/[lmdze]/trunk/Sources/phylmd/cv_driver.f
ViewVC logotype

Diff of /trunk/Sources/phylmd/cv_driver.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/libf/phylmd/cv_driver.f90 revision 49 by guez, Wed Aug 24 11:43:14 2011 UTC trunk/Sources/phylmd/cv_driver.f revision 150 by guez, Thu Jun 18 13:49:26 2015 UTC
# Line 1  Line 1 
1  !  module cv_driver_m
 ! $Header: /home/cvsroot/LMDZ4/libf/phylmd/cv_driver.F,v 1.3 2005/04/15 12:36:17 lmdzadmin Exp $  
 !  
       SUBROUTINE cv_driver(len,nd,ndp1,ntra,iflag_con, &  
                          t1,q1,qs1,u1,v1,tra1, &  
                          p1,ph1,iflag1,ft1,fq1,fu1,fv1,ftra1, &  
                          precip1,VPrecip1, &  
                          cbmf1,sig1,w01, &  
                          icb1,inb1, &  
                          delt,Ma1,upwd1,dnwd1,dnwd01,qcondc1,wd1,cape1, &  
                          da1,phi1,mp1)  
 !  
       use dimens_m  
       use dimphy  
       implicit none  
 !  
 !.............................START PROLOGUE............................  
 !  
 ! PARAMETERS:  
 !      Name            Type         Usage            Description  
 !   ----------      ----------     -------  ----------------------------  
 !  
 !      len           Integer        Input        first (i) dimension  
 !      nd            Integer        Input        vertical (k) dimension  
 !      ndp1          Integer        Input        nd + 1  
 !      ntra          Integer        Input        number of tracors  
 !      iflag_con     Integer        Input        version of convect (3/4)  
 !      t1            Real           Input        temperature  
 !      q1            Real           Input        specific hum  
 !      qs1           Real           Input        sat specific hum  
 !      u1            Real           Input        u-wind  
 !      v1            Real           Input        v-wind  
 !      tra1          Real           Input        tracors  
 !      p1            Real           Input        full level pressure  
 !      ph1           Real           Input        half level pressure  
 !      iflag1        Integer        Output       flag for Emanuel conditions  
 !      ft1           Real           Output       temp tend  
 !      fq1           Real           Output       spec hum tend  
 !      fu1           Real           Output       u-wind tend  
 !      fv1           Real           Output       v-wind tend  
 !      ftra1         Real           Output       tracor tend  
 !      precip1       Real           Output       precipitation  
 !      VPrecip1      Real           Output       vertical profile of precipitations  
 !      cbmf1         Real           Output       cloud base mass flux  
 !      sig1          Real           In/Out       section adiabatic updraft  
 !      w01           Real           In/Out       vertical velocity within adiab updraft  
 !      delt          Real           Input        time step  
 !      Ma1           Real           Output       mass flux adiabatic updraft  
 !      upwd1         Real           Output       total upward mass flux (adiab+mixed)  
 !      dnwd1         Real           Output       saturated downward mass flux (mixed)  
 !      dnwd01        Real           Output       unsaturated downward mass flux  
 !      qcondc1       Real           Output       in-cld mixing ratio of condensed water  
 !      wd1           Real           Output       downdraft velocity scale for sfc fluxes  
 !      cape1         Real           Output       CAPE  
 !  
 ! S. Bony, Mar 2002:  
 !     * Several modules corresponding to different physical processes  
 !     * Several versions of convect may be used:  
 !        - iflag_con=3: version lmd  (previously named convect3)  
 !        - iflag_con=4: version 4.3b (vect. version, previously convect1/2)  
 !   + tard:    - iflag_con=5: version lmd with ice (previously named convectg)  
 ! S. Bony, Oct 2002:  
 !     * Vectorization of convect3 (ie version lmd)  
 !  
 !..............................END PROLOGUE.............................  
 !  
 !  
   
       integer len  
       integer nd  
       integer ndp1  
       integer noff  
       integer, intent(in):: iflag_con  
       integer ntra  
       real t1(len,nd)  
       real q1(len,nd)  
       real qs1(len,nd)  
       real u1(len,nd)  
       real v1(len,nd)  
       real p1(len,nd)  
       real ph1(len,ndp1)  
       integer iflag1(len)  
       real ft1(len,nd)  
       real fq1(len,nd)  
       real fu1(len,nd)  
       real fv1(len,nd)  
       real precip1(len)  
       real cbmf1(len)  
       real VPrecip1(len,nd+1)  
       real Ma1(len,nd)  
       real upwd1(len,nd)  
       real dnwd1(len,nd)  
       real dnwd01(len,nd)  
   
       real qcondc1(len,nd)     ! cld  
       real wd1(len)            ! gust  
       real cape1(len)  
   
       real da1(len,nd),phi1(len,nd,nd),mp1(len,nd)  
       real da(len,nd),phi(len,nd,nd),mp(len,nd)  
       real, intent(in):: tra1(len,nd,ntra)  
       real ftra1(len,nd,ntra)  
   
       real, intent(in):: delt  
   
 !-------------------------------------------------------------------  
 ! --- ARGUMENTS  
 !-------------------------------------------------------------------  
 ! --- On input:  
 !  
 !  t:   Array of absolute temperature (K) of dimension ND, with first  
 !       index corresponding to lowest model level. Note that this array  
 !       will be altered by the subroutine if dry convective adjustment  
 !       occurs and if IPBL is not equal to 0.  
 !  
 !  q:   Array of specific humidity (gm/gm) of dimension ND, with first  
 !       index corresponding to lowest model level. Must be defined  
 !       at same grid levels as T. Note that this array will be altered  
 !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
 !  
 !  qs:  Array of saturation specific humidity of dimension ND, with first  
 !       index corresponding to lowest model level. Must be defined  
 !       at same grid levels as T. Note that this array will be altered  
 !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
 !  
 !  u:   Array of zonal wind velocity (m/s) of dimension ND, witth first  
 !       index corresponding with the lowest model level. Defined at  
 !       same levels as T. Note that this array will be altered if  
 !       dry convective adjustment occurs and if IPBL is not equal to 0.  
 !  
 !  v:   Same as u but for meridional velocity.  
 !  
 !  tra: Array of passive tracer mixing ratio, of dimensions (ND,NTRA),  
 !       where NTRA is the number of different tracers. If no  
 !       convective tracer transport is needed, define a dummy  
 !       input array of dimension (ND,1). Tracers are defined at  
 !       same vertical levels as T. Note that this array will be altered  
 !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
 !  
 !  p:   Array of pressure (mb) of dimension ND, with first  
 !       index corresponding to lowest model level. Must be defined  
 !       at same grid levels as T.  
 !  
 !  ph:  Array of pressure (mb) of dimension ND+1, with first index  
 !       corresponding to lowest level. These pressures are defined at  
 !       levels intermediate between those of P, T, Q and QS. The first  
 !       value of PH should be greater than (i.e. at a lower level than)  
 !       the first value of the array P.  
 !  
 !  nl:  The maximum number of levels to which convection can penetrate, plus 1.  
 !       NL MUST be less than or equal to ND-1.  
 !  
 !  delt: The model time step (sec) between calls to CONVECT  
 !  
 !----------------------------------------------------------------------------  
 ! ---   On Output:  
 !  
 !  iflag: An output integer whose value denotes the following:  
 !       VALUE   INTERPRETATION  
 !       -----   --------------  
 !         0     Moist convection occurs.  
 !         1     Moist convection occurs, but a CFL condition  
 !               on the subsidence warming is violated. This  
 !               does not cause the scheme to terminate.  
 !         2     Moist convection, but no precip because ep(inb) lt 0.0001  
 !         3     No moist convection because new cbmf is 0 and old cbmf is 0.  
 !         4     No moist convection; atmosphere is not  
 !               unstable  
 !         6     No moist convection because ihmin le minorig.  
 !         7     No moist convection because unreasonable  
 !               parcel level temperature or specific humidity.  
 !         8     No moist convection: lifted condensation  
 !               level is above the 200 mb level.  
 !         9     No moist convection: cloud base is higher  
 !               then the level NL-1.  
 !  
 !  ft:   Array of temperature tendency (K/s) of dimension ND, defined at same  
 !        grid levels as T, Q, QS and P.  
 !  
 !  fq:   Array of specific humidity tendencies ((gm/gm)/s) of dimension ND,  
 !        defined at same grid levels as T, Q, QS and P.  
 !  
 !  fu:   Array of forcing of zonal velocity (m/s^2) of dimension ND,  
 !        defined at same grid levels as T.  
 !  
 !  fv:   Same as FU, but for forcing of meridional velocity.  
 !  
 !  ftra: Array of forcing of tracer content, in tracer mixing ratio per  
 !        second, defined at same levels as T. Dimensioned (ND,NTRA).  
 !  
 !  precip: Scalar convective precipitation rate (mm/day).  
 !  
 !  VPrecip: Vertical profile of convective precipitation (kg/m2/s).  
 !  
 !  wd:   A convective downdraft velocity scale. For use in surface  
 !        flux parameterizations. See convect.ps file for details.  
 !  
 !  tprime: A convective downdraft temperature perturbation scale (K).  
 !          For use in surface flux parameterizations. See convect.ps  
 !          file for details.  
 !  
 !  qprime: A convective downdraft specific humidity  
 !          perturbation scale (gm/gm).  
 !          For use in surface flux parameterizations. See convect.ps  
 !          file for details.  
 !  
 !  cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST  
 !        BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT  
 !        ITS NEXT CALL. That is, the value of CBMF must be "remembered"  
 !        by the calling program between calls to CONVECT.  
 !  
 !  det:   Array of detrainment mass flux of dimension ND.  
 !  
 !-------------------------------------------------------------------  
 !  
 !  Local arrays  
 !  
   
       integer i,k,n,il,j  
       integer icbmax  
       integer nk1(klon)  
       integer icb1(klon)  
       integer inb1(klon)  
       integer icbs1(klon)  
   
       real plcl1(klon)  
       real tnk1(klon)  
       real qnk1(klon)  
       real gznk1(klon)  
       real pnk1(klon)  
       real qsnk1(klon)  
       real pbase1(klon)  
       real buoybase1(klon)  
   
       real lv1(klon,klev)  
       real cpn1(klon,klev)  
       real tv1(klon,klev)  
       real gz1(klon,klev)  
       real hm1(klon,klev)  
       real h1(klon,klev)  
       real tp1(klon,klev)  
       real tvp1(klon,klev)  
       real clw1(klon,klev)  
       real sig1(klon,klev)  
       real w01(klon,klev)  
       real th1(klon,klev)  
 !  
       integer ncum  
 !  
 ! (local) compressed fields:  
 !  
       integer nloc  
       parameter (nloc=klon) ! pour l'instant  
   
       integer idcum(nloc)  
       integer iflag(nloc),nk(nloc),icb(nloc)  
       integer nent(nloc,klev)  
       integer icbs(nloc)  
       integer inb(nloc), inbis(nloc)  
   
       real cbmf(nloc),plcl(nloc),tnk(nloc),qnk(nloc),gznk(nloc)  
       real t(nloc,klev),q(nloc,klev),qs(nloc,klev)  
       real u(nloc,klev),v(nloc,klev)  
       real gz(nloc,klev),h(nloc,klev),lv(nloc,klev),cpn(nloc,klev)  
       real p(nloc,klev),ph(nloc,klev+1),tv(nloc,klev),tp(nloc,klev)  
       real clw(nloc,klev)  
       real dph(nloc,klev)  
       real pbase(nloc), buoybase(nloc), th(nloc,klev)  
       real tvp(nloc,klev)  
       real sig(nloc,klev), w0(nloc,klev)  
       real hp(nloc,klev), ep(nloc,klev), sigp(nloc,klev)  
       real frac(nloc), buoy(nloc,klev)  
       real cape(nloc)  
       real m(nloc,klev), ment(nloc,klev,klev), qent(nloc,klev,klev)  
       real uent(nloc,klev,klev), vent(nloc,klev,klev)  
       real ments(nloc,klev,klev), qents(nloc,klev,klev)  
       real sij(nloc,klev,klev), elij(nloc,klev,klev)  
       real qp(nloc,klev), up(nloc,klev), vp(nloc,klev)  
       real wt(nloc,klev), water(nloc,klev), evap(nloc,klev)  
       real b(nloc,klev), ft(nloc,klev), fq(nloc,klev)  
       real fu(nloc,klev), fv(nloc,klev)  
       real upwd(nloc,klev), dnwd(nloc,klev), dnwd0(nloc,klev)  
       real Ma(nloc,klev), mike(nloc,klev), tls(nloc,klev)  
       real tps(nloc,klev), qprime(nloc), tprime(nloc)  
       real precip(nloc)  
       real VPrecip(nloc,klev+1)  
       real tra(nloc,klev,ntra), trap(nloc,klev,ntra)  
       real ftra(nloc,klev,ntra), traent(nloc,klev,klev,ntra)  
       real qcondc(nloc,klev)  ! cld  
       real wd(nloc)           ! gust  
   
 !-------------------------------------------------------------------  
 ! --- SET CONSTANTS AND PARAMETERS  
 !-------------------------------------------------------------------  
   
 ! -- set simulation flags:  
 !   (common cvflag)  
   
        CALL cv_flag  
   
 ! -- set thermodynamical constants:  
 !     (common cvthermo)  
   
        CALL cv_thermo(iflag_con)  
   
 ! -- set convect parameters  
 !  
 !     includes microphysical parameters and parameters that  
 !     control the rate of approach to quasi-equilibrium)  
 !     (common cvparam)  
   
       if (iflag_con.eq.3) then  
        CALL cv3_param(nd,delt)  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_param(nd)  
       endif  
   
 !---------------------------------------------------------------------  
 ! --- INITIALIZE OUTPUT ARRAYS AND PARAMETERS  
 !---------------------------------------------------------------------  
   
       do 20 k=1,nd  
         do 10 i=1,len  
          ft1(i,k)=0.0  
          fq1(i,k)=0.0  
          fu1(i,k)=0.0  
          fv1(i,k)=0.0  
          tvp1(i,k)=0.0  
          tp1(i,k)=0.0  
          clw1(i,k)=0.0  
 !ym  
          clw(i,k)=0.0  
          gz1(i,k) = 0.  
          VPrecip1(i,k) = 0.  
          Ma1(i,k)=0.0  
          upwd1(i,k)=0.0  
          dnwd1(i,k)=0.0  
          dnwd01(i,k)=0.0  
          qcondc1(i,k)=0.0  
  10     continue  
  20   continue  
   
       do 30 j=1,ntra  
        do 31 k=1,nd  
         do 32 i=1,len  
          ftra1(i,k,j)=0.0  
  32     continue  
  31    continue  
  30   continue  
   
       do 60 i=1,len  
         precip1(i)=0.0  
         iflag1(i)=0  
         wd1(i)=0.0  
         cape1(i)=0.0  
         VPrecip1(i,nd+1)=0.0  
  60   continue  
   
       if (iflag_con.eq.3) then  
         do il=1,len  
          sig1(il,nd)=sig1(il,nd)+1.  
          sig1(il,nd)=amin1(sig1(il,nd),12.1)  
         enddo  
       endif  
   
 !--------------------------------------------------------------------  
 ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY  
 !--------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_prelim(len,nd,ndp1,t1,q1,p1,ph1             &  
                      ,lv1,cpn1,tv1,gz1,h1,hm1,th1)! nd->na  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_prelim(len,nd,ndp1,t1,q1,p1,ph1 &  
                      ,lv1,cpn1,tv1,gz1,h1,hm1)  
       endif  
   
 !--------------------------------------------------------------------  
 ! --- CONVECTIVE FEED  
 !--------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_feed(len,nd,t1,q1,qs1,p1,ph1,hm1,gz1            &  
                ,nk1,icb1,icbmax,iflag1,tnk1,qnk1,gznk1,plcl1) ! nd->na  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_feed(len,nd,t1,q1,qs1,p1,hm1,gz1 &  
                ,nk1,icb1,icbmax,iflag1,tnk1,qnk1,gznk1,plcl1)  
       endif  
   
 !--------------------------------------------------------------------  
 ! --- UNDILUTE (ADIABATIC) UPDRAFT / 1st part  
 ! (up through ICB for convect4, up through ICB+1 for convect3)  
 !     Calculates the lifted parcel virtual temperature at nk, the  
 !     actual temperature, and the adiabatic liquid water content.  
 !--------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_undilute1(len,nd,t1,q1,qs1,gz1,plcl1,p1,nk1,icb1   &  
                               ,tp1,tvp1,clw1,icbs1) ! nd->na  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_undilute1(len,nd,t1,q1,qs1,gz1,p1,nk1,icb1,icbmax &  
                               ,tp1,tvp1,clw1)  
       endif  
   
 !-------------------------------------------------------------------  
 ! --- TRIGGERING  
 !-------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_trigger(len,nd,icb1,plcl1,p1,th1,tv1,tvp1       &  
                        ,pbase1,buoybase1,iflag1,sig1,w01) ! nd->na  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_trigger(len,nd,icb1,cbmf1,tv1,tvp1,iflag1)  
       endif  
   
 !=====================================================================  
 ! --- IF THIS POINT IS REACHED, MOIST CONVECTIVE ADJUSTMENT IS NECESSARY  
 !=====================================================================  
   
       ncum=0  
       do 400 i=1,len  
         if(iflag1(i).eq.0)then  
            ncum=ncum+1  
            idcum(ncum)=i  
         endif  
  400  continue  
   
 !       print*,'klon, ncum = ',len,ncum  
   
       IF (ncum.gt.0) THEN  
   
 !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
 ! --- COMPRESS THE FIELDS  
 !        (-> vectorization over convective gridpoints)  
 !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
   
       if (iflag_con.eq.3) then  
        CALL cv3_compress( len,nloc,ncum,nd,ntra &  
           ,iflag1,nk1,icb1,icbs1 &  
           ,plcl1,tnk1,qnk1,gznk1,pbase1,buoybase1 &  
           ,t1,q1,qs1,u1,v1,gz1,th1 &  
           ,tra1 &  
           ,h1,lv1,cpn1,p1,ph1,tv1,tp1,tvp1,clw1  &  
           ,sig1,w01 &  
           ,iflag,nk,icb,icbs &  
           ,plcl,tnk,qnk,gznk,pbase,buoybase &  
           ,t,q,qs,u,v,gz,th &  
           ,tra &  
           ,h,lv,cpn,p,ph,tv,tp,tvp,clw  &  
           ,sig,w0  )  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_compress( len,nloc,ncum,nd &  
           ,iflag1,nk1,icb1 &  
           ,cbmf1,plcl1,tnk1,qnk1,gznk1 &  
           ,t1,q1,qs1,u1,v1,gz1 &  
           ,h1,lv1,cpn1,p1,ph1,tv1,tp1,tvp1,clw1 &  
           ,iflag,nk,icb &  
           ,cbmf,plcl,tnk,qnk,gznk &  
           ,t,q,qs,u,v,gz,h,lv,cpn,p,ph,tv,tp,tvp,clw  &  
           ,dph )  
       endif  
   
 !-------------------------------------------------------------------  
 ! --- UNDILUTE (ADIABATIC) UPDRAFT / second part :  
 ! ---   FIND THE REST OF THE LIFTED PARCEL TEMPERATURES  
 ! ---   &  
 ! ---   COMPUTE THE PRECIPITATION EFFICIENCIES AND THE  
 ! ---   FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD  
 ! ---   &  
 ! ---   FIND THE LEVEL OF NEUTRAL BUOYANCY  
 !-------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_undilute2(nloc,ncum,nd,icb,icbs,nk         &  
                               ,tnk,qnk,gznk,t,q,qs,gz &  
                               ,p,h,tv,lv,pbase,buoybase,plcl &  
                               ,inb,tp,tvp,clw,hp,ep,sigp,buoy) !na->nd  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_undilute2(nloc,ncum,nd,icb,nk &  
                               ,tnk,qnk,gznk,t,q,qs,gz &  
                               ,p,dph,h,tv,lv &  
                    ,inb,inbis,tp,tvp,clw,hp,ep,sigp,frac)  
       endif  
   
 !-------------------------------------------------------------------  
 ! --- CLOSURE  
 !-------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_closure(nloc,ncum,nd,icb,inb               &  
                              ,pbase,p,ph,tv,buoy &  
                              ,sig,w0,cape,m) ! na->nd  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_closure(nloc,ncum,nd,nk,icb &  
                       ,tv,tvp,p,ph,dph,plcl,cpn &  
                       ,iflag,cbmf)  
       endif  
   
 !-------------------------------------------------------------------  
 ! --- MIXING  
 !-------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_mixing(nloc,ncum,nd,nd,ntra,icb,nk,inb     &  
                            ,ph,t,q,qs,u,v,tra,h,lv,qnk &  
                            ,hp,tv,tvp,ep,clw,m,sig &  
        ,ment,qent,uent,vent, nent,sij,elij,ments,qents,traent)! na->nd  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_mixing(nloc,ncum,nd,icb,nk,inb,inbis &  
                            ,ph,t,q,qs,u,v,h,lv,qnk &  
                            ,hp,tv,tvp,ep,clw,cbmf &  
                            ,m,ment,qent,uent,vent,nent,sij,elij)  
       endif  
   
 !-------------------------------------------------------------------  
 ! --- UNSATURATED (PRECIPITATING) DOWNDRAFTS  
 !-------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_unsat(nloc,ncum,nd,nd,ntra,icb,inb     &  
                      ,t,q,qs,gz,u,v,tra,p,ph &  
                      ,th,tv,lv,cpn,ep,sigp,clw &  
                      ,m,ment,elij,delt,plcl &  
                 ,mp,qp,up,vp,trap,wt,water,evap,b)! na->nd  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_unsat(nloc,ncum,nd,inb,t,q,qs,gz,u,v,p,ph &  
                          ,h,lv,ep,sigp,clw,m,ment,elij &  
                          ,iflag,mp,qp,up,vp,wt,water,evap)  
       endif  
   
 !-------------------------------------------------------------------  
 ! --- YIELD  
 !     (tendencies, precipitation, variables of interface with other  
 !      processes, etc)  
 !-------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_yield(nloc,ncum,nd,nd,ntra             &  
                            ,icb,inb,delt &  
                            ,t,q,u,v,tra,gz,p,ph,h,hp,lv,cpn,th &  
                            ,ep,clw,m,tp,mp,qp,up,vp,trap &  
                            ,wt,water,evap,b &  
                            ,ment,qent,uent,vent,nent,elij,traent,sig &  
                            ,tv,tvp &  
                            ,iflag,precip,VPrecip,ft,fq,fu,fv,ftra &  
                            ,upwd,dnwd,dnwd0,ma,mike,tls,tps,qcondc,wd)! na->nd  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_yield(nloc,ncum,nd,nk,icb,inb,delt &  
                     ,t,q,u,v,gz,p,ph,h,hp,lv,cpn &  
                     ,ep,clw,frac,m,mp,qp,up,vp &  
                     ,wt,water,evap &  
                     ,ment,qent,uent,vent,nent,elij &  
                     ,tv,tvp &  
                     ,iflag,wd,qprime,tprime &  
                     ,precip,cbmf,ft,fq,fu,fv,Ma,qcondc)  
       endif  
   
 !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
 ! --- passive tracers  
 !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
   
       if (iflag_con.eq.3) then  
        CALL cv3_tracer(nloc,len,ncum,nd,nd, &  
                         ment,sij,da,phi)  
       endif  
   
 !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
 ! --- UNCOMPRESS THE FIELDS  
 !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
 ! set iflag1 =42 for non convective points  
       do  i=1,len  
         iflag1(i)=42  
       end do  
 !  
       if (iflag_con.eq.3) then  
        CALL cv3_uncompress(nloc,len,ncum,nd,ntra,idcum &  
                 ,iflag &  
                 ,precip,VPrecip,sig,w0 &  
                 ,ft,fq,fu,fv,ftra &  
                 ,inb  &  
                 ,Ma,upwd,dnwd,dnwd0,qcondc,wd,cape &  
                 ,da,phi,mp &  
                 ,iflag1 &  
                 ,precip1,VPrecip1,sig1,w01 &  
                 ,ft1,fq1,fu1,fv1,ftra1 &  
                 ,inb1 &  
                 ,Ma1,upwd1,dnwd1,dnwd01,qcondc1,wd1,cape1  &  
                 ,da1,phi1,mp1)  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_uncompress(nloc,len,ncum,nd,idcum &  
                 ,iflag &  
                 ,precip,cbmf &  
                 ,ft,fq,fu,fv &  
                 ,Ma,qcondc             &  
                 ,iflag1 &  
                 ,precip1,cbmf1 &  
                 ,ft1,fq1,fu1,fv1 &  
                 ,Ma1,qcondc1 )  
       endif  
2    
3        ENDIF ! ncum>0    implicit none
4    
5  9999  continue  contains
6    
7        return    SUBROUTINE cv_driver(t1, q1, qs1, u1, v1, p1, ph1, iflag1, ft1, &
8        end         fq1, fu1, fv1, precip1, VPrecip1, cbmf1, sig1, w01, icb1, inb1, delt, &
9           Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, cape1, da1, phi1, mp1)
10    
11        ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3, 2005/04/15 12:36:17
12        ! Main driver for convection
13        ! Author: S. Bony, March 2002
14    
15        ! Several modules corresponding to different physical processes
16    
17        ! Several versions of convect may be used:
18        ! - iflag_con = 3: version lmd
19        ! - iflag_con = 4: version 4.3b
20    
21        use clesphys2, only: iflag_con
22        use cv3_compress_m, only: cv3_compress
23        use cv3_feed_m, only: cv3_feed
24        use cv3_mixing_m, only: cv3_mixing
25        use cv3_param_m, only: cv3_param
26        use cv3_prelim_m, only: cv3_prelim
27        use cv3_tracer_m, only: cv3_tracer
28        use cv3_uncompress_m, only: cv3_uncompress
29        use cv3_unsat_m, only: cv3_unsat
30        use cv3_yield_m, only: cv3_yield
31        use cv_feed_m, only: cv_feed
32        use cv_uncompress_m, only: cv_uncompress
33        USE dimphy, ONLY: klev, klon
34    
35        real, intent(in):: t1(klon, klev) ! temperature
36        real, intent(in):: q1(klon, klev) ! specific hum
37        real, intent(in):: qs1(klon, klev) ! sat specific hum
38        real, intent(in):: u1(klon, klev) ! u-wind
39        real, intent(in):: v1(klon, klev) ! v-wind
40        real, intent(in):: p1(klon, klev) ! full level pressure
41        real, intent(in):: ph1(klon, klev + 1) ! half level pressure
42        integer, intent(out):: iflag1(klon) ! flag for Emanuel conditions
43        real, intent(out):: ft1(klon, klev) ! temp tend
44        real, intent(out):: fq1(klon, klev) ! spec hum tend
45        real, intent(out):: fu1(klon, klev) ! u-wind tend
46        real, intent(out):: fv1(klon, klev) ! v-wind tend
47        real, intent(out):: precip1(klon) ! precipitation
48    
49        real, intent(out):: VPrecip1(klon, klev+1)
50        ! vertical profile of precipitation
51    
52        real, intent(inout):: cbmf1(klon) ! cloud base mass flux
53        real, intent(inout):: sig1(klon, klev) ! section adiabatic updraft
54    
55        real, intent(inout):: w01(klon, klev)
56        ! vertical velocity within adiabatic updraft
57    
58        integer, intent(out):: icb1(klon)
59        integer, intent(inout):: inb1(klon)
60        real, intent(in):: delt ! time step
61        real Ma1(klon, klev)
62        ! Ma1 Real Output mass flux adiabatic updraft
63        real, intent(out):: upwd1(klon, klev) ! total upward mass flux (adiab+mixed)
64        real, intent(out):: dnwd1(klon, klev) ! saturated downward mass flux (mixed)
65        real, intent(out):: dnwd01(klon, klev) ! unsaturated downward mass flux
66    
67        real qcondc1(klon, klev) ! cld
68        ! qcondc1 Real Output in-cld mixing ratio of condensed water
69        real wd1(klon) ! gust
70        ! wd1 Real Output downdraft velocity scale for sfc fluxes
71        real cape1(klon)
72        ! cape1 Real Output CAPE
73    
74        real, intent(inout):: da1(klon, klev), phi1(klon, klev, klev)
75        real, intent(inout):: mp1(klon, klev)
76    
77        ! --- ARGUMENTS
78    
79        ! --- On input:
80    
81        ! t: Array of absolute temperature (K) of dimension KLEV, with first
82        ! index corresponding to lowest model level. Note that this array
83        ! will be altered by the subroutine if dry convective adjustment
84        ! occurs and if IPBL is not equal to 0.
85    
86        ! q: Array of specific humidity (gm/gm) of dimension KLEV, with first
87        ! index corresponding to lowest model level. Must be defined
88        ! at same grid levels as T. Note that this array will be altered
89        ! if dry convective adjustment occurs and if IPBL is not equal to 0.
90    
91        ! qs: Array of saturation specific humidity of dimension KLEV, with first
92        ! index corresponding to lowest model level. Must be defined
93        ! at same grid levels as T. Note that this array will be altered
94        ! if dry convective adjustment occurs and if IPBL is not equal to 0.
95    
96        ! u: Array of zonal wind velocity (m/s) of dimension KLEV, witth first
97        ! index corresponding with the lowest model level. Defined at
98        ! same levels as T. Note that this array will be altered if
99        ! dry convective adjustment occurs and if IPBL is not equal to 0.
100    
101        ! v: Same as u but for meridional velocity.
102    
103        ! p: Array of pressure (mb) of dimension KLEV, with first
104        ! index corresponding to lowest model level. Must be defined
105        ! at same grid levels as T.
106    
107        ! ph: Array of pressure (mb) of dimension KLEV+1, with first index
108        ! corresponding to lowest level. These pressures are defined at
109        ! levels intermediate between those of P, T, Q and QS. The first
110        ! value of PH should be greater than (i.e. at a lower level than)
111        ! the first value of the array P.
112    
113        ! nl: The maximum number of levels to which convection can penetrate, plus 1
114        ! NL MUST be less than or equal to KLEV-1.
115    
116        ! delt: The model time step (sec) between calls to CONVECT
117    
118        ! --- On Output:
119    
120        ! iflag: An output integer whose value denotes the following:
121        ! VALUE INTERPRETATION
122        ! ----- --------------
123        ! 0 Moist convection occurs.
124        ! 1 Moist convection occurs, but a CFL condition
125        ! on the subsidence warming is violated. This
126        ! does not cause the scheme to terminate.
127        ! 2 Moist convection, but no precip because ep(inb) lt 0.0001
128        ! 3 No moist convection because new cbmf is 0 and old cbmf is 0.
129        ! 4 No moist convection; atmosphere is not
130        ! unstable
131        ! 6 No moist convection because ihmin le minorig.
132        ! 7 No moist convection because unreasonable
133        ! parcel level temperature or specific humidity.
134        ! 8 No moist convection: lifted condensation
135        ! level is above the 200 mb level.
136        ! 9 No moist convection: cloud base is higher
137        ! then the level NL-1.
138    
139        ! ft: Array of temperature tendency (K/s) of dimension KLEV, defined at same
140        ! grid levels as T, Q, QS and P.
141    
142        ! fq: Array of specific humidity tendencies ((gm/gm)/s) of dimension KLEV,
143        ! defined at same grid levels as T, Q, QS and P.
144    
145        ! fu: Array of forcing of zonal velocity (m/s^2) of dimension KLEV,
146        ! defined at same grid levels as T.
147    
148        ! fv: Same as FU, but for forcing of meridional velocity.
149    
150        ! precip: Scalar convective precipitation rate (mm/day).
151    
152        ! VPrecip: Vertical profile of convective precipitation (kg/m2/s).
153    
154        ! wd: A convective downdraft velocity scale. For use in surface
155        ! flux parameterizations. See convect.ps file for details.
156    
157        ! tprime: A convective downdraft temperature perturbation scale (K).
158        ! For use in surface flux parameterizations. See convect.ps
159        ! file for details.
160    
161        ! qprime: A convective downdraft specific humidity
162        ! perturbation scale (gm/gm).
163        ! For use in surface flux parameterizations. See convect.ps
164        ! file for details.
165    
166        ! cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST
167        ! BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT
168        ! ITS NEXT CALL. That is, the value of CBMF must be "remembered"
169        ! by the calling program between calls to CONVECT.
170    
171        ! det: Array of detrainment mass flux of dimension KLEV.
172    
173        ! Local arrays
174    
175        real da(klon, klev), phi(klon, klev, klev), mp(klon, klev)
176    
177        integer i, k, il
178        integer icbmax
179        integer nk1(klon)
180        integer icbs1(klon)
181    
182        real plcl1(klon)
183        real tnk1(klon)
184        real qnk1(klon)
185        real gznk1(klon)
186        real pbase1(klon)
187        real buoybase1(klon)
188    
189        real lv1(klon, klev)
190        real cpn1(klon, klev)
191        real tv1(klon, klev)
192        real gz1(klon, klev)
193        real hm1(klon, klev)
194        real h1(klon, klev)
195        real tp1(klon, klev)
196        real tvp1(klon, klev)
197        real clw1(klon, klev)
198        real th1(klon, klev)
199    
200        integer ncum
201    
202        ! (local) compressed fields:
203    
204        integer idcum(klon)
205        integer iflag(klon), nk(klon), icb(klon)
206        integer nent(klon, klev)
207        integer icbs(klon)
208        integer inb(klon), inbis(klon)
209    
210        real cbmf(klon), plcl(klon), tnk(klon), qnk(klon), gznk(klon)
211        real t(klon, klev), q(klon, klev), qs(klon, klev)
212        real u(klon, klev), v(klon, klev)
213        real gz(klon, klev), h(klon, klev), lv(klon, klev), cpn(klon, klev)
214        real p(klon, klev), ph(klon, klev+1), tv(klon, klev), tp(klon, klev)
215        real clw(klon, klev)
216        real dph(klon, klev)
217        real pbase(klon), buoybase(klon), th(klon, klev)
218        real tvp(klon, klev)
219        real sig(klon, klev), w0(klon, klev)
220        real hp(klon, klev), ep(klon, klev), sigp(klon, klev)
221        real frac(klon), buoy(klon, klev)
222        real cape(klon)
223        real m(klon, klev), ment(klon, klev, klev), qent(klon, klev, klev)
224        real uent(klon, klev, klev), vent(klon, klev, klev)
225        real ments(klon, klev, klev), qents(klon, klev, klev)
226        real sij(klon, klev, klev), elij(klon, klev, klev)
227        real qp(klon, klev), up(klon, klev), vp(klon, klev)
228        real wt(klon, klev), water(klon, klev), evap(klon, klev)
229        real b(klon, klev), ft(klon, klev), fq(klon, klev)
230        real fu(klon, klev), fv(klon, klev)
231        real upwd(klon, klev), dnwd(klon, klev), dnwd0(klon, klev)
232        real Ma(klon, klev), mike(klon, klev), tls(klon, klev)
233        real tps(klon, klev), qprime(klon), tprime(klon)
234        real precip(klon)
235        real VPrecip(klon, klev+1)
236        real qcondc(klon, klev) ! cld
237        real wd(klon) ! gust
238    
239        !-------------------------------------------------------------------
240        ! --- SET CONSTANTS AND PARAMETERS
241    
242        ! -- set simulation flags:
243        ! (common cvflag)
244    
245        CALL cv_flag
246    
247        ! -- set thermodynamical constants:
248        ! (common cvthermo)
249    
250        CALL cv_thermo
251    
252        ! -- set convect parameters
253    
254        ! includes microphysical parameters and parameters that
255        ! control the rate of approach to quasi-equilibrium)
256        ! (common cvparam)
257    
258        if (iflag_con == 3) CALL cv3_param(klev, delt)
259    
260        ! --- INITIALIZE OUTPUT ARRAYS AND PARAMETERS
261    
262        do k = 1, klev
263           do i = 1, klon
264              ft1(i, k) = 0.0
265              fq1(i, k) = 0.0
266              fu1(i, k) = 0.0
267              fv1(i, k) = 0.0
268              tvp1(i, k) = 0.0
269              tp1(i, k) = 0.0
270              clw1(i, k) = 0.0
271              !ym
272              clw(i, k) = 0.0
273              gz1(i, k) = 0.
274              VPrecip1(i, k) = 0.
275              Ma1(i, k) = 0.0
276              upwd1(i, k) = 0.0
277              dnwd1(i, k) = 0.0
278              dnwd01(i, k) = 0.0
279              qcondc1(i, k) = 0.0
280           end do
281        end do
282    
283        do i = 1, klon
284           precip1(i) = 0.0
285           iflag1(i) = 0
286           wd1(i) = 0.0
287           cape1(i) = 0.0
288           VPrecip1(i, klev+1) = 0.0
289        end do
290    
291        if (iflag_con == 3) then
292           do il = 1, klon
293              sig1(il, klev) = sig1(il, klev) + 1.
294              sig1(il, klev) = min(sig1(il, klev), 12.1)
295           enddo
296        endif
297    
298        ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY
299    
300        if (iflag_con == 3) then
301           CALL cv3_prelim(klon, klev, klev + 1, t1, q1, p1, ph1, lv1, cpn1, tv1, &
302                gz1, h1, hm1, th1)
303        else
304           ! iflag_con == 4
305           CALL cv_prelim(klon, klev, klev + 1, t1, q1, p1, ph1, lv1, cpn1, tv1, &
306                gz1, h1, hm1)
307        endif
308    
309        ! --- CONVECTIVE FEED
310    
311        if (iflag_con == 3) then
312           CALL cv3_feed(klon, klev, t1, q1, qs1, p1, ph1, gz1, nk1, icb1, &
313                icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! klev->na
314        else
315           ! iflag_con == 4
316           CALL cv_feed(klon, klev, t1, q1, qs1, p1, hm1, gz1, nk1, icb1, icbmax, &
317                iflag1, tnk1, qnk1, gznk1, plcl1)
318        endif
319    
320        ! --- UNDILUTE (ADIABATIC) UPDRAFT / 1st part
321        ! (up through ICB for convect4, up through ICB+1 for convect3)
322        ! Calculates the lifted parcel virtual temperature at nk, the
323        ! actual temperature, and the adiabatic liquid water content.
324    
325        if (iflag_con == 3) then
326           CALL cv3_undilute1(klon, klev, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1, &
327                tp1, tvp1, clw1, icbs1) ! klev->na
328        else
329           ! iflag_con == 4
330           CALL cv_undilute1(klon, klev, t1, q1, qs1, gz1, p1, nk1, icb1, icbmax, &
331                tp1, tvp1, clw1)
332        endif
333    
334        ! --- TRIGGERING
335    
336        if (iflag_con == 3) then
337           CALL cv3_trigger(klon, klev, icb1, plcl1, p1, th1, tv1, tvp1, pbase1, &
338                buoybase1, iflag1, sig1, w01) ! klev->na
339        else
340           ! iflag_con == 4
341           CALL cv_trigger(klon, klev, icb1, cbmf1, tv1, tvp1, iflag1)
342        end if
343    
344        ! --- IF THIS POINT IS REACHED, MOIST CONVECTIVE ADJUSTMENT IS NECESSARY
345    
346        ncum = 0
347        do i = 1, klon
348           if(iflag1(i) == 0)then
349              ncum = ncum+1
350              idcum(ncum) = i
351           endif
352        end do
353    
354        IF (ncum > 0) THEN
355           ! --- COMPRESS THE FIELDS
356           ! (-> vectorization over convective gridpoints)
357    
358           if (iflag_con == 3) then
359              CALL cv3_compress(klon, klon, ncum, klev, iflag1, nk1, icb1, icbs1, &
360                   plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1, t1, q1, qs1, u1, &
361                   v1, gz1, th1, h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1, &
362                   sig1, w01, iflag, nk, icb, icbs, plcl, tnk, qnk, gznk, pbase, &
363                   buoybase, t, q, qs, u, v, gz, th, h, lv, cpn, p, ph, tv, tp, &
364                   tvp, clw, sig, w0)
365           else
366              ! iflag_con == 4
367              CALL cv_compress(klon, klon, ncum, klev, iflag1, nk1, icb1, cbmf1, &
368                   plcl1, tnk1, qnk1, gznk1, t1, q1, qs1, u1, v1, gz1, h1, lv1, &
369                   cpn1, p1, ph1, tv1, tp1, tvp1, clw1, iflag, nk, icb, cbmf, &
370                   plcl, tnk, qnk, gznk, t, q, qs, u, v, gz, h, lv, cpn, p, ph, &
371                   tv, tp, tvp, clw, dph)
372           endif
373    
374           ! --- UNDILUTE (ADIABATIC) UPDRAFT / second part :
375           ! --- FIND THE REST OF THE LIFTED PARCEL TEMPERATURES
376           ! --- &
377           ! --- COMPUTE THE PRECIPITATION EFFICIENCIES AND THE
378           ! --- FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD
379           ! --- &
380           ! --- FIND THE LEVEL OF NEUTRAL BUOYANCY
381    
382           if (iflag_con == 3) then
383              CALL cv3_undilute2(klon, ncum, klev, icb, icbs, nk, tnk, qnk, gznk, &
384                   t, qs, gz, p, h, tv, lv, pbase, buoybase, plcl, inb, tp, &
385                   tvp, clw, hp, ep, sigp, buoy) !na->klev
386           else
387              ! iflag_con == 4
388              CALL cv_undilute2(klon, ncum, klev, icb, nk, tnk, qnk, gznk, t, &
389                   qs, gz, p, dph, h, tv, lv, inb, inbis, tp, tvp, clw, hp, ep, &
390                   sigp, frac)
391           endif
392    
393           ! --- CLOSURE
394    
395           if (iflag_con == 3) then
396              CALL cv3_closure(klon, ncum, klev, icb, inb, pbase, p, ph, tv, &
397                   buoy, sig, w0, cape, m) ! na->klev
398           else
399              ! iflag_con == 4
400              CALL cv_closure(klon, ncum, klev, nk, icb, tv, tvp, p, ph, dph, &
401                   plcl, cpn, iflag, cbmf)
402           endif
403    
404           ! --- MIXING
405    
406           if (iflag_con == 3) then
407              CALL cv3_mixing(klon, ncum, klev, klev, icb, nk, inb, t, q, qs, u, &
408                   v, h, lv, hp, ep, clw, m, sig, ment, qent, uent, vent, nent, &
409                   sij, elij, ments, qents)
410           else
411              ! iflag_con == 4
412              CALL cv_mixing(klon, ncum, klev, icb, nk, inb, inbis, ph, t, q, qs, &
413                   u, v, h, lv, qnk, hp, tv, tvp, ep, clw, cbmf, m, ment, qent, &
414                   uent, vent, nent, sij, elij)
415           endif
416    
417           ! --- UNSATURATED (PRECIPITATING) DOWNDRAFTS
418    
419           if (iflag_con == 3) then
420              CALL cv3_unsat(klon, ncum, klev, klev, icb, inb, t, q, qs, gz, u, &
421                   v, p, ph, th, tv, lv, cpn, ep, sigp, clw, m, ment, elij, delt, &
422                   plcl, mp, qp, up, vp, wt, water, evap, b)! na->klev
423           else
424              ! iflag_con == 4
425              CALL cv_unsat(klon, ncum, klev, inb, t, q, qs, gz, u, v, p, ph, h, &
426                   lv, ep, sigp, clw, m, ment, elij, iflag, mp, qp, up, vp, wt, &
427                   water, evap)
428           endif
429    
430           ! --- YIELD
431           ! (tendencies, precipitation, variables of interface with other
432           ! processes, etc)
433    
434           if (iflag_con == 3) then
435              CALL cv3_yield(klon, ncum, klev, klev, icb, inb, delt, t, q, u, v, &
436                   gz, p, ph, h, hp, lv, cpn, th, ep, clw, m, tp, mp, qp, up, vp, &
437                   wt, water, evap, b, ment, qent, uent, vent, nent, elij, sig, &
438                   tv, tvp, iflag, precip, VPrecip, ft, fq, fu, fv, upwd, dnwd, &
439                   dnwd0, ma, mike, tls, tps, qcondc, wd)! na->klev
440           else
441              ! iflag_con == 4
442              CALL cv_yield(klon, ncum, klev, nk, icb, inb, delt, t, q, u, v, gz, &
443                   p, ph, h, hp, lv, cpn, ep, clw, frac, m, mp, qp, up, vp, wt, &
444                   water, evap, ment, qent, uent, vent, nent, elij, tv, tvp, &
445                   iflag, wd, qprime, tprime, precip, cbmf, ft, fq, fu, fv, Ma, &
446                   qcondc)
447           endif
448    
449           ! --- passive tracers
450    
451           if (iflag_con == 3) CALL cv3_tracer(klon, ncum, klev, ment, sij, da, phi)
452    
453           ! --- UNCOMPRESS THE FIELDS
454    
455           ! set iflag1 = 42 for non convective points
456           do i = 1, klon
457              iflag1(i) = 42
458           end do
459    
460           if (iflag_con == 3) then
461              CALL cv3_uncompress(idcum(:ncum), iflag, precip, VPrecip, sig, w0, &
462                   ft, fq, fu, fv, inb, Ma, upwd, dnwd, dnwd0, qcondc, wd, cape, &
463                   da, phi, mp, iflag1, precip1, VPrecip1, sig1, w01, ft1, fq1, &
464                   fu1, fv1, inb1, Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, &
465                   cape1, da1, phi1, mp1)
466           else
467              ! iflag_con == 4
468              CALL cv_uncompress(idcum(:ncum), iflag, precip, cbmf, ft, fq, fu, &
469                   fv, Ma, qcondc, iflag1, precip1, cbmf1, ft1, fq1, fu1, fv1, &
470                   Ma1, qcondc1)
471           endif
472        ENDIF ! ncum>0
473    
474      end SUBROUTINE cv_driver
475    
476    end module cv_driver_m

Legend:
Removed from v.49  
changed lines
  Added in v.150

  ViewVC Help
Powered by ViewVC 1.1.21