--- trunk/Sources/phylmd/clqh.f 2016/08/30 12:52:46 206 +++ trunk/Sources/phylmd/clqh.f 2017/04/25 15:31:48 222 @@ -4,8 +4,8 @@ contains - SUBROUTINE clqh(dtime, jour, debut, rlat, nisurf, knindex, tsoil, qsol, & - rmu0, rugos, rugoro, u1lay, v1lay, coef, t, q, ts, paprs, pplay, delp, & + SUBROUTINE clqh(dtime, julien, debut, nisurf, knindex, tsoil, qsol, rmu0, & + rugos, rugoro, u1lay, v1lay, coef, t, q, ts, paprs, pplay, delp, & radsol, albedo, snow, qsurf, precip_rain, precip_snow, fder, fluxlat, & pctsrf_new_sic, agesno, d_t, d_q, d_ts, z0_new, flux_t, flux_q, & dflux_s, dflux_l, fqcalving, ffonte, run_off_lic_0) @@ -16,19 +16,15 @@ USE conf_phys_m, ONLY: iflag_pbl USE dimphy, ONLY: klev, klon - USE dimsoil, ONLY: nsoilmx - USE indicesol, ONLY: nbsrf USE interfsurf_hq_m, ONLY: interfsurf_hq USE suphec_m, ONLY: rcpd, rd, rg, rkappa REAL, intent(in):: dtime ! intervalle du temps (s) - integer, intent(in):: jour ! jour de l'annee en cours + integer, intent(in):: julien ! jour de l'annee en cours logical, intent(in):: debut - real, intent(in):: rlat(klon) integer, intent(in):: nisurf integer, intent(in):: knindex(:) ! (knon) - - REAL tsoil(klon, nsoilmx) + REAL, intent(inout):: tsoil(:, :) ! (knon, nsoilmx) REAL, intent(inout):: qsol(klon) ! column-density of water in soil, in kg m-2 @@ -46,13 +42,16 @@ REAL t(klon, klev) ! temperature (K) REAL q(klon, klev) ! humidite specifique (kg / kg) - REAL, intent(in):: ts(klon) ! temperature du sol (K) - REAL paprs(klon, klev+1) ! pression a inter-couche (Pa) + REAL, intent(in):: ts(:) ! (knon) temperature du sol (K) + REAL paprs(klon, klev + 1) ! pression a inter-couche (Pa) REAL pplay(klon, klev) ! pression au milieu de couche (Pa) REAL delp(klon, klev) ! epaisseur de couche en pression (Pa) - REAL radsol(klon) ! ray. net au sol (Solaire+IR) W / m2 + + REAL, intent(inout):: radsol(:) ! (knon) + ! rayonnement net au sol (Solaire + IR) W / m2 + REAL, intent(inout):: albedo(:) ! (knon) albedo de la surface - REAL, intent(inout):: snow(klon) ! hauteur de neige + REAL, intent(inout):: snow(:) ! (knon) ! hauteur de neige REAL qsurf(klon) ! humidite de l'air au dessus de la surface real, intent(in):: precip_rain(klon) @@ -61,13 +60,13 @@ real, intent(in):: precip_snow(klon) ! solid water mass flux (kg / m2 / s), positive down - real, intent(inout):: fder(klon) - real fluxlat(klon) + real, intent(inout):: fder(:) ! (knon) + real, intent(out):: fluxlat(:) ! (knon) real, intent(in):: pctsrf_new_sic(:) ! (klon) REAL, intent(inout):: agesno(:) ! (knon) REAL d_t(klon, klev) ! incrementation de "t" REAL d_q(klon, klev) ! incrementation de "q" - REAL, intent(out):: d_ts(:) ! (knon) incrementation de "ts" + REAL, intent(out):: d_ts(:) ! (knon) variation of surface temperature real z0_new(klon) REAL, intent(out):: flux_t(:) ! (knon) @@ -77,8 +76,8 @@ REAL, intent(out):: flux_q(:) ! (knon) ! flux de la vapeur d'eau à la surface, en kg / (m**2 s) - REAL dflux_s(klon) ! derivee du flux sensible dF / dTs - REAL dflux_l(klon) ! derivee du flux latent dF / dTs + REAL dflux_s(:) ! (knon) derivee du flux sensible dF / dTs + REAL dflux_l(:) ! (knon) derivee du flux latent dF / dTs ! Flux d'eau "perdue" par la surface et n\'ecessaire pour que limiter la ! hauteur de neige, en kg / m2 / s @@ -163,7 +162,7 @@ DO k = 2, klev DO i = 1, knon zx_coef(i, k) = coef(i, k) * RG / (pplay(i, k - 1) - pplay(i, k)) & - * (paprs(i, k) * 2 / (t(i, k)+t(i, k - 1)) / RD)**2 + * (paprs(i, k) * 2 / (t(i, k) + t(i, k - 1)) / RD)**2 zx_coef(i, k) = zx_coef(i, k) * dtime * RG ENDDO ENDDO @@ -172,7 +171,7 @@ DO k = 2, klev DO i = 1, knon - zdelz = RD * (t(i, k - 1)+t(i, k)) / 2.0 / RG / paprs(i, k) & + zdelz = RD * (t(i, k - 1) + t(i, k)) / 2.0 / RG / paprs(i, k) & * (pplay(i, k - 1) - pplay(i, k)) z_gamaq(i, k) = gamq(i, k) * zdelz z_gamah(i, k) = gamt(i, k) * zdelz * RCPD * zx_pkh(i, k) @@ -192,20 +191,20 @@ ENDDO DO k = klev - 1, 2, - 1 DO i = 1, knon - zx_buf1(i) = delp(i, k)+zx_coef(i, k) & - +zx_coef(i, k+1) * (1. - zx_dq(i, k+1)) + zx_buf1(i) = delp(i, k) + zx_coef(i, k) & + + zx_coef(i, k + 1) * (1. - zx_dq(i, k + 1)) zx_cq(i, k) = (local_q(i, k) * delp(i, k) & - +zx_coef(i, k+1) * zx_cq(i, k+1) & - +zx_coef(i, k+1) * z_gamaq(i, k+1) & + + zx_coef(i, k + 1) * zx_cq(i, k + 1) & + + zx_coef(i, k + 1) * z_gamaq(i, k + 1) & - zx_coef(i, k) * z_gamaq(i, k)) / zx_buf1(i) zx_dq(i, k) = zx_coef(i, k) / zx_buf1(i) zzpk=(pplay(i, k) / psref(i))**RKAPPA - zx_buf2(i) = zzpk * delp(i, k)+zx_coef(i, k) & - +zx_coef(i, k+1) * (1. - zx_dh(i, k+1)) + zx_buf2(i) = zzpk * delp(i, k) + zx_coef(i, k) & + + zx_coef(i, k + 1) * (1. - zx_dh(i, k + 1)) zx_ch(i, k) = (local_h(i, k) * zzpk * delp(i, k) & - +zx_coef(i, k+1) * zx_ch(i, k+1) & - +zx_coef(i, k+1) * z_gamah(i, k+1) & + + zx_coef(i, k + 1) * zx_ch(i, k + 1) & + + zx_coef(i, k + 1) * z_gamah(i, k + 1) & - zx_coef(i, k) * z_gamah(i, k)) / zx_buf2(i) zx_dh(i, k) = zx_coef(i, k) / zx_buf2(i) ENDDO @@ -214,21 +213,20 @@ DO i = 1, knon zx_buf1(i) = delp(i, 1) + zx_coef(i, 2) * (1. - zx_dq(i, 2)) zx_cq(i, 1) = (local_q(i, 1) * delp(i, 1) & - +zx_coef(i, 2) * (z_gamaq(i, 2)+zx_cq(i, 2))) & - / zx_buf1(i) + + zx_coef(i, 2) * (z_gamaq(i, 2) + zx_cq(i, 2))) / zx_buf1(i) zx_dq(i, 1) = - 1. * RG / zx_buf1(i) zzpk=(pplay(i, 1) / psref(i))**RKAPPA zx_buf2(i) = zzpk * delp(i, 1) + zx_coef(i, 2) * (1. - zx_dh(i, 2)) zx_ch(i, 1) = (local_h(i, 1) * zzpk * delp(i, 1) & - +zx_coef(i, 2) * (z_gamah(i, 2)+zx_ch(i, 2))) & - / zx_buf2(i) + + zx_coef(i, 2) * (z_gamah(i, 2) + zx_ch(i, 2))) / zx_buf2(i) zx_dh(i, 1) = - 1. * RG / zx_buf2(i) ENDDO - ! Appel a interfsurf (appel generique) routine d'interface avec la surface + ! Appel \`a interfsurf (appel g\'en\'erique) routine d'interface + ! avec la surface - ! initialisation + ! Initialisation petAcoef =0. peqAcoef = 0. petBcoef =0. @@ -244,17 +242,16 @@ spechum(1:knon)=q(1:knon, 1) p1lay(1:knon) = pplay(1:knon, 1) - CALL interfsurf_hq(dtime, jour, rmu0, nisurf, knon, knindex, rlat, debut, & - nsoilmx, tsoil, qsol, u1lay, v1lay, temp_air, spechum, tq_cdrag, & - petAcoef, peqAcoef, petBcoef, peqBcoef, precip_rain, precip_snow, & - fder, rugos, rugoro, snow, qsurf, ts(:knon), p1lay, psref, radsol, & - evap, flux_t, fluxlat, dflux_l, dflux_s, tsurf_new, albedo, & - z0_new, pctsrf_new_sic, agesno, fqcalving, ffonte, run_off_lic_0) + CALL interfsurf_hq(dtime, julien, rmu0, nisurf, knindex, debut, tsoil, & + qsol, u1lay, v1lay, temp_air, spechum, tq_cdrag, petAcoef, peqAcoef, & + petBcoef, peqBcoef, precip_rain, precip_snow, fder, rugos, rugoro, & + snow, qsurf, ts, p1lay, psref, radsol, evap, flux_t, fluxlat, & + dflux_l, dflux_s, tsurf_new, albedo, z0_new, pctsrf_new_sic, agesno, & + fqcalving, ffonte, run_off_lic_0) flux_q = - evap - d_ts = tsurf_new - ts(:knon) + d_ts = tsurf_new - ts - !==== une fois on a zx_h_ts, on peut faire l'iteration ======== DO i = 1, knon local_h(i, 1) = zx_ch(i, 1) + zx_dh(i, 1) * flux_t(i) * dtime local_q(i, 1) = zx_cq(i, 1) + zx_dq(i, 1) * flux_q(i) * dtime @@ -266,7 +263,7 @@ ENDDO ENDDO - ! Calcul tendances + ! Calcul des tendances DO k = 1, klev DO i = 1, knon d_t(i, k) = local_h(i, k) / zx_pkf(i, k) / RCPD - t(i, k)