avec les resultats  
         !  du papier sur les thermiques.  
         IF (1==1) THEN  
            y_cd_m(1:knon) = ycoefm(1:knon, 1)  
            y_cd_h(1:knon) = ycoefh(1:knon, 1)  
         ELSE  
            y_cd_h(1:knon) = ycoefm(1:knon, 1)  
            y_cd_m(1:knon) = ycoefh(1:knon, 1)  
         END IF  
         CALL ustarhb(knon, yu, yv, y_cd_m, yustar)  
   
         IF (prt_level>9) THEN  
            PRINT *, 'USTAR = ', yustar  
         END IF  
   
         !   iflag_pbl peut etre utilise comme longuer de melange  
   
         IF (iflag_pbl>=11) THEN  
            CALL vdif_kcay(knon, dtime, rg, rd, ypaprs, yt, yzlev, yzlay, yu, yv, yteta, &  
                 y_cd_m, yq2, q2diag, ykmm, ykmn, yustar, iflag_pbl)  
         ELSE  
            CALL yamada4(knon, dtime, rg, rd, ypaprs, yt, yzlev, yzlay, yu, yv, yteta, &  
                 y_cd_m, yq2, ykmm, ykmn, ykmq, yustar, iflag_pbl)  
         END IF  
   
         ycoefm(1:knon, 1) = y_cd_m(1:knon)  
         ycoefh(1:knon, 1) = y_cd_h(1:knon)  
         ycoefm(1:knon, 2:klev) = ykmm(1:knon, 2:klev)  
         ycoefh(1:knon, 2:klev) = ykmn(1:knon, 2:klev)  
   
   
      END IF  
   
      !ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc  
      ! calculer la diffusion des vitesses "u" et "v"  
      !ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc  
   
      CALL clvent(knon, dtime, yu1, yv1, ycoefm, yt, yu, ypaprs, ypplay, &  
           ydelp, y_d_u, y_flux_u)  
      CALL clvent(knon, dtime, yu1, yv1, ycoefm, yt, yv, ypaprs, ypplay, &  
           ydelp, y_d_v, y_flux_v)  
   
      ! pour le couplage  
      ytaux = y_flux_u(:, 1)  
      ytauy = y_flux_v(:, 1)  
   
      ! FH modif sur le cdrag temperature  
      !$$$PB : déplace dans clcdrag  
      !$$$      do i=1, knon  
      !$$$         ycoefh(i, 1)=ycoefm(i, 1)*0.8  
      !$$$      enddo  
   
      ! calculer la diffusion de "q" et de "h"  
      CALL clqh(dtime, itap, date0, jour, debut, lafin, rlon, rlat,&  
           cufi, cvfi, knon, nsrf, ni, pctsrf, soil_model, ytsoil,&  
           yqsol, ok_veget, ocean, npas, nexca, rmu0, co2_ppm, yrugos,&  
           yrugoro, yu1, yv1, ycoefh, yt, yq, yts, ypaprs, ypplay,&  
           ydelp, yrads, yalb, yalblw, ysnow, yqsurf, yrain_f, ysnow_f, &  
           yfder, ytaux, ytauy, ywindsp, ysollw, ysollwdown, ysolsw,&  
           yfluxlat, pctsrf_new, yagesno, y_d_t, y_d_q, y_d_ts,&  
           yz0_new, y_flux_t, y_flux_q, y_dflux_t, y_dflux_q,&  
           y_fqcalving, y_ffonte, y_run_off_lic_0, y_flux_o, y_flux_g,&  
           ytslab, y_seaice)  
   
      ! calculer la longueur de rugosite sur ocean  
      yrugm = 0.  
      IF (nsrf==is_oce) THEN  
         DO j = 1, knon  
            yrugm(j) = 0.018*ycoefm(j, 1)*(yu1(j)**2+yv1(j)**2)/rg + &  
                 0.11*14E-6/sqrt(ycoefm(j, 1)*(yu1(j)**2+yv1(j)**2))  
            yrugm(j) = max(1.5E-05, yrugm(j))  
         END DO  
      END IF  
      DO j = 1, knon  
         y_dflux_t(j) = y_dflux_t(j)*ypct(j)  
         y_dflux_q(j) = y_dflux_q(j)*ypct(j)  
         yu1(j) = yu1(j)*ypct(j)  
         yv1(j) = yv1(j)*ypct(j)  
      END DO  
   
      DO k = 1, klev  
         DO j = 1, knon  
            i = ni(j)  
            ycoefh(j, k) = ycoefh(j, k)*ypct(j)  
            ycoefm(j, k) = ycoefm(j, k)*ypct(j)  
            y_d_t(j, k) = y_d_t(j, k)*ypct(j)  
            y_d_q(j, k) = y_d_q(j, k)*ypct(j)  
            !§§§ PB  
            flux_t(i, k, nsrf) = y_flux_t(j, k)  
            flux_q(i, k, nsrf) = y_flux_q(j, k)  
            flux_u(i, k, nsrf) = y_flux_u(j, k)  
            flux_v(i, k, nsrf) = y_flux_v(j, k)  
            !$$$ PB        y_flux_t(j, k) = y_flux_t(j, k) * ypct(j)  
            !$$$ PB        y_flux_q(j, k) = y_flux_q(j, k) * ypct(j)  
            y_d_u(j, k) = y_d_u(j, k)*ypct(j)  
            y_d_v(j, k) = y_d_v(j, k)*ypct(j)  
            !$$$ PB        y_flux_u(j, k) = y_flux_u(j, k) * ypct(j)  
            !$$$ PB        y_flux_v(j, k) = y_flux_v(j, k) * ypct(j)  
         END DO  
      END DO  
   
   
      evap(:, nsrf) = -flux_q(:, 1, nsrf)  
   
      albe(:, nsrf) = 0.  
      alblw(:, nsrf) = 0.  
      snow(:, nsrf) = 0.  
      qsurf(:, nsrf) = 0.  
      rugos(:, nsrf) = 0.  
      fluxlat(:, nsrf) = 0.  
      DO j = 1, knon  
         i = ni(j)  
         d_ts(i, nsrf) = y_d_ts(j)  
         albe(i, nsrf) = yalb(j)  
         alblw(i, nsrf) = yalblw(j)  
         snow(i, nsrf) = ysnow(j)  
         qsurf(i, nsrf) = yqsurf(j)  
         rugos(i, nsrf) = yz0_new(j)  
         fluxlat(i, nsrf) = yfluxlat(j)  
         !$$$ pb         rugmer(i) = yrugm(j)  
         IF (nsrf==is_oce) THEN  
            rugmer(i) = yrugm(j)  
            rugos(i, nsrf) = yrugm(j)  
         END IF  
         !IM cf JLD ??  
         agesno(i, nsrf) = yagesno(j)  
         fqcalving(i, nsrf) = y_fqcalving(j)  
         ffonte(i, nsrf) = y_ffonte(j)  
         cdragh(i) = cdragh(i) + ycoefh(j, 1)  
         cdragm(i) = cdragm(i) + ycoefm(j, 1)  
         dflux_t(i) = dflux_t(i) + y_dflux_t(j)  
         dflux_q(i) = dflux_q(i) + y_dflux_q(j)  
         zu1(i) = zu1(i) + yu1(j)  
         zv1(i) = zv1(i) + yv1(j)  
      END DO  
      IF (nsrf==is_ter) THEN  
         DO j = 1, knon  
            i = ni(j)  
            qsol(i) = yqsol(j)  
         END DO  
      END IF  
      IF (nsrf==is_lic) THEN  
         DO j = 1, knon  
            i = ni(j)  
            run_off_lic_0(i) = y_run_off_lic_0(j)  
         END DO  
      END IF  
      !$$$ PB ajout pour soil  
      ftsoil(:, :, nsrf) = 0.  
      DO k = 1, nsoilmx  
         DO j = 1, knon  
            i = ni(j)  
            ftsoil(i, k, nsrf) = ytsoil(j, k)  
         END DO  
      END DO  
   
      DO j = 1, knon  
         i = ni(j)  
         DO k = 1, klev  
            d_t(i, k) = d_t(i, k) + y_d_t(j, k)  
            d_q(i, k) = d_q(i, k) + y_d_q(j, k)  
            !$$$ PB        flux_t(i, k) = flux_t(i, k) + y_flux_t(j, k)  
            !$$$         flux_q(i, k) = flux_q(i, k) + y_flux_q(j, k)  
            d_u(i, k) = d_u(i, k) + y_d_u(j, k)  
            d_v(i, k) = d_v(i, k) + y_d_v(j, k)  
            !$$$  PB       flux_u(i, k) = flux_u(i, k) + y_flux_u(j, k)  
            !$$$         flux_v(i, k) = flux_v(i, k) + y_flux_v(j, k)  
            zcoefh(i, k) = zcoefh(i, k) + ycoefh(j, k)  
         END DO  
      END DO  
   
   
      !cc diagnostic t, q a 2m et u, v a 10m  
   
      DO j = 1, knon  
         i = ni(j)  
         uzon(j) = yu(j, 1) + y_d_u(j, 1)  
         vmer(j) = yv(j, 1) + y_d_v(j, 1)  
         tair1(j) = yt(j, 1) + y_d_t(j, 1)  
         qair1(j) = yq(j, 1) + y_d_q(j, 1)  
         zgeo1(j) = rd*tair1(j)/(0.5*(ypaprs(j, 1)+ypplay(j, &  
              1)))*(ypaprs(j, 1)-ypplay(j, 1))  
         tairsol(j) = yts(j) + y_d_ts(j)  
         rugo1(j) = yrugos(j)  
         IF (nsrf==is_oce) THEN  
            rugo1(j) = rugos(i, nsrf)  
         END IF  
         psfce(j) = ypaprs(j, 1)  
         patm(j) = ypplay(j, 1)  
   
         qairsol(j) = yqsurf(j)  
      END DO  
   
      CALL stdlevvar(klon, knon, nsrf, zxli, uzon, vmer, tair1, qair1, zgeo1, &  
           tairsol, qairsol, rugo1, psfce, patm, yt2m, yq2m, yt10m, yq10m, &  
           yu10m, yustar)  
      !IM 081204 END  
   
      DO j = 1, knon  
         i = ni(j)  
         t2m(i, nsrf) = yt2m(j)  
         q2m(i, nsrf) = yq2m(j)  
   
         ! u10m, v10m : composantes du vent a 10m sans spirale de Ekman  
         u10m(i, nsrf) = (yu10m(j)*uzon(j))/sqrt(uzon(j)**2+vmer(j)**2)  
         v10m(i, nsrf) = (yu10m(j)*vmer(j))/sqrt(uzon(j)**2+vmer(j)**2)  
   
      END DO  
   
      DO i = 1, knon  
         y_cd_h(i) = ycoefh(i, 1)  
         y_cd_m(i) = ycoefm(i, 1)  
      END DO  
      CALL hbtm(knon, ypaprs, ypplay, yt2m, yt10m, yq2m, yq10m, yustar, &  
           y_flux_t, y_flux_q, yu, yv, yt, yq, ypblh, ycapcl, yoliqcl, &  
           ycteicl, ypblt, ytherm, ytrmb1, ytrmb2, ytrmb3, ylcl)  
   
      DO j = 1, knon  
         i = ni(j)  
         pblh(i, nsrf) = ypblh(j)  
         plcl(i, nsrf) = ylcl(j)  
         capcl(i, nsrf) = ycapcl(j)  
         oliqcl(i, nsrf) = yoliqcl(j)  
         cteicl(i, nsrf) = ycteicl(j)  
         pblt(i, nsrf) = ypblt(j)  
         therm(i, nsrf) = ytherm(j)  
         trmb1(i, nsrf) = ytrmb1(j)  
         trmb2(i, nsrf) = ytrmb2(j)  
         trmb3(i, nsrf) = ytrmb3(j)  
      END DO  
   
   
      DO j = 1, knon  
         DO k = 1, klev + 1  
            i = ni(j)  
            q2(i, k, nsrf) = yq2(j, k)  
         END DO  
      END DO  
      !IM "slab" ocean  
      IF (nsrf==is_oce) THEN  
         DO j = 1, knon  
            ! on projette sur la grille globale  
            i = ni(j)  
            IF (pctsrf_new(i, is_oce)>epsfra) THEN  
               flux_o(i) = y_flux_o(j)  
            ELSE  
               flux_o(i) = 0.  
            END IF  
         END DO  
      END IF  
   
      IF (nsrf==is_sic) THEN  
         DO j = 1, knon  
            i = ni(j)  
            !IM 230604 on pondere lorsque l'on fait le bilan au sol :  flux_g(i) = y_flux_g(j)*ypct(j)  
            IF (pctsrf_new(i, is_sic)>epsfra) THEN  
               flux_g(i) = y_flux_g(j)  
            ELSE  
               flux_g(i) = 0.  
            END IF  
         END DO  
   
      END IF  
      !nsrf.EQ.is_sic                                              
      IF (ocean=='slab  ') THEN  
         IF (nsrf==is_oce) THEN  
            tslab(1:klon) = ytslab(1:klon)  
            seaice(1:klon) = y_seaice(1:klon)  
            !nsrf                                                        
         END IF  
         !OCEAN                                                        
      END IF  
   END DO  
6    
7    ! On utilise les nouvelles surfaces    SUBROUTINE clmain(dtime, pctsrf, t, q, u, v, julien, mu0, ftsol, cdmmax, &
8    ! A rajouter: conservation de l'albedo         cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, paprs, pplay, fsnow, &
9           qsurf, evap, falbe, fluxlat, rain_fall, snow_f, fsolsw, fsollw, frugs, &
10           agesno, rugoro, d_t, d_q, d_u, d_v, d_ts, flux_t, flux_q, flux_u, &
11           flux_v, cdragh, cdragm, q2, dflux_t, dflux_q, ycoefh, zu1, zv1, t2m, &
12           q2m, u10m_srf, v10m_srf, pblh, capcl, oliqcl, cteicl, pblt, therm, &
13           trmb1, trmb2, trmb3, plcl, fqcalving, ffonte, run_off_lic_0)
14    
15        ! From phylmd/clmain.F, version 1.6, 2005/11/16 14:47:19
16        ! Author: Z. X. Li (LMD/CNRS), date: 1993/08/18
17        ! Objet : interface de couche limite (diffusion verticale)
18    
19        ! Tout ce qui a trait aux traceurs est dans "phytrac". Le calcul
20        ! de la couche limite pour les traceurs se fait avec "cltrac" et
21        ! ne tient pas compte de la diff\'erentiation des sous-fractions
22        ! de sol.
23    
24        ! Pour pouvoir extraire les coefficients d'\'echanges et le vent
25        ! dans la premi\`ere couche, trois champs ont \'et\'e cr\'e\'es : "ycoefh",
26        ! "zu1" et "zv1". Nous avons moyenn\'e les valeurs de ces trois
27        ! champs sur les quatre sous-surfaces du mod\`ele.
28    
29        use clqh_m, only: clqh
30        use clvent_m, only: clvent
31        use coefkz_m, only: coefkz
32        use coefkzmin_m, only: coefkzmin
33        USE conf_gcm_m, ONLY: prt_level, lmt_pas
34        USE conf_phys_m, ONLY: iflag_pbl
35        USE dimphy, ONLY: klev, klon, zmasq
36        USE dimsoil, ONLY: nsoilmx
37        use hbtm_m, only: hbtm
38        USE indicesol, ONLY: epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf
39        USE interfoce_lim_m, ONLY: interfoce_lim
40        use stdlevvar_m, only: stdlevvar
41        USE suphec_m, ONLY: rd, rg, rkappa
42        use time_phylmdz, only: itap
43        use ustarhb_m, only: ustarhb
44        use vdif_kcay_m, only: vdif_kcay
45        use yamada4_m, only: yamada4
46    
47        REAL, INTENT(IN):: dtime ! interval du temps (secondes)
48    
49        REAL, INTENT(inout):: pctsrf(klon, nbsrf)
50        ! tableau des pourcentages de surface de chaque maille
51    
52        REAL, INTENT(IN):: t(klon, klev) ! temperature (K)
53        REAL, INTENT(IN):: q(klon, klev) ! vapeur d'eau (kg / kg)
54        REAL, INTENT(IN):: u(klon, klev), v(klon, klev) ! vitesse
55        INTEGER, INTENT(IN):: julien ! jour de l'annee en cours
56        REAL, intent(in):: mu0(klon) ! cosinus de l'angle solaire zenithal    
57        REAL, INTENT(IN):: ftsol(:, :) ! (klon, nbsrf) temp\'erature du sol (en K)
58        REAL, INTENT(IN):: cdmmax, cdhmax ! seuils cdrm, cdrh
59        REAL, INTENT(IN):: ksta, ksta_ter
60        LOGICAL, INTENT(IN):: ok_kzmin
61    
62        REAL, INTENT(inout):: ftsoil(klon, nsoilmx, nbsrf)
63        ! soil temperature of surface fraction
64    
65        REAL, INTENT(inout):: qsol(:) ! (klon)
66        ! column-density of water in soil, in kg m-2
67    
68        REAL, INTENT(IN):: paprs(klon, klev + 1) ! pression a intercouche (Pa)
69        REAL, INTENT(IN):: pplay(klon, klev) ! pression au milieu de couche (Pa)
70        REAL, INTENT(inout):: fsnow(:, :) ! (klon, nbsrf) \'epaisseur neigeuse
71        REAL qsurf(klon, nbsrf)
72        REAL evap(klon, nbsrf)
73        REAL, intent(inout):: falbe(klon, nbsrf)
74        REAL, intent(out):: fluxlat(:, :) ! (klon, nbsrf)
75    
76        REAL, intent(in):: rain_fall(klon)
77        ! liquid water mass flux (kg / m2 / s), positive down
78    
79        REAL, intent(in):: snow_f(klon)
80        ! solid water mass flux (kg / m2 / s), positive down
81    
82        REAL, INTENT(IN):: fsolsw(klon, nbsrf), fsollw(klon, nbsrf)
83        REAL, intent(inout):: frugs(klon, nbsrf) ! longueur de rugosit\'e (en m)
84        real agesno(klon, nbsrf)
85        REAL, INTENT(IN):: rugoro(klon)
86    
87        REAL d_t(klon, klev), d_q(klon, klev)
88        ! d_t------output-R- le changement pour "t"
89        ! d_q------output-R- le changement pour "q"
90    
91        REAL, intent(out):: d_u(klon, klev), d_v(klon, klev)
92        ! changement pour "u" et "v"
93    
94        REAL, intent(out):: d_ts(:, :) ! (klon, nbsrf) variation of ftsol
95    
96        REAL, intent(out):: flux_t(klon, nbsrf)
97        ! flux de chaleur sensible (Cp T) (W / m2) (orientation positive vers
98        ! le bas) à la surface
99    
100        REAL, intent(out):: flux_q(klon, nbsrf)
101        ! flux de vapeur d'eau (kg / m2 / s) à la surface
102    
103        REAL, intent(out):: flux_u(klon, nbsrf), flux_v(klon, nbsrf)
104        ! tension du vent à la surface, en Pa
105    
106        REAL, INTENT(out):: cdragh(klon), cdragm(klon)
107        real q2(klon, klev + 1, nbsrf)
108    
109        REAL, INTENT(out):: dflux_t(klon), dflux_q(klon)
110        ! dflux_t derive du flux sensible
111        ! dflux_q derive du flux latent
112        ! IM "slab" ocean
113    
114        REAL, intent(out):: ycoefh(klon, klev)
115        REAL, intent(out):: zu1(klon), zv1(klon)
116        REAL, INTENT(inout):: t2m(klon, nbsrf), q2m(klon, nbsrf)
117    
118        REAL, INTENT(inout):: u10m_srf(:, :), v10m_srf(:, :) ! (klon, nbsrf)
119        ! composantes du vent \`a 10m sans spirale d'Ekman
120    
121        ! Ionela Musat. Cf. Anne Mathieu : planetary boundary layer, hbtm.
122        ! Comme les autres diagnostics on cumule dans physiq ce qui permet
123        ! de sortir les grandeurs par sous-surface.
124        REAL pblh(klon, nbsrf) ! height of planetary boundary layer
125        REAL capcl(klon, nbsrf)
126        REAL oliqcl(klon, nbsrf)
127        REAL cteicl(klon, nbsrf)
128        REAL, INTENT(inout):: pblt(klon, nbsrf) ! T au nveau HCL
129        REAL therm(klon, nbsrf)
130        REAL trmb1(klon, nbsrf)
131        ! trmb1-------deep_cape
132        REAL trmb2(klon, nbsrf)
133        ! trmb2--------inhibition
134        REAL trmb3(klon, nbsrf)
135        ! trmb3-------Point Omega
136        REAL plcl(klon, nbsrf)
137        REAL fqcalving(klon, nbsrf), ffonte(klon, nbsrf)
138        ! ffonte----Flux thermique utilise pour fondre la neige
139        ! fqcalving-Flux d'eau "perdue" par la surface et necessaire pour limiter la
140        !           hauteur de neige, en kg / m2 / s
141        REAL run_off_lic_0(klon)
142    
143        ! Local:
144    
145        LOGICAL:: firstcal = .true.
146    
147        ! la nouvelle repartition des surfaces sortie de l'interface
148        REAL, save:: pctsrf_new_oce(klon)
149        REAL, save:: pctsrf_new_sic(klon)
150    
151        REAL y_fqcalving(klon), y_ffonte(klon)
152        real y_run_off_lic_0(klon)
153        REAL rugmer(klon)
154        REAL ytsoil(klon, nsoilmx)
155        REAL yts(klon), yrugos(klon), ypct(klon), yz0_new(klon)
156        REAL yalb(klon)
157    
158        REAL u1lay(klon), v1lay(klon) ! vent dans la premi\`ere couche, pour
159                                  ! une sous-surface donnée
160        
161        REAL snow(klon), yqsurf(klon), yagesno(klon)
162        real yqsol(klon) ! column-density of water in soil, in kg m-2
163        REAL yrain_f(klon) ! liquid water mass flux (kg / m2 / s), positive down
164        REAL ysnow_f(klon) ! solid water mass flux (kg / m2 / s), positive down
165        REAL yrugm(klon), yrads(klon), yrugoro(klon)
166        REAL yfluxlat(klon)
167        REAL y_d_ts(klon)
168        REAL y_d_t(klon, klev), y_d_q(klon, klev)
169        REAL y_d_u(klon, klev), y_d_v(klon, klev)
170        REAL y_flux_t(klon), y_flux_q(klon)
171        REAL y_flux_u(klon), y_flux_v(klon)
172        REAL y_dflux_t(klon), y_dflux_q(klon)
173        REAL coefh(klon, klev), coefm(klon, klev)
174        REAL yu(klon, klev), yv(klon, klev)
175        REAL yt(klon, klev), yq(klon, klev)
176        REAL ypaprs(klon, klev + 1), ypplay(klon, klev), ydelp(klon, klev)
177    
178        REAL ycoefm0(klon, klev), ycoefh0(klon, klev)
179    
180        REAL yzlay(klon, klev), yzlev(klon, klev + 1), yteta(klon, klev)
181        REAL ykmm(klon, klev + 1), ykmn(klon, klev + 1)
182        REAL ykmq(klon, klev + 1)
183        REAL yq2(klon, klev + 1)
184        REAL q2diag(klon, klev + 1)
185    
186        REAL delp(klon, klev)
187        INTEGER i, k, nsrf
188    
189        INTEGER ni(klon), knon, j
190    
191        REAL pctsrf_pot(klon, nbsrf)
192        ! "pourcentage potentiel" pour tenir compte des \'eventuelles
193        ! apparitions ou disparitions de la glace de mer
194    
195        REAL yt2m(klon), yq2m(klon), yu10m(klon)
196        REAL yustar(klon)
197    
198        REAL yt10m(klon), yq10m(klon)
199        REAL ypblh(klon)
200        REAL ylcl(klon)
201        REAL ycapcl(klon)
202        REAL yoliqcl(klon)
203        REAL ycteicl(klon)
204        REAL ypblt(klon)
205        REAL ytherm(klon)
206        REAL ytrmb1(klon)
207        REAL ytrmb2(klon)
208        REAL ytrmb3(klon)
209        REAL uzon(klon), vmer(klon)
210        REAL tair1(klon), qair1(klon), tairsol(klon)
211        REAL psfce(klon), patm(klon)
212    
213        REAL qairsol(klon), zgeo1(klon)
214        REAL rugo1(klon)
215    
216        ! utiliser un jeu de fonctions simples              
217        LOGICAL zxli
218        PARAMETER (zxli=.FALSE.)
219    
220        !------------------------------------------------------------
221    
222        ytherm = 0.
223    
224        DO k = 1, klev ! epaisseur de couche
225           DO i = 1, klon
226              delp(i, k) = paprs(i, k) - paprs(i, k + 1)
227           END DO
228        END DO
229    
230        ! Initialization:
231        rugmer = 0.
232        cdragh = 0.
233        cdragm = 0.
234        dflux_t = 0.
235        dflux_q = 0.
236        zu1 = 0.
237        zv1 = 0.
238        ypct = 0.
239        yqsurf = 0.
240        yrain_f = 0.
241        ysnow_f = 0.
242        yrugos = 0.
243        ypaprs = 0.
244        ypplay = 0.
245        ydelp = 0.
246        yu = 0.
247        yv = 0.
248        yt = 0.
249        yq = 0.
250        y_dflux_t = 0.
251        y_dflux_q = 0.
252        yrugoro = 0.
253        d_ts = 0.
254        flux_t = 0.
255        flux_q = 0.
256        flux_u = 0.
257        flux_v = 0.
258        fluxlat = 0.
259        d_t = 0.
260        d_q = 0.
261        d_u = 0.
262        d_v = 0.
263        ycoefh = 0.
264    
265        ! Initialisation des "pourcentages potentiels". On consid\`ere ici qu'on
266        ! peut avoir potentiellement de la glace sur tout le domaine oc\'eanique
267        ! (\`a affiner)
268    
269        pctsrf_pot(:, is_ter) = pctsrf(:, is_ter)
270        pctsrf_pot(:, is_lic) = pctsrf(:, is_lic)
271        pctsrf_pot(:, is_oce) = 1. - zmasq
272        pctsrf_pot(:, is_sic) = 1. - zmasq
273    
274        ! Tester si c'est le moment de lire le fichier:
275        if (mod(itap - 1, lmt_pas) == 0) then
276           CALL interfoce_lim(julien, pctsrf_new_oce, pctsrf_new_sic)
277        endif
278    
279        ! Boucler sur toutes les sous-fractions du sol:
280    
281        loop_surface: DO nsrf = 1, nbsrf
282           ! Chercher les indices :
283           ni = 0
284           knon = 0
285           DO i = 1, klon
286              ! Pour d\'eterminer le domaine \`a traiter, on utilise les surfaces
287              ! "potentielles"
288              IF (pctsrf_pot(i, nsrf) > epsfra) THEN
289                 knon = knon + 1
290                 ni(knon) = i
291              END IF
292           END DO
293    
294           if_knon: IF (knon /= 0) then
295              DO j = 1, knon
296                 i = ni(j)
297                 ypct(j) = pctsrf(i, nsrf)
298                 yts(j) = ftsol(i, nsrf)
299                 snow(j) = fsnow(i, nsrf)
300                 yqsurf(j) = qsurf(i, nsrf)
301                 yalb(j) = falbe(i, nsrf)
302                 yrain_f(j) = rain_fall(i)
303                 ysnow_f(j) = snow_f(i)
304                 yagesno(j) = agesno(i, nsrf)
305                 yrugos(j) = frugs(i, nsrf)
306                 yrugoro(j) = rugoro(i)
307                 u1lay(j) = u(i, 1)
308                 v1lay(j) = v(i, 1)
309                 yrads(j) = fsolsw(i, nsrf) + fsollw(i, nsrf)
310                 ypaprs(j, klev + 1) = paprs(i, klev + 1)
311                 y_run_off_lic_0(j) = run_off_lic_0(i)
312              END DO
313    
314              ! For continent, copy soil water content
315              IF (nsrf == is_ter) yqsol(:knon) = qsol(ni(:knon))
316    
317              ytsoil(:knon, :) = ftsoil(ni(:knon), :, nsrf)
318    
319              DO k = 1, klev
320                 DO j = 1, knon
321                    i = ni(j)
322                    ypaprs(j, k) = paprs(i, k)
323                    ypplay(j, k) = pplay(i, k)
324                    ydelp(j, k) = delp(i, k)
325                    yu(j, k) = u(i, k)
326                    yv(j, k) = v(i, k)
327                    yt(j, k) = t(i, k)
328                    yq(j, k) = q(i, k)
329                 END DO
330              END DO
331    
332              ! calculer Cdrag et les coefficients d'echange
333              CALL coefkz(nsrf, ypaprs, ypplay, ksta, ksta_ter, yts(:knon), &
334                   yrugos, yu, yv, yt, yq, yqsurf(:knon), coefm(:knon, :), &
335                   coefh(:knon, :))
336              IF (iflag_pbl == 1) THEN
337                 CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0, ycoefh0)
338                 coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :))
339                 coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, :))
340              END IF
341    
342              ! on met un seuil pour coefm et coefh
343              IF (nsrf == is_oce) THEN
344                 coefm(:knon, 1) = min(coefm(:knon, 1), cdmmax)
345                 coefh(:knon, 1) = min(coefh(:knon, 1), cdhmax)
346              END IF
347    
348              IF (ok_kzmin) THEN
349                 ! Calcul d'une diffusion minimale pour les conditions tres stables
350                 CALL coefkzmin(knon, ypaprs, ypplay, yu, yv, yt, yq, &
351                      coefm(:knon, 1), ycoefm0, ycoefh0)
352                 coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :))
353                 coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, :))
354              END IF
355    
356              IF (iflag_pbl >= 3) THEN
357                 ! Mellor et Yamada adapt\'e \`a Mars, Richard Fournier et
358                 ! Fr\'ed\'eric Hourdin
359                 yzlay(:knon, 1) = rd * yt(:knon, 1) / (0.5 * (ypaprs(:knon, 1) &
360                      + ypplay(:knon, 1))) &
361                      * (ypaprs(:knon, 1) - ypplay(:knon, 1)) / rg
362                 DO k = 2, klev
363                    yzlay(1:knon, k) = yzlay(1:knon, k-1) &
364                         + rd * 0.5 * (yt(1:knon, k-1) + yt(1:knon, k)) &
365                         / ypaprs(1:knon, k) &
366                         * (ypplay(1:knon, k-1) - ypplay(1:knon, k)) / rg
367                 END DO
368                 DO k = 1, klev
369                    yteta(1:knon, k) = yt(1:knon, k) * (ypaprs(1:knon, 1) &
370                         / ypplay(1:knon, k))**rkappa * (1. + 0.61 * yq(1:knon, k))
371                 END DO
372                 yzlev(1:knon, 1) = 0.
373                 yzlev(:knon, klev + 1) = 2. * yzlay(:knon, klev) &
374                      - yzlay(:knon, klev - 1)
375                 DO k = 2, klev
376                    yzlev(1:knon, k) = 0.5 * (yzlay(1:knon, k) + yzlay(1:knon, k-1))
377                 END DO
378                 DO k = 1, klev + 1
379                    DO j = 1, knon
380                       i = ni(j)
381                       yq2(j, k) = q2(i, k, nsrf)
382                    END DO
383                 END DO
384    
385                 CALL ustarhb(knon, yu, yv, coefm(:knon, 1), yustar)
386                 IF (prt_level > 9) PRINT *, 'USTAR = ', yustar
387    
388                 ! iflag_pbl peut \^etre utilis\'e comme longueur de m\'elange
389    
390                 IF (iflag_pbl >= 11) THEN
391                    CALL vdif_kcay(knon, dtime, rg, ypaprs, yzlev, yzlay, yu, yv, &
392                         yteta, coefm(:knon, 1), yq2, q2diag, ykmm, ykmn, yustar, &
393                         iflag_pbl)
394                 ELSE
395                    CALL yamada4(knon, dtime, rg, yzlev, yzlay, yu, yv, yteta, &
396                         coefm(:knon, 1), yq2, ykmm, ykmn, ykmq, yustar, iflag_pbl)
397                 END IF
398    
399                 coefm(:knon, 2:) = ykmm(:knon, 2:klev)
400                 coefh(:knon, 2:) = ykmn(:knon, 2:klev)
401              END IF
402    
403              ! calculer la diffusion des vitesses "u" et "v"
404              CALL clvent(knon, dtime, u1lay(:knon), v1lay(:knon), &
405                   coefm(:knon, :), yt, yu, ypaprs, ypplay, ydelp, y_d_u, &
406                   y_flux_u(:knon))
407              CALL clvent(knon, dtime, u1lay(:knon), v1lay(:knon), &
408                   coefm(:knon, :), yt, yv, ypaprs, ypplay, ydelp, y_d_v, &
409                   y_flux_v(:knon))
410    
411              ! calculer la diffusion de "q" et de "h"
412              CALL clqh(dtime, julien, firstcal, nsrf, ni(:knon), &
413                   ytsoil(:knon, :), yqsol(:knon), mu0, yrugos, yrugoro, &
414                   u1lay(:knon), v1lay(:knon), coefh(:knon, :), yt, yq, &
415                   yts(:knon), ypaprs, ypplay, ydelp, yrads(:knon), yalb(:knon), &
416                   snow(:knon), yqsurf, yrain_f, ysnow_f, yfluxlat(:knon), &
417                   pctsrf_new_sic, yagesno(:knon), y_d_t, y_d_q, y_d_ts(:knon), &
418                   yz0_new, y_flux_t(:knon), y_flux_q(:knon), y_dflux_t(:knon), &
419                   y_dflux_q(:knon), y_fqcalving, y_ffonte, y_run_off_lic_0)
420    
421              ! calculer la longueur de rugosite sur ocean
422              yrugm = 0.
423              IF (nsrf == is_oce) THEN
424                 DO j = 1, knon
425                    yrugm(j) = 0.018 * coefm(j, 1) * (u1lay(j)**2 + v1lay(j)**2) &
426                         / rg + 0.11 * 14E-6 &
427                         / sqrt(coefm(j, 1) * (u1lay(j)**2 + v1lay(j)**2))
428                    yrugm(j) = max(1.5E-05, yrugm(j))
429                 END DO
430              END IF
431              DO j = 1, knon
432                 y_dflux_t(j) = y_dflux_t(j) * ypct(j)
433                 y_dflux_q(j) = y_dflux_q(j) * ypct(j)
434              END DO
435    
436              DO k = 1, klev
437                 DO j = 1, knon
438                    i = ni(j)
439                    coefh(j, k) = coefh(j, k) * ypct(j)
440                    coefm(j, k) = coefm(j, k) * ypct(j)
441                    y_d_t(j, k) = y_d_t(j, k) * ypct(j)
442                    y_d_q(j, k) = y_d_q(j, k) * ypct(j)
443                    y_d_u(j, k) = y_d_u(j, k) * ypct(j)
444                    y_d_v(j, k) = y_d_v(j, k) * ypct(j)
445                 END DO
446              END DO
447    
448              flux_t(ni(:knon), nsrf) = y_flux_t(:knon)
449              flux_q(ni(:knon), nsrf) = y_flux_q(:knon)
450              flux_u(ni(:knon), nsrf) = y_flux_u(:knon)
451              flux_v(ni(:knon), nsrf) = y_flux_v(:knon)
452    
453              evap(:, nsrf) = -flux_q(:, nsrf)
454    
455              falbe(:, nsrf) = 0.
456              fsnow(:, nsrf) = 0.
457              qsurf(:, nsrf) = 0.
458              frugs(:, nsrf) = 0.
459              DO j = 1, knon
460                 i = ni(j)
461                 d_ts(i, nsrf) = y_d_ts(j)
462                 falbe(i, nsrf) = yalb(j)
463                 fsnow(i, nsrf) = snow(j)
464                 qsurf(i, nsrf) = yqsurf(j)
465                 frugs(i, nsrf) = yz0_new(j)
466                 fluxlat(i, nsrf) = yfluxlat(j)
467                 IF (nsrf == is_oce) THEN
468                    rugmer(i) = yrugm(j)
469                    frugs(i, nsrf) = yrugm(j)
470                 END IF
471                 agesno(i, nsrf) = yagesno(j)
472                 fqcalving(i, nsrf) = y_fqcalving(j)
473                 ffonte(i, nsrf) = y_ffonte(j)
474                 cdragh(i) = cdragh(i) + coefh(j, 1)
475                 cdragm(i) = cdragm(i) + coefm(j, 1)
476                 dflux_t(i) = dflux_t(i) + y_dflux_t(j)
477                 dflux_q(i) = dflux_q(i) + y_dflux_q(j)
478                 zu1(i) = zu1(i) + u1lay(j) * ypct(j)
479                 zv1(i) = zv1(i) + v1lay(j) * ypct(j)
480              END DO
481              IF (nsrf == is_ter) THEN
482                 qsol(ni(:knon)) = yqsol(:knon)
483              else IF (nsrf == is_lic) THEN
484                 DO j = 1, knon
485                    i = ni(j)
486                    run_off_lic_0(i) = y_run_off_lic_0(j)
487                 END DO
488              END IF
489    
490              ftsoil(:, :, nsrf) = 0.
491              ftsoil(ni(:knon), :, nsrf) = ytsoil(:knon, :)
492    
493              DO j = 1, knon
494                 i = ni(j)
495                 DO k = 1, klev
496                    d_t(i, k) = d_t(i, k) + y_d_t(j, k)
497                    d_q(i, k) = d_q(i, k) + y_d_q(j, k)
498                    d_u(i, k) = d_u(i, k) + y_d_u(j, k)
499                    d_v(i, k) = d_v(i, k) + y_d_v(j, k)
500                    ycoefh(i, k) = ycoefh(i, k) + coefh(j, k)
501                 END DO
502              END DO
503    
504              ! diagnostic t, q a 2m et u, v a 10m
505    
506              DO j = 1, knon
507                 i = ni(j)
508                 uzon(j) = yu(j, 1) + y_d_u(j, 1)
509                 vmer(j) = yv(j, 1) + y_d_v(j, 1)
510                 tair1(j) = yt(j, 1) + y_d_t(j, 1)
511                 qair1(j) = yq(j, 1) + y_d_q(j, 1)
512                 zgeo1(j) = rd * tair1(j) / (0.5 * (ypaprs(j, 1) + ypplay(j, &
513                      1))) * (ypaprs(j, 1)-ypplay(j, 1))
514                 tairsol(j) = yts(j) + y_d_ts(j)
515                 rugo1(j) = yrugos(j)
516                 IF (nsrf == is_oce) THEN
517                    rugo1(j) = frugs(i, nsrf)
518                 END IF
519                 psfce(j) = ypaprs(j, 1)
520                 patm(j) = ypplay(j, 1)
521    
522                 qairsol(j) = yqsurf(j)
523              END DO
524    
525              CALL stdlevvar(klon, knon, nsrf, zxli, uzon(:knon), vmer(:knon), &
526                   tair1, qair1, zgeo1, tairsol, qairsol, rugo1, psfce, patm, &
527                   yt2m, yq2m, yt10m, yq10m, yu10m, yustar)
528    
529              DO j = 1, knon
530                 i = ni(j)
531                 t2m(i, nsrf) = yt2m(j)
532                 q2m(i, nsrf) = yq2m(j)
533    
534                 u10m_srf(i, nsrf) = (yu10m(j) * uzon(j)) &
535                      / sqrt(uzon(j)**2 + vmer(j)**2)
536                 v10m_srf(i, nsrf) = (yu10m(j) * vmer(j)) &
537                      / sqrt(uzon(j)**2 + vmer(j)**2)
538              END DO
539    
540              CALL hbtm(ypaprs, ypplay, yt2m, yq2m, yustar, y_flux_t(:knon), &
541                   y_flux_q(:knon), yu, yv, yt, yq, ypblh(:knon), ycapcl, &
542                   yoliqcl, ycteicl, ypblt, ytherm, ytrmb1, ytrmb2, ytrmb3, ylcl)
543    
544              DO j = 1, knon
545                 i = ni(j)
546                 pblh(i, nsrf) = ypblh(j)
547                 plcl(i, nsrf) = ylcl(j)
548                 capcl(i, nsrf) = ycapcl(j)
549                 oliqcl(i, nsrf) = yoliqcl(j)
550                 cteicl(i, nsrf) = ycteicl(j)
551                 pblt(i, nsrf) = ypblt(j)
552                 therm(i, nsrf) = ytherm(j)
553                 trmb1(i, nsrf) = ytrmb1(j)
554                 trmb2(i, nsrf) = ytrmb2(j)
555                 trmb3(i, nsrf) = ytrmb3(j)
556              END DO
557    
558              DO j = 1, knon
559                 DO k = 1, klev + 1
560                    i = ni(j)
561                    q2(i, k, nsrf) = yq2(j, k)
562                 END DO
563              END DO
564           else
565              fsnow(:, nsrf) = 0.
566           end IF if_knon
567        END DO loop_surface
568    
569        ! On utilise les nouvelles surfaces
570        frugs(:, is_oce) = rugmer
571        pctsrf(:, is_oce) = pctsrf_new_oce
572        pctsrf(:, is_sic) = pctsrf_new_sic
573    
574    rugos(:, is_oce) = rugmer      firstcal = .false.
   pctsrf = pctsrf_new  
575    
576  END SUBROUTINE clmain    END SUBROUTINE clmain
577    
578    end module clmain_m

Legend:
Removed from v.37  
changed lines
  Added in v.225

  ViewVC Help
Powered by ViewVC 1.1.21