/[lmdze]/trunk/Sources/phylmd/clqh.f
ViewVC logotype

Contents of /trunk/Sources/phylmd/clqh.f

Parent Directory Parent Directory | Revision Log Revision Log


Revision 154 - (show annotations)
Tue Jul 7 17:49:23 2015 UTC (8 years, 9 months ago) by guez
File size: 11457 byte(s)
Removed argument dtphys of physiq. Use it directly from comconst in
physiq instead.

Donwgraded variables eignfnu, eignfnv of module inifgn_m to dummy
arguments of SUBROUTINE inifgn. They were not used elsewhere than in
the calling procedure inifilr. Renamed argument dv of inifgn to eignval_v.

Made alboc and alboc_cd independent of the size of arguments. Now we
can call them only at indices knindex in interfsurf_hq, where we need
them. Fixed a bug in alboc_cd: rmu0 was modified, and the
corresponding actual argument in interfsurf_hq is an intent(in)
argument of interfsurf_hq.

Variables of size knon instead of klon in interfsur_lim and interfsurf_hq.

Removed argument alb_new of interfsurf_hq because it was the same than
alblw. Simplified test on cycle_diurne, following LMDZ.

Moved tests on nbapp_rad from physiq to read_clesphys2. No need for
separate counter itaprad, we can use itap. Define lmt_pas and radpas
from integer input parameters instead of real-type computed values.

1 module clqh_m
2
3 IMPLICIT none
4
5 contains
6
7 SUBROUTINE clqh(dtime, itime, jour, debut, rlat, knon, nisurf, knindex, &
8 pctsrf, tsoil, qsol, rmu0, co2_ppm, rugos, rugoro, u1lay, v1lay, coef, &
9 t, q, ts, paprs, pplay, delp, radsol, albedo, alblw, snow, qsurf, &
10 precip_rain, precip_snow, fder, swnet, fluxlat, pctsrf_new, agesno, &
11 d_t, d_q, d_ts, z0_new, flux_t, flux_q, dflux_s, dflux_l, fqcalving, &
12 ffonte, run_off_lic_0, flux_o, flux_g)
13
14 ! Author: Z. X. Li (LMD/CNRS)
15 ! Date: 1993/08/18
16 ! Objet : diffusion verticale de "q" et de "h"
17
18 USE conf_phys_m, ONLY: iflag_pbl
19 USE dimens_m, ONLY: iim, jjm
20 USE dimphy, ONLY: klev, klon
21 USE dimsoil, ONLY: nsoilmx
22 USE indicesol, ONLY: is_ter, nbsrf
23 USE interfsurf_hq_m, ONLY: interfsurf_hq
24 USE suphec_m, ONLY: rcpd, rd, rg, rkappa
25
26 REAL, intent(in):: dtime ! intervalle du temps (s)
27 integer, intent(in):: itime
28 integer, intent(in):: jour ! jour de l'annee en cours
29 logical, intent(in):: debut
30 real, intent(in):: rlat(klon)
31 INTEGER, intent(in):: knon
32 integer nisurf
33 integer, intent(in):: knindex(:) ! (knon)
34 real, intent(in):: pctsrf(klon, nbsrf)
35 REAL tsoil(klon, nsoilmx)
36
37 REAL, intent(inout):: qsol(klon)
38 ! column-density of water in soil, in kg m-2
39
40 real, intent(in):: rmu0(klon) ! cosinus de l'angle solaire zenithal
41 REAL, intent(in):: co2_ppm ! taux CO2 atmosphere
42 real rugos(klon) ! rugosite
43 REAL rugoro(klon)
44 REAL u1lay(klon) ! vitesse u de la 1ere couche (m/s)
45 REAL v1lay(klon) ! vitesse v de la 1ere couche (m/s)
46
47 REAL, intent(in):: coef(:, :) ! (knon, klev)
48 ! Le coefficient d'echange (m**2/s) multiplie par le cisaillement
49 ! du vent (dV/dz). La premiere valeur indique la valeur de Cdrag
50 ! (sans unite).
51
52 REAL t(klon, klev) ! temperature (K)
53 REAL q(klon, klev) ! humidite specifique (kg/kg)
54 REAL, intent(in):: ts(klon) ! temperature du sol (K)
55 REAL paprs(klon, klev+1) ! pression a inter-couche (Pa)
56 REAL pplay(klon, klev) ! pression au milieu de couche (Pa)
57 REAL delp(klon, klev) ! epaisseur de couche en pression (Pa)
58 REAL radsol(klon) ! ray. net au sol (Solaire+IR) W/m2
59 REAL albedo(klon) ! albedo de la surface
60 REAL, intent(out):: alblw(:) ! (knon)
61 REAL snow(klon) ! hauteur de neige
62 REAL qsurf(klon) ! humidite de l'air au dessus de la surface
63
64 real, intent(in):: precip_rain(klon)
65 ! liquid water mass flux (kg/m2/s), positive down
66
67 real, intent(in):: precip_snow(klon)
68 ! solid water mass flux (kg/m2/s), positive down
69
70 real, intent(inout):: fder(klon)
71 real swnet(klon)
72 real fluxlat(klon)
73 real pctsrf_new(klon, nbsrf)
74 REAL agesno(klon)
75 REAL d_t(klon, klev) ! incrementation de "t"
76 REAL d_q(klon, klev) ! incrementation de "q"
77 REAL, intent(out):: d_ts(:) ! (knon) incrementation de "ts"
78 real z0_new(klon)
79 REAL flux_t(klon, klev) ! (diagnostic) flux de la chaleur
80 ! sensible, flux de Cp*T, positif vers
81 ! le bas: j/(m**2 s) c.a.d.: W/m2
82 REAL flux_q(klon, klev) ! flux de la vapeur d'eau:kg/(m**2 s)
83 REAL dflux_s(klon) ! derivee du flux sensible dF/dTs
84 REAL dflux_l(klon) ! derivee du flux latent dF/dTs
85
86 ! Flux d'eau "perdue" par la surface et n\'ecessaire pour que limiter la
87 ! hauteur de neige, en kg/m2/s
88 REAL fqcalving(klon)
89
90 ! Flux thermique utiliser pour fondre la neige
91 REAL ffonte(klon)
92
93 REAL run_off_lic_0(klon)! runof glacier au pas de temps precedent
94
95 !IM "slab" ocean
96
97 REAL, intent(out):: flux_o(klon) ! flux entre l'ocean et l'atmosphere W/m2
98
99 REAL, intent(out):: flux_g(klon)
100 ! flux entre l'ocean et la glace de mer W/m2
101
102 ! Local:
103
104 REAL evap(klon) ! evaporation au sol
105
106 INTEGER i, k
107 REAL zx_cq(klon, klev)
108 REAL zx_dq(klon, klev)
109 REAL zx_ch(klon, klev)
110 REAL zx_dh(klon, klev)
111 REAL zx_buf1(klon)
112 REAL zx_buf2(klon)
113 REAL zx_coef(klon, klev)
114 REAL local_h(klon, klev) ! enthalpie potentielle
115 REAL local_q(klon, klev)
116 REAL local_ts(klon)
117 REAL psref(klon) ! pression de reference pour temperature potent.
118 REAL zx_pkh(klon, klev), zx_pkf(klon, klev)
119
120 ! contre-gradient pour la vapeur d'eau: (kg/kg)/metre
121 REAL gamq(klon, 2:klev)
122 ! contre-gradient pour la chaleur sensible: Kelvin/metre
123 REAL gamt(klon, 2:klev)
124 REAL z_gamaq(klon, 2:klev), z_gamah(klon, 2:klev)
125 REAL zdelz
126
127 real zlev1(klon)
128 real temp_air(klon), spechum(klon)
129 real epot_air(klon), ccanopy(klon)
130 real tq_cdrag(klon), petAcoef(klon), peqAcoef(klon)
131 real petBcoef(klon), peqBcoef(klon)
132 real swdown(klon)
133 real p1lay(klon)
134
135 real fluxsens(klon)
136 real tsurf_new(knon)
137 real zzpk
138
139 character (len = 20) :: modname = 'Debut clqh'
140 LOGICAL check
141 PARAMETER (check=.false.)
142
143 !----------------------------------------------------------------
144
145 if (check) THEN
146 write(*, *) modname, ' nisurf=', nisurf
147 !C call flush(6)
148 endif
149
150 if (check) THEN
151 WRITE(*, *)' qsurf (min, max)' &
152 , minval(qsurf(1:knon)), maxval(qsurf(1:knon))
153 !C call flush(6)
154 ENDIF
155
156 if (iflag_pbl.eq.1) then
157 do k = 3, klev
158 do i = 1, knon
159 gamq(i, k)= 0.0
160 gamt(i, k)= -1.0e-03
161 enddo
162 enddo
163 do i = 1, knon
164 gamq(i, 2) = 0.0
165 gamt(i, 2) = -2.5e-03
166 enddo
167 else
168 do k = 2, klev
169 do i = 1, knon
170 gamq(i, k) = 0.0
171 gamt(i, k) = 0.0
172 enddo
173 enddo
174 endif
175
176 DO i = 1, knon
177 psref(i) = paprs(i, 1) !pression de reference est celle au sol
178 local_ts(i) = ts(i)
179 ENDDO
180 DO k = 1, klev
181 DO i = 1, knon
182 zx_pkh(i, k) = (psref(i)/paprs(i, k))**RKAPPA
183 zx_pkf(i, k) = (psref(i)/pplay(i, k))**RKAPPA
184 local_h(i, k) = RCPD * t(i, k) * zx_pkf(i, k)
185 local_q(i, k) = q(i, k)
186 ENDDO
187 ENDDO
188
189 ! Convertir les coefficients en variables convenables au calcul:
190
191 DO k = 2, klev
192 DO i = 1, knon
193 zx_coef(i, k) = coef(i, k)*RG/(pplay(i, k-1)-pplay(i, k)) &
194 *(paprs(i, k)*2/(t(i, k)+t(i, k-1))/RD)**2
195 zx_coef(i, k) = zx_coef(i, k) * dtime*RG
196 ENDDO
197 ENDDO
198
199 ! Preparer les flux lies aux contre-gardients
200
201 DO k = 2, klev
202 DO i = 1, knon
203 zdelz = RD * (t(i, k-1)+t(i, k))/2.0 / RG /paprs(i, k) &
204 *(pplay(i, k-1)-pplay(i, k))
205 z_gamaq(i, k) = gamq(i, k) * zdelz
206 z_gamah(i, k) = gamt(i, k) * zdelz *RCPD * zx_pkh(i, k)
207 ENDDO
208 ENDDO
209 DO i = 1, knon
210 zx_buf1(i) = zx_coef(i, klev) + delp(i, klev)
211 zx_cq(i, klev) = (local_q(i, klev)*delp(i, klev) &
212 -zx_coef(i, klev)*z_gamaq(i, klev))/zx_buf1(i)
213 zx_dq(i, klev) = zx_coef(i, klev) / zx_buf1(i)
214
215 zzpk=(pplay(i, klev)/psref(i))**RKAPPA
216 zx_buf2(i) = zzpk*delp(i, klev) + zx_coef(i, klev)
217 zx_ch(i, klev) = (local_h(i, klev)*zzpk*delp(i, klev) &
218 -zx_coef(i, klev)*z_gamah(i, klev))/zx_buf2(i)
219 zx_dh(i, klev) = zx_coef(i, klev) / zx_buf2(i)
220 ENDDO
221 DO k = klev-1, 2 , -1
222 DO i = 1, knon
223 zx_buf1(i) = delp(i, k)+zx_coef(i, k) &
224 +zx_coef(i, k+1)*(1.-zx_dq(i, k+1))
225 zx_cq(i, k) = (local_q(i, k)*delp(i, k) &
226 +zx_coef(i, k+1)*zx_cq(i, k+1) &
227 +zx_coef(i, k+1)*z_gamaq(i, k+1) &
228 -zx_coef(i, k)*z_gamaq(i, k))/zx_buf1(i)
229 zx_dq(i, k) = zx_coef(i, k) / zx_buf1(i)
230
231 zzpk=(pplay(i, k)/psref(i))**RKAPPA
232 zx_buf2(i) = zzpk*delp(i, k)+zx_coef(i, k) &
233 +zx_coef(i, k+1)*(1.-zx_dh(i, k+1))
234 zx_ch(i, k) = (local_h(i, k)*zzpk*delp(i, k) &
235 +zx_coef(i, k+1)*zx_ch(i, k+1) &
236 +zx_coef(i, k+1)*z_gamah(i, k+1) &
237 -zx_coef(i, k)*z_gamah(i, k))/zx_buf2(i)
238 zx_dh(i, k) = zx_coef(i, k) / zx_buf2(i)
239 ENDDO
240 ENDDO
241
242 DO i = 1, knon
243 zx_buf1(i) = delp(i, 1) + zx_coef(i, 2)*(1.-zx_dq(i, 2))
244 zx_cq(i, 1) = (local_q(i, 1)*delp(i, 1) &
245 +zx_coef(i, 2)*(z_gamaq(i, 2)+zx_cq(i, 2))) &
246 /zx_buf1(i)
247 zx_dq(i, 1) = -1. * RG / zx_buf1(i)
248
249 zzpk=(pplay(i, 1)/psref(i))**RKAPPA
250 zx_buf2(i) = zzpk*delp(i, 1) + zx_coef(i, 2)*(1.-zx_dh(i, 2))
251 zx_ch(i, 1) = (local_h(i, 1)*zzpk*delp(i, 1) &
252 +zx_coef(i, 2)*(z_gamah(i, 2)+zx_ch(i, 2))) &
253 /zx_buf2(i)
254 zx_dh(i, 1) = -1. * RG / zx_buf2(i)
255 ENDDO
256
257 ! Appel a interfsurf (appel generique) routine d'interface avec la surface
258
259 ! initialisation
260 petAcoef =0.
261 peqAcoef = 0.
262 petBcoef =0.
263 peqBcoef = 0.
264 p1lay =0.
265
266 petAcoef(1:knon) = zx_ch(1:knon, 1)
267 peqAcoef(1:knon) = zx_cq(1:knon, 1)
268 petBcoef(1:knon) = zx_dh(1:knon, 1)
269 peqBcoef(1:knon) = zx_dq(1:knon, 1)
270 tq_cdrag(1:knon) =coef(:knon, 1)
271 temp_air(1:knon) =t(1:knon, 1)
272 epot_air(1:knon) =local_h(1:knon, 1)
273 spechum(1:knon)=q(1:knon, 1)
274 p1lay(1:knon) = pplay(1:knon, 1)
275 zlev1(1:knon) = delp(1:knon, 1)
276
277 if(nisurf.eq.is_ter) THEN
278 swdown(1:knon) = swnet(1:knon)/(1-albedo(1:knon))
279 else
280 swdown(1:knon) = swnet(1:knon)
281 endif
282 ccanopy = co2_ppm
283
284 CALL interfsurf_hq(itime, dtime, jour, rmu0, nisurf, knon, knindex, &
285 pctsrf, rlat, debut, nsoilmx, tsoil, qsol, u1lay, v1lay, temp_air, &
286 spechum, tq_cdrag, petAcoef, peqAcoef, petBcoef, peqBcoef, &
287 precip_rain, precip_snow, fder, rugos, rugoro, snow, qsurf, &
288 ts(:knon), p1lay, psref, radsol, evap, fluxsens, fluxlat, dflux_l, &
289 dflux_s, tsurf_new, alblw, z0_new, pctsrf_new, agesno, fqcalving, &
290 ffonte, run_off_lic_0, flux_o, flux_g)
291
292 do i = 1, knon
293 flux_t(i, 1) = fluxsens(i)
294 flux_q(i, 1) = - evap(i)
295 d_ts(i) = tsurf_new(i) - ts(i)
296 albedo(i) = alblw(i)
297 enddo
298
299 !==== une fois on a zx_h_ts, on peut faire l'iteration ========
300 DO i = 1, knon
301 local_h(i, 1) = zx_ch(i, 1) + zx_dh(i, 1)*flux_t(i, 1)*dtime
302 local_q(i, 1) = zx_cq(i, 1) + zx_dq(i, 1)*flux_q(i, 1)*dtime
303 ENDDO
304 DO k = 2, klev
305 DO i = 1, knon
306 local_q(i, k) = zx_cq(i, k) + zx_dq(i, k)*local_q(i, k-1)
307 local_h(i, k) = zx_ch(i, k) + zx_dh(i, k)*local_h(i, k-1)
308 ENDDO
309 ENDDO
310 !======================================================================
311 !== flux_q est le flux de vapeur d'eau: kg/(m**2 s) positive vers bas
312 !== flux_t est le flux de cpt (energie sensible): j/(m**2 s)
313 DO k = 2, klev
314 DO i = 1, knon
315 flux_q(i, k) = (zx_coef(i, k)/RG/dtime) &
316 * (local_q(i, k)-local_q(i, k-1)+z_gamaq(i, k))
317 flux_t(i, k) = (zx_coef(i, k)/RG/dtime) &
318 * (local_h(i, k)-local_h(i, k-1)+z_gamah(i, k)) &
319 / zx_pkh(i, k)
320 ENDDO
321 ENDDO
322 !======================================================================
323 ! Calcul tendances
324 DO k = 1, klev
325 DO i = 1, knon
326 d_t(i, k) = local_h(i, k)/zx_pkf(i, k)/RCPD - t(i, k)
327 d_q(i, k) = local_q(i, k) - q(i, k)
328 ENDDO
329 ENDDO
330
331 END SUBROUTINE clqh
332
333 end module clqh_m

  ViewVC Help
Powered by ViewVC 1.1.21