/[lmdze]/trunk/Sources/phylmd/clmain.f
ViewVC logotype

Diff of /trunk/Sources/phylmd/clmain.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/phylmd/clmain.f revision 82 by guez, Wed Mar 5 14:57:53 2014 UTC trunk/Sources/phylmd/clmain.f revision 215 by guez, Tue Mar 28 12:46:28 2017 UTC
# Line 4  module clmain_m Line 4  module clmain_m
4    
5  contains  contains
6    
7    SUBROUTINE clmain(dtime, itap, pctsrf, pctsrf_new, t, q, u, v, &    SUBROUTINE clmain(dtime, pctsrf, t, q, u, v, jour, mu0, ftsol, cdmmax, &
8         jour, rmu0, co2_ppm, ok_veget, ocean, ts, &         cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, qsol, paprs, pplay, fsnow, &
9         soil_model, cdmmax, cdhmax, ksta, ksta_ter, ok_kzmin, ftsoil, &         qsurf, evap, falbe, fluxlat, rain_fall, snow_f, solsw, sollw, fder, &
10         qsol, paprs, pplay, snow, qsurf, evap, albe, alblw, fluxlat, &         rugos, agesno, rugoro, d_t, d_q, d_u, d_v, d_ts, flux_t, flux_q, &
11         rain_fall, snow_f, solsw, sollw, fder, rlon, rlat, &         flux_u, flux_v, cdragh, cdragm, q2, dflux_t, dflux_q, ycoefh, zu1, &
12         rugos, debut, agesno, rugoro, d_t, d_q, d_u, d_v, &         zv1, t2m, q2m, u10m, v10m, pblh, capcl, oliqcl, cteicl, pblt, therm, &
13         d_ts, flux_t, flux_q, flux_u, flux_v, cdragh, cdragm, q2, &         trmb1, trmb2, trmb3, plcl, fqcalving, ffonte, run_off_lic_0)
        dflux_t, dflux_q, ycoefh, zu1, zv1, t2m, q2m, u10m, v10m, pblh, &  
        capcl, oliqcl, cteicl, pblt, therm, trmb1, trmb2, trmb3, plcl, &  
        fqcalving, ffonte, run_off_lic_0, flux_o, flux_g, tslab, seaice)  
14    
15      ! From phylmd/clmain.F, version 1.6 2005/11/16 14:47:19      ! From phylmd/clmain.F, version 1.6, 2005/11/16 14:47:19
16      ! Author: Z. X. Li (LMD/CNRS), date: 1993/08/18      ! Author: Z. X. Li (LMD/CNRS), date: 1993/08/18
17      ! Objet : interface de couche limite (diffusion verticale)      ! Objet : interface de couche limite (diffusion verticale)
18    
19      ! Tout ce qui a trait aux traceurs est dans "phytrac". Le calcul      ! Tout ce qui a trait aux traceurs est dans "phytrac". Le calcul
20      ! de la couche limite pour les traceurs se fait avec "cltrac" et      ! de la couche limite pour les traceurs se fait avec "cltrac" et
21      ! ne tient pas compte de la différentiation des sous-fractions de      ! ne tient pas compte de la diff\'erentiation des sous-fractions
22      ! sol.      ! de sol.
23    
24      ! Pour pouvoir extraire les coefficients d'échanges et le vent      ! Pour pouvoir extraire les coefficients d'\'echanges et le vent
25      ! dans la première couche, trois champs ont été créés : "ycoefh",      ! dans la premi\`ere couche, trois champs ont \'et\'e cr\'e\'es : "ycoefh",
26      ! "zu1" et "zv1". Nous avons moyenné les valeurs de ces trois      ! "zu1" et "zv1". Nous avons moyenn\'e les valeurs de ces trois
27      ! champs sur les quatre sous-surfaces du modèle.      ! champs sur les quatre sous-surfaces du mod\`ele.
28    
     use calendar, ONLY: ymds2ju  
29      use clqh_m, only: clqh      use clqh_m, only: clqh
30      use clvent_m, only: clvent      use clvent_m, only: clvent
31      use coefkz_m, only: coefkz      use coefkz_m, only: coefkz
32      use coefkzmin_m, only: coefkzmin      use coefkzmin_m, only: coefkzmin
33      USE conf_gcm_m, ONLY: prt_level      USE conf_gcm_m, ONLY: prt_level, lmt_pas
34      USE conf_phys_m, ONLY: iflag_pbl      USE conf_phys_m, ONLY: iflag_pbl
     USE dimens_m, ONLY: iim, jjm  
35      USE dimphy, ONLY: klev, klon, zmasq      USE dimphy, ONLY: klev, klon, zmasq
36      USE dimsoil, ONLY: nsoilmx      USE dimsoil, ONLY: nsoilmx
     USE dynetat0_m, ONLY: day_ini  
     USE gath_cpl, ONLY: gath2cpl  
37      use hbtm_m, only: hbtm      use hbtm_m, only: hbtm
     USE histbeg_totreg_m, ONLY: histbeg_totreg  
     USE histdef_m, ONLY: histdef  
     USE histend_m, ONLY: histend  
     USE histsync_m, ONLY: histsync  
     use histwrite_m, only: histwrite  
38      USE indicesol, ONLY: epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf      USE indicesol, ONLY: epsfra, is_lic, is_oce, is_sic, is_ter, nbsrf
39        USE interfoce_lim_m, ONLY: interfoce_lim
40        use stdlevvar_m, only: stdlevvar
41      USE suphec_m, ONLY: rd, rg, rkappa      USE suphec_m, ONLY: rd, rg, rkappa
42      USE temps, ONLY: annee_ref, itau_phy      use time_phylmdz, only: itap
43      use ustarhb_m, only: ustarhb      use ustarhb_m, only: ustarhb
44      use vdif_kcay_m, only: vdif_kcay      use vdif_kcay_m, only: vdif_kcay
45      use yamada4_m, only: yamada4      use yamada4_m, only: yamada4
46    
     ! Arguments:  
   
47      REAL, INTENT(IN):: dtime ! interval du temps (secondes)      REAL, INTENT(IN):: dtime ! interval du temps (secondes)
     INTEGER, INTENT(IN):: itap ! numero du pas de temps  
     REAL, INTENT(inout):: pctsrf(klon, nbsrf)  
48    
49      ! la nouvelle repartition des surfaces sortie de l'interface      REAL, INTENT(inout):: pctsrf(klon, nbsrf)
50      REAL, INTENT(out):: pctsrf_new(klon, nbsrf)      ! tableau des pourcentages de surface de chaque maille
51    
52      REAL, INTENT(IN):: t(klon, klev) ! temperature (K)      REAL, INTENT(IN):: t(klon, klev) ! temperature (K)
53      REAL, INTENT(IN):: q(klon, klev) ! vapeur d'eau (kg/kg)      REAL, INTENT(IN):: q(klon, klev) ! vapeur d'eau (kg/kg)
54      REAL, INTENT(IN):: u(klon, klev), v(klon, klev) ! vitesse      REAL, INTENT(IN):: u(klon, klev), v(klon, klev) ! vitesse
55      INTEGER, INTENT(IN):: jour ! jour de l'annee en cours      INTEGER, INTENT(IN):: jour ! jour de l'annee en cours
56      REAL, intent(in):: rmu0(klon) ! cosinus de l'angle solaire zenithal          REAL, intent(in):: mu0(klon) ! cosinus de l'angle solaire zenithal    
57      REAL co2_ppm ! taux CO2 atmosphere      REAL, INTENT(IN):: ftsol(klon, nbsrf) ! temp\'erature du sol (en K)
     LOGICAL ok_veget  
     CHARACTER(len=*), INTENT(IN):: ocean  
     REAL ts(klon, nbsrf) ! input-R- temperature du sol (en Kelvin)  
     LOGICAL, INTENT(IN):: soil_model  
58      REAL, INTENT(IN):: cdmmax, cdhmax ! seuils cdrm, cdrh      REAL, INTENT(IN):: cdmmax, cdhmax ! seuils cdrm, cdrh
59      REAL ksta, ksta_ter      REAL, INTENT(IN):: ksta, ksta_ter
60      LOGICAL ok_kzmin      LOGICAL, INTENT(IN):: ok_kzmin
61      REAL ftsoil(klon, nsoilmx, nbsrf)  
62      REAL qsol(klon)      REAL, INTENT(inout):: ftsoil(klon, nsoilmx, nbsrf)
63        ! soil temperature of surface fraction
64    
65        REAL, INTENT(inout):: qsol(klon)
66        ! column-density of water in soil, in kg m-2
67    
68      REAL, INTENT(IN):: paprs(klon, klev+1) ! pression a intercouche (Pa)      REAL, INTENT(IN):: paprs(klon, klev+1) ! pression a intercouche (Pa)
69      REAL, INTENT(IN):: pplay(klon, klev) ! pression au milieu de couche (Pa)      REAL, INTENT(IN):: pplay(klon, klev) ! pression au milieu de couche (Pa)
70      REAL snow(klon, nbsrf)      REAL, INTENT(inout):: fsnow(:, :) ! (klon, nbsrf) \'epaisseur neigeuse
71      REAL qsurf(klon, nbsrf)      REAL qsurf(klon, nbsrf)
72      REAL evap(klon, nbsrf)      REAL evap(klon, nbsrf)
73      REAL albe(klon, nbsrf)      REAL, intent(inout):: falbe(klon, nbsrf)
74      REAL alblw(klon, nbsrf)      REAL, intent(out):: fluxlat(:, :) ! (klon, nbsrf)
75    
76      REAL fluxlat(klon, nbsrf)      REAL, intent(in):: rain_fall(klon)
77        ! liquid water mass flux (kg/m2/s), positive down
78    
79      REAL, intent(in):: rain_fall(klon), snow_f(klon)      REAL, intent(in):: snow_f(klon)
80      REAL, INTENT(IN):: solsw(klon, nbsrf), sollw(klon, nbsrf)      ! solid water mass flux (kg/m2/s), positive down
     REAL fder(klon)  
     REAL, INTENT(IN):: rlon(klon)  
     REAL, INTENT(IN):: rlat(klon) ! latitude en degrés  
81    
82      REAL rugos(klon, nbsrf)      REAL, INTENT(IN):: solsw(klon, nbsrf), sollw(klon, nbsrf)
83      ! rugos----input-R- longeur de rugosite (en m)      REAL, intent(in):: fder(klon)
84        REAL, intent(inout):: rugos(klon, nbsrf) ! longueur de rugosit\'e (en m)
     LOGICAL, INTENT(IN):: debut  
85      real agesno(klon, nbsrf)      real agesno(klon, nbsrf)
86      REAL, INTENT(IN):: rugoro(klon)      REAL, INTENT(IN):: rugoro(klon)
87    
# Line 108  contains Line 92  contains
92      REAL, intent(out):: d_u(klon, klev), d_v(klon, klev)      REAL, intent(out):: d_u(klon, klev), d_v(klon, klev)
93      ! changement pour "u" et "v"      ! changement pour "u" et "v"
94    
95      REAL d_ts(klon, nbsrf)      REAL, intent(out):: d_ts(klon, nbsrf) ! le changement pour ftsol
     ! d_ts-----output-R- le changement pour "ts"  
96    
97      REAL flux_t(klon, klev, nbsrf), flux_q(klon, klev, nbsrf)      REAL, intent(out):: flux_t(klon, nbsrf)
98      ! flux_t---output-R- flux de chaleur sensible (CpT) J/m**2/s (W/m**2)      ! flux de chaleur sensible (Cp T) (W/m2) (orientation positive vers
99      !                    (orientation positive vers le bas)      ! le bas) à la surface
100      ! flux_q---output-R- flux de vapeur d'eau (kg/m**2/s)  
101        REAL, intent(out):: flux_q(klon, nbsrf)
102      REAL flux_u(klon, klev, nbsrf), flux_v(klon, klev, nbsrf)      ! flux de vapeur d'eau (kg/m2/s) à la surface
103      ! flux_u---output-R- tension du vent X: (kg m/s)/(m**2 s) ou Pascal  
104      ! flux_v---output-R- tension du vent Y: (kg m/s)/(m**2 s) ou Pascal      REAL, intent(out):: flux_u(klon, nbsrf), flux_v(klon, nbsrf)
105        ! tension du vent à la surface, en Pa
106    
107      REAL, INTENT(out):: cdragh(klon), cdragm(klon)      REAL, INTENT(out):: cdragh(klon), cdragm(klon)
108      real q2(klon, klev+1, nbsrf)      real q2(klon, klev+1, nbsrf)
109    
110      REAL dflux_t(klon), dflux_q(klon)      REAL, INTENT(out):: dflux_t(klon), dflux_q(klon)
111      ! dflux_t derive du flux sensible      ! dflux_t derive du flux sensible
112      ! dflux_q derive du flux latent      ! dflux_q derive du flux latent
113      !IM "slab" ocean      ! IM "slab" ocean
114    
115      REAL, intent(out):: ycoefh(klon, klev)      REAL, intent(out):: ycoefh(klon, klev)
116      REAL, intent(out):: zu1(klon)      REAL, intent(out):: zu1(klon)
# Line 134  contains Line 118  contains
118      REAL t2m(klon, nbsrf), q2m(klon, nbsrf)      REAL t2m(klon, nbsrf), q2m(klon, nbsrf)
119      REAL u10m(klon, nbsrf), v10m(klon, nbsrf)      REAL u10m(klon, nbsrf), v10m(klon, nbsrf)
120    
121      !IM cf. AM : pbl, hbtm (Comme les autres diagnostics on cumule ds      ! Ionela Musat cf. Anne Mathieu : planetary boundary layer, hbtm
122      ! physiq ce qui permet de sortir les grdeurs par sous surface)      ! (Comme les autres diagnostics on cumule dans physiq ce qui
123      REAL pblh(klon, nbsrf)      ! permet de sortir les grandeurs par sous-surface)
124      ! pblh------- HCL      REAL pblh(klon, nbsrf) ! height of planetary boundary layer
125      REAL capcl(klon, nbsrf)      REAL capcl(klon, nbsrf)
126      REAL oliqcl(klon, nbsrf)      REAL oliqcl(klon, nbsrf)
127      REAL cteicl(klon, nbsrf)      REAL cteicl(klon, nbsrf)
# Line 157  contains Line 141  contains
141      !           hauteur de neige, en kg/m2/s      !           hauteur de neige, en kg/m2/s
142      REAL run_off_lic_0(klon)      REAL run_off_lic_0(klon)
143    
144      REAL flux_o(klon), flux_g(klon)      ! Local:
     !IM "slab" ocean  
     ! flux_g---output-R-  flux glace (pour OCEAN='slab  ')  
     ! flux_o---output-R-  flux ocean (pour OCEAN='slab  ')  
   
     REAL tslab(klon)  
     ! tslab-in/output-R temperature du slab ocean (en Kelvin)  
     ! uniqmnt pour slab  
145    
146      REAL seaice(klon)      LOGICAL:: firstcal = .true.
     ! seaice---output-R-  glace de mer (kg/m2) (pour OCEAN='slab  ')  
147    
148      ! Local:      ! la nouvelle repartition des surfaces sortie de l'interface
149        REAL, save:: pctsrf_new_oce(klon)
150        REAL, save:: pctsrf_new_sic(klon)
151    
     REAL y_flux_o(klon), y_flux_g(klon)  
     real ytslab(klon)  
     real y_seaice(klon)  
152      REAL y_fqcalving(klon), y_ffonte(klon)      REAL y_fqcalving(klon), y_ffonte(klon)
153      real y_run_off_lic_0(klon)      real y_run_off_lic_0(klon)
   
154      REAL rugmer(klon)      REAL rugmer(klon)
   
155      REAL ytsoil(klon, nsoilmx)      REAL ytsoil(klon, nsoilmx)
   
156      REAL yts(klon), yrugos(klon), ypct(klon), yz0_new(klon)      REAL yts(klon), yrugos(klon), ypct(klon), yz0_new(klon)
157      REAL yalb(klon)      REAL yalb(klon)
158      REAL yalblw(klon)  
159      REAL yu1(klon), yv1(klon)      REAL yu1(klon), yv1(klon)
160      ! on rajoute en output yu1 et yv1 qui sont les vents dans      ! On ajoute en output yu1 et yv1 qui sont les vents dans
161      ! la premiere couche      ! la premi\`ere couche.
162      REAL ysnow(klon), yqsurf(klon), yagesno(klon), yqsol(klon)      
163      REAL yrain_f(klon), ysnow_f(klon)      REAL snow(klon), yqsurf(klon), yagesno(klon)
     REAL ysollw(klon), ysolsw(klon)  
     REAL yfder(klon), ytaux(klon), ytauy(klon)  
     REAL yrugm(klon), yrads(klon), yrugoro(klon)  
164    
165      REAL yfluxlat(klon)      real yqsol(klon)
166        ! column-density of water in soil, in kg m-2
167    
168        REAL yrain_f(klon)
169        ! liquid water mass flux (kg/m2/s), positive down
170    
171        REAL ysnow_f(klon)
172        ! solid water mass flux (kg/m2/s), positive down
173    
174        REAL yfder(klon)
175        REAL yrugm(klon), yrads(klon), yrugoro(klon)
176        REAL yfluxlat(klon)
177      REAL y_d_ts(klon)      REAL y_d_ts(klon)
178      REAL y_d_t(klon, klev), y_d_q(klon, klev)      REAL y_d_t(klon, klev), y_d_q(klon, klev)
179      REAL y_d_u(klon, klev), y_d_v(klon, klev)      REAL y_d_u(klon, klev), y_d_v(klon, klev)
180      REAL y_flux_t(klon, klev), y_flux_q(klon, klev)      REAL y_flux_t(klon), y_flux_q(klon)
181      REAL y_flux_u(klon, klev), y_flux_v(klon, klev)      REAL y_flux_u(klon), y_flux_v(klon)
182      REAL y_dflux_t(klon), y_dflux_q(klon)      REAL y_dflux_t(klon), y_dflux_q(klon)
183      REAL coefh(klon, klev), coefm(klon, klev)      REAL coefh(klon, klev), coefm(klon, klev)
184      REAL yu(klon, klev), yv(klon, klev)      REAL yu(klon, klev), yv(klon, klev)
# Line 221  contains Line 200  contains
200      INTEGER ni(klon), knon, j      INTEGER ni(klon), knon, j
201    
202      REAL pctsrf_pot(klon, nbsrf)      REAL pctsrf_pot(klon, nbsrf)
203      ! "pourcentage potentiel" pour tenir compte des éventuelles      ! "pourcentage potentiel" pour tenir compte des \'eventuelles
204      ! apparitions ou disparitions de la glace de mer      ! apparitions ou disparitions de la glace de mer
205    
206      REAL zx_alf1, zx_alf2 !valeur ambiante par extrapola.      REAL zx_alf1, zx_alf2 ! valeur ambiante par extrapolation
   
     ! maf pour sorties IOISPL en cas de debugagage  
   
     CHARACTER(80) cldebug  
     SAVE cldebug  
     CHARACTER(8) cl_surf(nbsrf)  
     SAVE cl_surf  
     INTEGER nhoridbg, nidbg  
     SAVE nhoridbg, nidbg  
     INTEGER ndexbg(iim*(jjm+1))  
     REAL zx_lon(iim, jjm+1), zx_lat(iim, jjm+1), zjulian  
     REAL tabindx(klon)  
     REAL debugtab(iim, jjm+1)  
     LOGICAL first_appel  
     SAVE first_appel  
     DATA first_appel/ .TRUE./  
     LOGICAL:: debugindex = .FALSE.  
     INTEGER idayref  
207    
208      REAL yt2m(klon), yq2m(klon), yu10m(klon)      REAL yt2m(klon), yq2m(klon), yu10m(klon)
209      REAL yustar(klon)      REAL yustar(klon)
     ! -- LOOP  
     REAL yu10mx(klon)  
     REAL yu10my(klon)  
     REAL ywindsp(klon)  
     ! -- LOOP  
210    
211      REAL yt10m(klon), yq10m(klon)      REAL yt10m(klon), yq10m(klon)
212      REAL ypblh(klon)      REAL ypblh(klon)
# Line 278  contains Line 234  contains
234    
235      ytherm = 0.      ytherm = 0.
236    
     IF (debugindex .AND. first_appel) THEN  
        first_appel = .FALSE.  
   
        ! initialisation sorties netcdf  
   
        idayref = day_ini  
        CALL ymds2ju(annee_ref, 1, idayref, 0., zjulian)  
        CALL gr_fi_ecrit(1, klon, iim, jjm+1, rlon, zx_lon)  
        DO i = 1, iim  
           zx_lon(i, 1) = rlon(i+1)  
           zx_lon(i, jjm+1) = rlon(i+1)  
        END DO  
        CALL gr_fi_ecrit(1, klon, iim, jjm+1, rlat, zx_lat)  
        cldebug = 'sous_index'  
        CALL histbeg_totreg(cldebug, zx_lon(:, 1), zx_lat(1, :), 1, &  
             iim, 1, jjm+1, itau_phy, zjulian, dtime, nhoridbg, nidbg)  
        ! no vertical axis  
        cl_surf(1) = 'ter'  
        cl_surf(2) = 'lic'  
        cl_surf(3) = 'oce'  
        cl_surf(4) = 'sic'  
        DO nsrf = 1, nbsrf  
           CALL histdef(nidbg, cl_surf(nsrf), cl_surf(nsrf), '-', iim, jjm+1, &  
                nhoridbg, 1, 1, 1, -99, 'inst', dtime, dtime)  
        END DO  
        CALL histend(nidbg)  
        CALL histsync(nidbg)  
     END IF  
   
237      DO k = 1, klev ! epaisseur de couche      DO k = 1, klev ! epaisseur de couche
238         DO i = 1, klon         DO i = 1, klon
239            delp(i, k) = paprs(i, k) - paprs(i, k+1)            delp(i, k) = paprs(i, k) - paprs(i, k+1)
# Line 329  contains Line 256  contains
256      zv1 = 0.      zv1 = 0.
257      ypct = 0.      ypct = 0.
258      yts = 0.      yts = 0.
     ysnow = 0.  
259      yqsurf = 0.      yqsurf = 0.
     yalb = 0.  
     yalblw = 0.  
260      yrain_f = 0.      yrain_f = 0.
261      ysnow_f = 0.      ysnow_f = 0.
262      yfder = 0.      yfder = 0.
     ytaux = 0.  
     ytauy = 0.  
     ysolsw = 0.  
     ysollw = 0.  
263      yrugos = 0.      yrugos = 0.
264      yu1 = 0.      yu1 = 0.
265      yv1 = 0.      yv1 = 0.
# Line 351  contains Line 271  contains
271      yv = 0.      yv = 0.
272      yt = 0.      yt = 0.
273      yq = 0.      yq = 0.
     pctsrf_new = 0.  
     y_flux_u = 0.  
     y_flux_v = 0.  
     !$$ PB  
274      y_dflux_t = 0.      y_dflux_t = 0.
275      y_dflux_q = 0.      y_dflux_q = 0.
     ytsoil = 999999.  
276      yrugoro = 0.      yrugoro = 0.
     ! -- LOOP  
     yu10mx = 0.  
     yu10my = 0.  
     ywindsp = 0.  
     ! -- LOOP  
277      d_ts = 0.      d_ts = 0.
     !§§§ PB  
     yfluxlat = 0.  
278      flux_t = 0.      flux_t = 0.
279      flux_q = 0.      flux_q = 0.
280      flux_u = 0.      flux_u = 0.
281      flux_v = 0.      flux_v = 0.
282        fluxlat = 0.
283      d_t = 0.      d_t = 0.
284      d_q = 0.      d_q = 0.
285      d_u = 0.      d_u = 0.
286      d_v = 0.      d_v = 0.
287      ycoefh = 0.      ycoefh = 0.
288    
289      ! Boucler sur toutes les sous-fractions du sol:      ! Initialisation des "pourcentages potentiels". On consid\`ere ici qu'on
290        ! peut avoir potentiellement de la glace sur tout le domaine oc\'eanique
291        ! (\`a affiner)
292    
293      ! Initialisation des "pourcentages potentiels". On considère ici qu'on      pctsrf_pot(:, is_ter) = pctsrf(:, is_ter)
294      ! peut avoir potentiellement de la glace sur tout le domaine océanique      pctsrf_pot(:, is_lic) = pctsrf(:, is_lic)
     ! (à affiner)  
   
     pctsrf_pot = pctsrf  
295      pctsrf_pot(:, is_oce) = 1. - zmasq      pctsrf_pot(:, is_oce) = 1. - zmasq
296      pctsrf_pot(:, is_sic) = 1. - zmasq      pctsrf_pot(:, is_sic) = 1. - zmasq
297    
298        ! Tester si c'est le moment de lire le fichier:
299        if (mod(itap - 1, lmt_pas) == 0) then
300           CALL interfoce_lim(jour, pctsrf_new_oce, pctsrf_new_sic)
301        endif
302    
303        ! Boucler sur toutes les sous-fractions du sol:
304    
305      loop_surface: DO nsrf = 1, nbsrf      loop_surface: DO nsrf = 1, nbsrf
306         ! Chercher les indices :         ! Chercher les indices :
307         ni = 0         ni = 0
308         knon = 0         knon = 0
309         DO i = 1, klon         DO i = 1, klon
310            ! Pour déterminer le domaine à traiter, on utilise les surfaces            ! Pour d\'eterminer le domaine \`a traiter, on utilise les surfaces
311            ! "potentielles"            ! "potentielles"
312            IF (pctsrf_pot(i, nsrf) > epsfra) THEN            IF (pctsrf_pot(i, nsrf) > epsfra) THEN
313               knon = knon + 1               knon = knon + 1
# Line 400  contains Line 315  contains
315            END IF            END IF
316         END DO         END DO
317    
        ! variables pour avoir une sortie IOIPSL des INDEX  
        IF (debugindex) THEN  
           tabindx = 0.  
           DO i = 1, knon  
              tabindx(i) = real(i)  
           END DO  
           debugtab = 0.  
           ndexbg = 0  
           CALL gath2cpl(tabindx, debugtab, klon, knon, iim, jjm, ni)  
           CALL histwrite(nidbg, cl_surf(nsrf), itap, debugtab)  
        END IF  
   
318         if_knon: IF (knon /= 0) then         if_knon: IF (knon /= 0) then
319            DO j = 1, knon            DO j = 1, knon
320               i = ni(j)               i = ni(j)
321               ypct(j) = pctsrf(i, nsrf)               ypct(j) = pctsrf(i, nsrf)
322               yts(j) = ts(i, nsrf)               yts(j) = ftsol(i, nsrf)
323               ytslab(i) = tslab(i)               snow(j) = fsnow(i, nsrf)
              ysnow(j) = snow(i, nsrf)  
324               yqsurf(j) = qsurf(i, nsrf)               yqsurf(j) = qsurf(i, nsrf)
325               yalb(j) = albe(i, nsrf)               yalb(j) = falbe(i, nsrf)
              yalblw(j) = alblw(i, nsrf)  
326               yrain_f(j) = rain_fall(i)               yrain_f(j) = rain_fall(i)
327               ysnow_f(j) = snow_f(i)               ysnow_f(j) = snow_f(i)
328               yagesno(j) = agesno(i, nsrf)               yagesno(j) = agesno(i, nsrf)
329               yfder(j) = fder(i)               yfder(j) = fder(i)
              ytaux(j) = flux_u(i, 1, nsrf)  
              ytauy(j) = flux_v(i, 1, nsrf)  
              ysolsw(j) = solsw(i, nsrf)  
              ysollw(j) = sollw(i, nsrf)  
330               yrugos(j) = rugos(i, nsrf)               yrugos(j) = rugos(i, nsrf)
331               yrugoro(j) = rugoro(i)               yrugoro(j) = rugoro(i)
332               yu1(j) = u1lay(i)               yu1(j) = u1lay(i)
333               yv1(j) = v1lay(i)               yv1(j) = v1lay(i)
334               yrads(j) = ysolsw(j) + ysollw(j)               yrads(j) = solsw(i, nsrf) + sollw(i, nsrf)
335               ypaprs(j, klev+1) = paprs(i, klev+1)               ypaprs(j, klev+1) = paprs(i, klev+1)
336               y_run_off_lic_0(j) = run_off_lic_0(i)               y_run_off_lic_0(j) = run_off_lic_0(i)
              yu10mx(j) = u10m(i, nsrf)  
              yu10my(j) = v10m(i, nsrf)  
              ywindsp(j) = sqrt(yu10mx(j)*yu10mx(j)+yu10my(j)*yu10my(j))  
337            END DO            END DO
338    
339            ! IF bucket model for continent, copy soil water content            ! For continent, copy soil water content
340            IF (nsrf == is_ter .AND. .NOT. ok_veget) THEN            IF (nsrf == is_ter) THEN
341               DO j = 1, knon               yqsol(:knon) = qsol(ni(:knon))
                 i = ni(j)  
                 yqsol(j) = qsol(i)  
              END DO  
342            ELSE            ELSE
343               yqsol = 0.               yqsol = 0.
344            END IF            END IF
345    
346            DO k = 1, nsoilmx            ytsoil(:knon, :) = ftsoil(ni(:knon), :, nsrf)
              DO j = 1, knon  
                 i = ni(j)  
                 ytsoil(j, k) = ftsoil(i, k, nsrf)  
              END DO  
           END DO  
347    
348            DO k = 1, klev            DO k = 1, klev
349               DO j = 1, knon               DO j = 1, knon
# Line 473  contains Line 359  contains
359            END DO            END DO
360    
361            ! calculer Cdrag et les coefficients d'echange            ! calculer Cdrag et les coefficients d'echange
362            CALL coefkz(nsrf, knon, ypaprs, ypplay, ksta, ksta_ter, yts, yrugos, &            CALL coefkz(nsrf, ypaprs, ypplay, ksta, ksta_ter, yts, yrugos, yu, &
363                 yu, yv, yt, yq, yqsurf, coefm(:knon, :), coefh(:knon, :))                 yv, yt, yq, yqsurf, coefm(:knon, :), coefh(:knon, :))
364            IF (iflag_pbl == 1) THEN            IF (iflag_pbl == 1) THEN
365               CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0, ycoefh0)               CALL coefkz2(nsrf, knon, ypaprs, ypplay, yt, ycoefm0, ycoefh0)
366               coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :))               coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :))
# Line 493  contains Line 379  contains
379                    coefm(:knon, 1), ycoefm0, ycoefh0)                    coefm(:knon, 1), ycoefm0, ycoefh0)
380               coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :))               coefm(:knon, :) = max(coefm(:knon, :), ycoefm0(:knon, :))
381               coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, :))               coefh(:knon, :) = max(coefh(:knon, :), ycoefh0(:knon, :))
382             END IF            END IF
383    
384            IF (iflag_pbl >= 3) THEN            IF (iflag_pbl >= 3) THEN
385               ! MELLOR ET YAMADA adapté à Mars, Richard Fournier et               ! Mellor et Yamada adapt\'e \`a Mars, Richard Fournier et
386               ! Frédéric Hourdin               ! Fr\'ed\'eric Hourdin
387               yzlay(:knon, 1) = rd * yt(:knon, 1) / (0.5 * (ypaprs(:knon, 1) &               yzlay(:knon, 1) = rd * yt(:knon, 1) / (0.5 * (ypaprs(:knon, 1) &
388                    + ypplay(:knon, 1))) &                    + ypplay(:knon, 1))) &
389                    * (ypaprs(:knon, 1) - ypplay(:knon, 1)) / rg                    * (ypaprs(:knon, 1) - ypplay(:knon, 1)) / rg
# Line 525  contains Line 411  contains
411               END DO               END DO
412    
413               CALL ustarhb(knon, yu, yv, coefm(:knon, 1), yustar)               CALL ustarhb(knon, yu, yv, coefm(:knon, 1), yustar)
414                 IF (prt_level > 9) PRINT *, 'USTAR = ', yustar
415    
416               IF (prt_level > 9) THEN               ! iflag_pbl peut \^etre utilis\'e comme longueur de m\'elange
                 PRINT *, 'USTAR = ', yustar  
              END IF  
   
              ! iflag_pbl peut être utilisé comme longueur de mélange  
417    
418               IF (iflag_pbl >= 11) THEN               IF (iflag_pbl >= 11) THEN
419                  CALL vdif_kcay(knon, dtime, rg, rd, ypaprs, yt, yzlev, yzlay, &                  CALL vdif_kcay(knon, dtime, rg, ypaprs, yzlev, yzlay, yu, yv, &
420                       yu, yv, yteta, coefm(:knon, 1), yq2, q2diag, ykmm, ykmn, &                       yteta, coefm(:knon, 1), yq2, q2diag, ykmm, ykmn, yustar, &
421                       yustar, iflag_pbl)                       iflag_pbl)
422               ELSE               ELSE
423                  CALL yamada4(knon, dtime, rg, yzlev, yzlay, yu, yv, yteta, &                  CALL yamada4(knon, dtime, rg, yzlev, yzlay, yu, yv, yteta, &
424                       coefm(:knon, 1), yq2, ykmm, ykmn, ykmq, yustar, iflag_pbl)                       coefm(:knon, 1), yq2, ykmm, ykmn, ykmq, yustar, iflag_pbl)
# Line 547  contains Line 430  contains
430    
431            ! calculer la diffusion des vitesses "u" et "v"            ! calculer la diffusion des vitesses "u" et "v"
432            CALL clvent(knon, dtime, yu1, yv1, coefm(:knon, :), yt, yu, ypaprs, &            CALL clvent(knon, dtime, yu1, yv1, coefm(:knon, :), yt, yu, ypaprs, &
433                 ypplay, ydelp, y_d_u, y_flux_u)                 ypplay, ydelp, y_d_u, y_flux_u(:knon))
434            CALL clvent(knon, dtime, yu1, yv1, coefm(:knon, :), yt, yv, ypaprs, &            CALL clvent(knon, dtime, yu1, yv1, coefm(:knon, :), yt, yv, ypaprs, &
435                 ypplay, ydelp, y_d_v, y_flux_v)                 ypplay, ydelp, y_d_v, y_flux_v(:knon))
   
           ! pour le couplage  
           ytaux = y_flux_u(:, 1)  
           ytauy = y_flux_v(:, 1)  
436    
437            ! calculer la diffusion de "q" et de "h"            ! calculer la diffusion de "q" et de "h"
438            CALL clqh(dtime, itap, jour, debut, rlat, knon, nsrf, ni, pctsrf, &            CALL clqh(dtime, jour, firstcal, nsrf, ni(:knon), ytsoil(:knon, :), &
439                 soil_model, ytsoil, yqsol, ok_veget, ocean, rmu0, co2_ppm, &                 yqsol, mu0, yrugos, yrugoro, yu1, yv1, coefh(:knon, :), yt, &
440                 yrugos, yrugoro, yu1, yv1, coefh(:knon, :), yt, yq, yts, &                 yq, yts(:knon), ypaprs, ypplay, ydelp, yrads, yalb(:knon), &
441                 ypaprs, ypplay, ydelp, yrads, yalb, yalblw, ysnow, yqsurf, &                 snow(:knon), yqsurf, yrain_f, ysnow_f, yfder, yfluxlat(:knon), &
442                 yrain_f, ysnow_f, yfder, ysolsw, yfluxlat, pctsrf_new, &                 pctsrf_new_sic, yagesno(:knon), y_d_t, y_d_q, y_d_ts(:knon), &
443                 yagesno, y_d_t, y_d_q, y_d_ts, yz0_new, y_flux_t, y_flux_q, &                 yz0_new, y_flux_t(:knon), y_flux_q(:knon), y_dflux_t, &
444                 y_dflux_t, y_dflux_q, y_fqcalving, y_ffonte, y_run_off_lic_0, &                 y_dflux_q, y_fqcalving, y_ffonte, y_run_off_lic_0)
                y_flux_o, y_flux_g, ytslab, y_seaice)  
445    
446            ! calculer la longueur de rugosite sur ocean            ! calculer la longueur de rugosite sur ocean
447            yrugm = 0.            yrugm = 0.
# Line 588  contains Line 466  contains
466                  coefm(j, k) = coefm(j, k)*ypct(j)                  coefm(j, k) = coefm(j, k)*ypct(j)
467                  y_d_t(j, k) = y_d_t(j, k)*ypct(j)                  y_d_t(j, k) = y_d_t(j, k)*ypct(j)
468                  y_d_q(j, k) = y_d_q(j, k)*ypct(j)                  y_d_q(j, k) = y_d_q(j, k)*ypct(j)
                 flux_t(i, k, nsrf) = y_flux_t(j, k)  
                 flux_q(i, k, nsrf) = y_flux_q(j, k)  
                 flux_u(i, k, nsrf) = y_flux_u(j, k)  
                 flux_v(i, k, nsrf) = y_flux_v(j, k)  
469                  y_d_u(j, k) = y_d_u(j, k)*ypct(j)                  y_d_u(j, k) = y_d_u(j, k)*ypct(j)
470                  y_d_v(j, k) = y_d_v(j, k)*ypct(j)                  y_d_v(j, k) = y_d_v(j, k)*ypct(j)
471               END DO               END DO
472            END DO            END DO
473    
474            evap(:, nsrf) = -flux_q(:, 1, nsrf)            flux_t(ni(:knon), nsrf) = y_flux_t(:knon)
475              flux_q(ni(:knon), nsrf) = y_flux_q(:knon)
476              flux_u(ni(:knon), nsrf) = y_flux_u(:knon)
477              flux_v(ni(:knon), nsrf) = y_flux_v(:knon)
478    
479              evap(:, nsrf) = -flux_q(:, nsrf)
480    
481            albe(:, nsrf) = 0.            falbe(:, nsrf) = 0.
482            alblw(:, nsrf) = 0.            fsnow(:, nsrf) = 0.
           snow(:, nsrf) = 0.  
483            qsurf(:, nsrf) = 0.            qsurf(:, nsrf) = 0.
484            rugos(:, nsrf) = 0.            rugos(:, nsrf) = 0.
           fluxlat(:, nsrf) = 0.  
485            DO j = 1, knon            DO j = 1, knon
486               i = ni(j)               i = ni(j)
487               d_ts(i, nsrf) = y_d_ts(j)               d_ts(i, nsrf) = y_d_ts(j)
488               albe(i, nsrf) = yalb(j)               falbe(i, nsrf) = yalb(j)
489               alblw(i, nsrf) = yalblw(j)               fsnow(i, nsrf) = snow(j)
              snow(i, nsrf) = ysnow(j)  
490               qsurf(i, nsrf) = yqsurf(j)               qsurf(i, nsrf) = yqsurf(j)
491               rugos(i, nsrf) = yz0_new(j)               rugos(i, nsrf) = yz0_new(j)
492               fluxlat(i, nsrf) = yfluxlat(j)               fluxlat(i, nsrf) = yfluxlat(j)
# Line 629  contains Line 505  contains
505               zv1(i) = zv1(i) + yv1(j)               zv1(i) = zv1(i) + yv1(j)
506            END DO            END DO
507            IF (nsrf == is_ter) THEN            IF (nsrf == is_ter) THEN
508               DO j = 1, knon               qsol(ni(:knon)) = yqsol(:knon)
509                  i = ni(j)            else IF (nsrf == is_lic) THEN
                 qsol(i) = yqsol(j)  
              END DO  
           END IF  
           IF (nsrf == is_lic) THEN  
510               DO j = 1, knon               DO j = 1, knon
511                  i = ni(j)                  i = ni(j)
512                  run_off_lic_0(i) = y_run_off_lic_0(j)                  run_off_lic_0(i) = y_run_off_lic_0(j)
513               END DO               END DO
514            END IF            END IF
515            !$$$ PB ajout pour soil  
516            ftsoil(:, :, nsrf) = 0.            ftsoil(:, :, nsrf) = 0.
517            DO k = 1, nsoilmx            ftsoil(ni(:knon), :, nsrf) = ytsoil(:knon, :)
              DO j = 1, knon  
                 i = ni(j)  
                 ftsoil(i, k, nsrf) = ytsoil(j, k)  
              END DO  
           END DO  
518    
519            DO j = 1, knon            DO j = 1, knon
520               i = ni(j)               i = ni(j)
# Line 660  contains Line 527  contains
527               END DO               END DO
528            END DO            END DO
529    
530            !cc diagnostic t, q a 2m et u, v a 10m            ! diagnostic t, q a 2m et u, v a 10m
531    
532            DO j = 1, knon            DO j = 1, knon
533               i = ni(j)               i = ni(j)
# Line 693  contains Line 560  contains
560               ! u10m, v10m : composantes du vent a 10m sans spirale de Ekman               ! u10m, v10m : composantes du vent a 10m sans spirale de Ekman
561               u10m(i, nsrf) = (yu10m(j)*uzon(j))/sqrt(uzon(j)**2+vmer(j)**2)               u10m(i, nsrf) = (yu10m(j)*uzon(j))/sqrt(uzon(j)**2+vmer(j)**2)
562               v10m(i, nsrf) = (yu10m(j)*vmer(j))/sqrt(uzon(j)**2+vmer(j)**2)               v10m(i, nsrf) = (yu10m(j)*vmer(j))/sqrt(uzon(j)**2+vmer(j)**2)
   
563            END DO            END DO
564    
565            CALL hbtm(knon, ypaprs, ypplay, yt2m, yt10m, yq2m, yq10m, yustar, &            CALL hbtm(ypaprs, ypplay, yt2m, yq2m, yustar, y_flux_t(:knon), &
566                 y_flux_t, y_flux_q, yu, yv, yt, yq, ypblh, ycapcl, yoliqcl, &                 y_flux_q(:knon), yu, yv, yt, yq, ypblh(:knon), ycapcl, &
567                 ycteicl, ypblt, ytherm, ytrmb1, ytrmb2, ytrmb3, ylcl)                 yoliqcl, ycteicl, ypblt, ytherm, ytrmb1, ytrmb2, ytrmb3, ylcl)
568    
569            DO j = 1, knon            DO j = 1, knon
570               i = ni(j)               i = ni(j)
# Line 720  contains Line 586  contains
586                  q2(i, k, nsrf) = yq2(j, k)                  q2(i, k, nsrf) = yq2(j, k)
587               END DO               END DO
588            END DO            END DO
589            !IM "slab" ocean         else
590            IF (nsrf == is_oce) THEN            fsnow(:, nsrf) = 0.
              DO j = 1, knon  
                 ! on projette sur la grille globale  
                 i = ni(j)  
                 IF (pctsrf_new(i, is_oce)>epsfra) THEN  
                    flux_o(i) = y_flux_o(j)  
                 ELSE  
                    flux_o(i) = 0.  
                 END IF  
              END DO  
           END IF  
   
           IF (nsrf == is_sic) THEN  
              DO j = 1, knon  
                 i = ni(j)  
                 ! On pondère lorsque l'on fait le bilan au sol :  
                 IF (pctsrf_new(i, is_sic)>epsfra) THEN  
                    flux_g(i) = y_flux_g(j)  
                 ELSE  
                    flux_g(i) = 0.  
                 END IF  
              END DO  
   
           END IF  
           IF (ocean == 'slab  ') THEN  
              IF (nsrf == is_oce) THEN  
                 tslab(1:klon) = ytslab(1:klon)  
                 seaice(1:klon) = y_seaice(1:klon)  
              END IF  
           END IF  
591         end IF if_knon         end IF if_knon
592      END DO loop_surface      END DO loop_surface
593    
594      ! On utilise les nouvelles surfaces      ! On utilise les nouvelles surfaces
   
595      rugos(:, is_oce) = rugmer      rugos(:, is_oce) = rugmer
596      pctsrf = pctsrf_new      pctsrf(:, is_oce) = pctsrf_new_oce
597        pctsrf(:, is_sic) = pctsrf_new_sic
598    
599        firstcal = .false.
600    
601    END SUBROUTINE clmain    END SUBROUTINE clmain
602    

Legend:
Removed from v.82  
changed lines
  Added in v.215

  ViewVC Help
Powered by ViewVC 1.1.21