/[lmdze]/trunk/Sources/phylmd/clqh.f
ViewVC logotype

Contents of /trunk/Sources/phylmd/clqh.f

Parent Directory Parent Directory | Revision Log Revision Log


Revision 174 - (show annotations)
Wed Nov 25 20:14:19 2015 UTC (8 years, 5 months ago) by guez
File size: 10811 byte(s)
Simplifications in procedure albsno. Since veget(:, 2:) was 0,
iterations 2 to nvm of the loop computing alb_neig_grid were useless.

Useless initializations of alb_neige in procedure interfsurf_hq:
alb_neig is always computed by albsno just before being used. Useless
computation of local variable zfra in the land ice case.

1 module clqh_m
2
3 IMPLICIT none
4
5 contains
6
7 SUBROUTINE clqh(dtime, itime, jour, debut, rlat, knon, nisurf, knindex, &
8 pctsrf, tsoil, qsol, rmu0, co2_ppm, rugos, rugoro, u1lay, v1lay, coef, &
9 t, q, ts, paprs, pplay, delp, radsol, albedo, snow, qsurf, &
10 precip_rain, precip_snow, fder, swnet, fluxlat, pctsrf_new, agesno, &
11 d_t, d_q, d_ts, z0_new, flux_t, flux_q, dflux_s, dflux_l, fqcalving, &
12 ffonte, run_off_lic_0, flux_o, flux_g)
13
14 ! Author: Z. X. Li (LMD/CNRS)
15 ! Date: 1993/08/18
16 ! Objet : diffusion verticale de "q" et de "h"
17
18 USE conf_phys_m, ONLY: iflag_pbl
19 USE dimens_m, ONLY: iim, jjm
20 USE dimphy, ONLY: klev, klon
21 USE dimsoil, ONLY: nsoilmx
22 USE indicesol, ONLY: is_ter, nbsrf
23 USE interfsurf_hq_m, ONLY: interfsurf_hq
24 USE suphec_m, ONLY: rcpd, rd, rg, rkappa
25
26 REAL, intent(in):: dtime ! intervalle du temps (s)
27 integer, intent(in):: itime
28 integer, intent(in):: jour ! jour de l'annee en cours
29 logical, intent(in):: debut
30 real, intent(in):: rlat(klon)
31 INTEGER, intent(in):: knon
32 integer nisurf
33 integer, intent(in):: knindex(:) ! (knon)
34 real, intent(in):: pctsrf(klon, nbsrf)
35 REAL tsoil(klon, nsoilmx)
36
37 REAL, intent(inout):: qsol(klon)
38 ! column-density of water in soil, in kg m-2
39
40 real, intent(in):: rmu0(klon) ! cosinus de l'angle solaire zenithal
41 REAL, intent(in):: co2_ppm ! taux CO2 atmosphere
42 real rugos(klon) ! rugosite
43 REAL rugoro(klon)
44 REAL u1lay(klon) ! vitesse u de la 1ere couche (m / s)
45 REAL v1lay(klon) ! vitesse v de la 1ere couche (m / s)
46
47 REAL, intent(in):: coef(:, :) ! (knon, klev)
48 ! Le coefficient d'echange (m**2 / s) multiplie par le cisaillement
49 ! du vent (dV / dz). La premiere valeur indique la valeur de Cdrag
50 ! (sans unite).
51
52 REAL t(klon, klev) ! temperature (K)
53 REAL q(klon, klev) ! humidite specifique (kg / kg)
54 REAL, intent(in):: ts(klon) ! temperature du sol (K)
55 REAL paprs(klon, klev+1) ! pression a inter-couche (Pa)
56 REAL pplay(klon, klev) ! pression au milieu de couche (Pa)
57 REAL delp(klon, klev) ! epaisseur de couche en pression (Pa)
58 REAL radsol(klon) ! ray. net au sol (Solaire+IR) W / m2
59 REAL, intent(inout):: albedo(:) ! (knon) albedo de la surface
60 REAL snow(klon) ! hauteur de neige
61 REAL qsurf(klon) ! humidite de l'air au dessus de la surface
62
63 real, intent(in):: precip_rain(klon)
64 ! liquid water mass flux (kg / m2 / s), positive down
65
66 real, intent(in):: precip_snow(klon)
67 ! solid water mass flux (kg / m2 / s), positive down
68
69 real, intent(inout):: fder(klon)
70 real swnet(klon)
71 real fluxlat(klon)
72 real pctsrf_new(klon, nbsrf)
73 REAL, intent(inout):: agesno(klon)
74 REAL d_t(klon, klev) ! incrementation de "t"
75 REAL d_q(klon, klev) ! incrementation de "q"
76 REAL, intent(out):: d_ts(:) ! (knon) incrementation de "ts"
77 real z0_new(klon)
78 REAL flux_t(klon, klev) ! (diagnostic) flux de la chaleur
79 ! sensible, flux de Cp*T, positif vers
80 ! le bas: j / (m**2 s) c.a.d.: W / m2
81 REAL flux_q(klon, klev) ! flux de la vapeur d'eau:kg / (m**2 s)
82 REAL dflux_s(klon) ! derivee du flux sensible dF / dTs
83 REAL dflux_l(klon) ! derivee du flux latent dF / dTs
84
85 ! Flux d'eau "perdue" par la surface et n\'ecessaire pour que limiter la
86 ! hauteur de neige, en kg / m2 / s
87 REAL fqcalving(klon)
88
89 ! Flux thermique utiliser pour fondre la neige
90 REAL ffonte(klon)
91
92 REAL run_off_lic_0(klon)! runof glacier au pas de temps precedent
93
94 !IM "slab" ocean
95
96 REAL, intent(out):: flux_o(klon) ! flux entre l'ocean et l'atmosphere W / m2
97
98 REAL, intent(out):: flux_g(klon)
99 ! flux entre l'ocean et la glace de mer W / m2
100
101 ! Local:
102
103 REAL evap(klon) ! evaporation au sol
104
105 INTEGER i, k
106 REAL zx_cq(klon, klev)
107 REAL zx_dq(klon, klev)
108 REAL zx_ch(klon, klev)
109 REAL zx_dh(klon, klev)
110 REAL zx_buf1(klon)
111 REAL zx_buf2(klon)
112 REAL zx_coef(klon, klev)
113 REAL local_h(klon, klev) ! enthalpie potentielle
114 REAL local_q(klon, klev)
115 REAL local_ts(klon)
116 REAL psref(klon) ! pression de reference pour temperature potent.
117 REAL zx_pkh(klon, klev), zx_pkf(klon, klev)
118
119 ! contre-gradient pour la vapeur d'eau: (kg / kg) / metre
120 REAL gamq(klon, 2:klev)
121 ! contre-gradient pour la chaleur sensible: Kelvin / metre
122 REAL gamt(klon, 2:klev)
123 REAL z_gamaq(klon, 2:klev), z_gamah(klon, 2:klev)
124 REAL zdelz
125
126 real zlev1(klon)
127 real temp_air(klon), spechum(klon)
128 real epot_air(klon), ccanopy(klon)
129 real tq_cdrag(klon), petAcoef(klon), peqAcoef(klon)
130 real petBcoef(klon), peqBcoef(klon)
131 real swdown(klon)
132 real p1lay(klon)
133
134 real fluxsens(klon)
135 real tsurf_new(knon)
136 real zzpk
137
138 !----------------------------------------------------------------
139
140 if (iflag_pbl == 1) then
141 do k = 3, klev
142 do i = 1, knon
143 gamq(i, k)= 0.0
144 gamt(i, k)= - 1.0e-03
145 enddo
146 enddo
147 do i = 1, knon
148 gamq(i, 2) = 0.0
149 gamt(i, 2) = - 2.5e-03
150 enddo
151 else
152 do k = 2, klev
153 do i = 1, knon
154 gamq(i, k) = 0.0
155 gamt(i, k) = 0.0
156 enddo
157 enddo
158 endif
159
160 DO i = 1, knon
161 psref(i) = paprs(i, 1) !pression de reference est celle au sol
162 local_ts(i) = ts(i)
163 ENDDO
164 DO k = 1, klev
165 DO i = 1, knon
166 zx_pkh(i, k) = (psref(i) / paprs(i, k))**RKAPPA
167 zx_pkf(i, k) = (psref(i) / pplay(i, k))**RKAPPA
168 local_h(i, k) = RCPD * t(i, k) * zx_pkf(i, k)
169 local_q(i, k) = q(i, k)
170 ENDDO
171 ENDDO
172
173 ! Convertir les coefficients en variables convenables au calcul:
174
175 DO k = 2, klev
176 DO i = 1, knon
177 zx_coef(i, k) = coef(i, k)*RG / (pplay(i, k - 1) - pplay(i, k)) &
178 *(paprs(i, k)*2 / (t(i, k)+t(i, k - 1)) / RD)**2
179 zx_coef(i, k) = zx_coef(i, k) * dtime*RG
180 ENDDO
181 ENDDO
182
183 ! Preparer les flux lies aux contre-gardients
184
185 DO k = 2, klev
186 DO i = 1, knon
187 zdelz = RD * (t(i, k - 1)+t(i, k)) / 2.0 / RG / paprs(i, k) &
188 *(pplay(i, k - 1) - pplay(i, k))
189 z_gamaq(i, k) = gamq(i, k) * zdelz
190 z_gamah(i, k) = gamt(i, k) * zdelz *RCPD * zx_pkh(i, k)
191 ENDDO
192 ENDDO
193 DO i = 1, knon
194 zx_buf1(i) = zx_coef(i, klev) + delp(i, klev)
195 zx_cq(i, klev) = (local_q(i, klev)*delp(i, klev) &
196 - zx_coef(i, klev)*z_gamaq(i, klev)) / zx_buf1(i)
197 zx_dq(i, klev) = zx_coef(i, klev) / zx_buf1(i)
198
199 zzpk=(pplay(i, klev) / psref(i))**RKAPPA
200 zx_buf2(i) = zzpk*delp(i, klev) + zx_coef(i, klev)
201 zx_ch(i, klev) = (local_h(i, klev)*zzpk*delp(i, klev) &
202 - zx_coef(i, klev)*z_gamah(i, klev)) / zx_buf2(i)
203 zx_dh(i, klev) = zx_coef(i, klev) / zx_buf2(i)
204 ENDDO
205 DO k = klev - 1, 2, - 1
206 DO i = 1, knon
207 zx_buf1(i) = delp(i, k)+zx_coef(i, k) &
208 +zx_coef(i, k+1)*(1. - zx_dq(i, k+1))
209 zx_cq(i, k) = (local_q(i, k)*delp(i, k) &
210 +zx_coef(i, k+1)*zx_cq(i, k+1) &
211 +zx_coef(i, k+1)*z_gamaq(i, k+1) &
212 - zx_coef(i, k)*z_gamaq(i, k)) / zx_buf1(i)
213 zx_dq(i, k) = zx_coef(i, k) / zx_buf1(i)
214
215 zzpk=(pplay(i, k) / psref(i))**RKAPPA
216 zx_buf2(i) = zzpk*delp(i, k)+zx_coef(i, k) &
217 +zx_coef(i, k+1)*(1. - zx_dh(i, k+1))
218 zx_ch(i, k) = (local_h(i, k)*zzpk*delp(i, k) &
219 +zx_coef(i, k+1)*zx_ch(i, k+1) &
220 +zx_coef(i, k+1)*z_gamah(i, k+1) &
221 - zx_coef(i, k)*z_gamah(i, k)) / zx_buf2(i)
222 zx_dh(i, k) = zx_coef(i, k) / zx_buf2(i)
223 ENDDO
224 ENDDO
225
226 DO i = 1, knon
227 zx_buf1(i) = delp(i, 1) + zx_coef(i, 2)*(1. - zx_dq(i, 2))
228 zx_cq(i, 1) = (local_q(i, 1)*delp(i, 1) &
229 +zx_coef(i, 2)*(z_gamaq(i, 2)+zx_cq(i, 2))) &
230 / zx_buf1(i)
231 zx_dq(i, 1) = - 1. * RG / zx_buf1(i)
232
233 zzpk=(pplay(i, 1) / psref(i))**RKAPPA
234 zx_buf2(i) = zzpk*delp(i, 1) + zx_coef(i, 2)*(1. - zx_dh(i, 2))
235 zx_ch(i, 1) = (local_h(i, 1)*zzpk*delp(i, 1) &
236 +zx_coef(i, 2)*(z_gamah(i, 2)+zx_ch(i, 2))) &
237 / zx_buf2(i)
238 zx_dh(i, 1) = - 1. * RG / zx_buf2(i)
239 ENDDO
240
241 ! Appel a interfsurf (appel generique) routine d'interface avec la surface
242
243 ! initialisation
244 petAcoef =0.
245 peqAcoef = 0.
246 petBcoef =0.
247 peqBcoef = 0.
248 p1lay =0.
249
250 petAcoef(1:knon) = zx_ch(1:knon, 1)
251 peqAcoef(1:knon) = zx_cq(1:knon, 1)
252 petBcoef(1:knon) = zx_dh(1:knon, 1)
253 peqBcoef(1:knon) = zx_dq(1:knon, 1)
254 tq_cdrag(1:knon) =coef(:knon, 1)
255 temp_air(1:knon) =t(1:knon, 1)
256 epot_air(1:knon) =local_h(1:knon, 1)
257 spechum(1:knon)=q(1:knon, 1)
258 p1lay(1:knon) = pplay(1:knon, 1)
259 zlev1(1:knon) = delp(1:knon, 1)
260
261 if(nisurf == is_ter) THEN
262 swdown(:knon) = swnet(:knon) / (1 - albedo)
263 else
264 swdown(:knon) = swnet(:knon)
265 endif
266 ccanopy = co2_ppm
267
268 CALL interfsurf_hq(itime, dtime, jour, rmu0, nisurf, knon, knindex, &
269 pctsrf, rlat, debut, nsoilmx, tsoil, qsol, u1lay, v1lay, temp_air, &
270 spechum, tq_cdrag, petAcoef, peqAcoef, petBcoef, peqBcoef, &
271 precip_rain, precip_snow, fder, rugos, rugoro, snow, qsurf, &
272 ts(:knon), p1lay, psref, radsol, evap, fluxsens, fluxlat, dflux_l, &
273 dflux_s, tsurf_new, albedo, z0_new, pctsrf_new, agesno, fqcalving, &
274 ffonte, run_off_lic_0, flux_o, flux_g)
275
276 flux_t(:knon, 1) = fluxsens(:knon)
277 flux_q(:knon, 1) = - evap(:knon)
278 d_ts = tsurf_new - ts(:knon)
279
280 !==== une fois on a zx_h_ts, on peut faire l'iteration ========
281 DO i = 1, knon
282 local_h(i, 1) = zx_ch(i, 1) + zx_dh(i, 1)*flux_t(i, 1)*dtime
283 local_q(i, 1) = zx_cq(i, 1) + zx_dq(i, 1)*flux_q(i, 1)*dtime
284 ENDDO
285 DO k = 2, klev
286 DO i = 1, knon
287 local_q(i, k) = zx_cq(i, k) + zx_dq(i, k)*local_q(i, k - 1)
288 local_h(i, k) = zx_ch(i, k) + zx_dh(i, k)*local_h(i, k - 1)
289 ENDDO
290 ENDDO
291
292 !== flux_q est le flux de vapeur d'eau: kg / (m**2 s) positive vers bas
293 !== flux_t est le flux de cpt (energie sensible): j / (m**2 s)
294 DO k = 2, klev
295 DO i = 1, knon
296 flux_q(i, k) = (zx_coef(i, k) / RG / dtime) &
297 * (local_q(i, k) - local_q(i, k - 1)+z_gamaq(i, k))
298 flux_t(i, k) = (zx_coef(i, k) / RG / dtime) &
299 * (local_h(i, k) - local_h(i, k - 1)+z_gamah(i, k)) &
300 / zx_pkh(i, k)
301 ENDDO
302 ENDDO
303
304 ! Calcul tendances
305 DO k = 1, klev
306 DO i = 1, knon
307 d_t(i, k) = local_h(i, k) / zx_pkf(i, k) / RCPD - t(i, k)
308 d_q(i, k) = local_q(i, k) - q(i, k)
309 ENDDO
310 ENDDO
311
312 END SUBROUTINE clqh
313
314 end module clqh_m

  ViewVC Help
Powered by ViewVC 1.1.21