/[lmdze]/trunk/Sources/phylmd/cv_driver.f
ViewVC logotype

Diff of /trunk/Sources/phylmd/cv_driver.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/libf/phylmd/cv_driver.f90 revision 52 by guez, Fri Sep 23 12:28:01 2011 UTC trunk/Sources/phylmd/cv_driver.f revision 180 by guez, Tue Mar 15 17:07:47 2016 UTC
# Line 4  module cv_driver_m Line 4  module cv_driver_m
4    
5  contains  contains
6    
7    SUBROUTINE cv_driver(len, nd, ndp1, ntra, iflag_con, t1, q1, qs1, u1, v1, &    SUBROUTINE cv_driver(t1, q1, qs1, u1, v1, p1, ph1, iflag1, ft1, &
8         tra1, p1, ph1, iflag1, ft1, fq1, fu1, fv1, ftra1, precip1, VPrecip1, &         fq1, fu1, fv1, precip1, VPrecip1, cbmf1, sig1, w01, icb1, inb1, delt, &
9         cbmf1, sig1, w01, icb1, inb1, delt, Ma1, upwd1, dnwd1, dnwd01, &         Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, cape1, da1, phi1, mp1)
10         qcondc1, wd1, cape1, da1, phi1, mp1)  
11        ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3, 2005/04/15 12:36:17
12      ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3 2005/04/15 12:36:17      ! Main driver for convection
13        ! Author: S. Bony, March 2002
14      use dimens_m  
15      use dimphy      ! Several modules corresponding to different physical processes
16      !  
17      ! PARAMETERS:      ! Several versions of convect may be used:
18      !      Name            Type         Usage            Description      ! - iflag_con = 3: version lmd
19      !   ----------      ----------     -------  ----------------------------      ! - iflag_con = 4: version 4.3b
20      !  
21      !      len           Integer        Input        first (i) dimension      use clesphys2, only: iflag_con
22      !      nd            Integer        Input        vertical (k) dimension      use cv3_compress_m, only: cv3_compress
23      !      ndp1          Integer        Input        nd + 1      use cv3_feed_m, only: cv3_feed
24      !      ntra          Integer        Input        number of tracors      use cv3_mixing_m, only: cv3_mixing
25      !      iflag_con     Integer        Input        version of convect (3/4)      use cv3_param_m, only: cv3_param
26      !      t1            Real           Input        temperature      use cv3_prelim_m, only: cv3_prelim
27      !      q1            Real           Input        specific hum      use cv3_tracer_m, only: cv3_tracer
28      !      qs1           Real           Input        sat specific hum      use cv3_uncompress_m, only: cv3_uncompress
29      !      u1            Real           Input        u-wind      use cv3_unsat_m, only: cv3_unsat
30      !      v1            Real           Input        v-wind      use cv3_yield_m, only: cv3_yield
31      !      tra1          Real           Input        tracors      use cv_feed_m, only: cv_feed
32      !      p1            Real           Input        full level pressure      use cv_uncompress_m, only: cv_uncompress
33      !      ph1           Real           Input        half level pressure      USE dimphy, ONLY: klev, klon
34      !      iflag1        Integer        Output       flag for Emanuel conditions  
35      !      ft1           Real           Output       temp tend      real, intent(in):: t1(klon, klev) ! temperature
36      !      fq1           Real           Output       spec hum tend      real, intent(in):: q1(klon, klev) ! specific hum
37      !      fu1           Real           Output       u-wind tend      real, intent(in):: qs1(klon, klev) ! sat specific hum
38      !      fv1           Real           Output       v-wind tend      real, intent(in):: u1(klon, klev) ! u-wind
39      !      ftra1         Real           Output       tracor tend      real, intent(in):: v1(klon, klev) ! v-wind
40      !      precip1       Real           Output       precipitation      real, intent(in):: p1(klon, klev) ! full level pressure
41      !      VPrecip1      Real           Output       vertical profile of precipitations      real, intent(in):: ph1(klon, klev + 1) ! half level pressure
42      !      cbmf1         Real           Output       cloud base mass flux      integer, intent(out):: iflag1(klon) ! flag for Emanuel conditions
43      !      sig1          Real           In/Out       section adiabatic updraft      real, intent(out):: ft1(klon, klev) ! temp tend
44      !      w01           Real           In/Out       vertical velocity within adiab updraft      real, intent(out):: fq1(klon, klev) ! spec hum tend
45      !      delt          Real           Input        time step      real, intent(out):: fu1(klon, klev) ! u-wind tend
46      !      Ma1           Real           Output       mass flux adiabatic updraft      real, intent(out):: fv1(klon, klev) ! v-wind tend
47      !      upwd1         Real           Output       total upward mass flux (adiab+mixed)      real, intent(out):: precip1(klon) ! precipitation
48      !      dnwd1         Real           Output       saturated downward mass flux (mixed)  
49      !      dnwd01        Real           Output       unsaturated downward mass flux      real, intent(out):: VPrecip1(klon, klev + 1)
50      !      qcondc1       Real           Output       in-cld mixing ratio of condensed water      ! vertical profile of precipitation
51      !      wd1           Real           Output       downdraft velocity scale for sfc fluxes  
52      !      cape1         Real           Output       CAPE      real, intent(inout):: cbmf1(klon) ! cloud base mass flux
53      !      real, intent(inout):: sig1(klon, klev) ! section adiabatic updraft
54      ! S. Bony, Mar 2002:  
55      !     * Several modules corresponding to different physical processes      real, intent(inout):: w01(klon, klev)
56      !     * Several versions of convect may be used:      ! vertical velocity within adiabatic updraft
57      !        - iflag_con=3: version lmd  (previously named convect3)  
58      !        - iflag_con=4: version 4.3b (vect. version, previously convect1/2)      integer, intent(out):: icb1(klon)
59      !   + tard:    - iflag_con=5: version lmd with ice (previously named convectg)      integer, intent(inout):: inb1(klon)
60      ! S. Bony, Oct 2002:      real, intent(in):: delt ! time step
61      !     * Vectorization of convect3 (ie version lmd)      real Ma1(klon, klev)
62      !      ! Ma1 Real Output mass flux adiabatic updraft
63      !..............................END PROLOGUE.............................  
64      !      real, intent(out):: upwd1(klon, klev)
65      !      ! total upward mass flux (adiab + mixed)
66    
67      integer len      real, intent(out):: dnwd1(klon, klev) ! saturated downward mass flux (mixed)
68      integer nd      real, intent(out):: dnwd01(klon, klev) ! unsaturated downward mass flux
69      integer ndp1  
70      integer noff      real qcondc1(klon, klev) ! cld
71      integer, intent(in):: iflag_con      ! qcondc1 Real Output in-cld mixing ratio of condensed water
72      integer ntra      real wd1(klon) ! gust
73      real, intent(in):: t1(len, nd)      ! wd1 Real Output downdraft velocity scale for sfc fluxes
74      real q1(len, nd)      real cape1(klon)
75      real qs1(len, nd)      ! cape1 Real Output CAPE
76      real u1(len, nd)  
77      real v1(len, nd)      real, intent(inout):: da1(klon, klev), phi1(klon, klev, klev)
78      real p1(len, nd)      real, intent(inout):: mp1(klon, klev)
79      real ph1(len, ndp1)  
80      integer iflag1(len)      ! ARGUMENTS
81      real ft1(len, nd)  
82      real fq1(len, nd)      ! On input:
83      real fu1(len, nd)  
84      real fv1(len, nd)      ! t: Array of absolute temperature (K) of dimension KLEV, with first
85      real precip1(len)      ! index corresponding to lowest model level. Note that this array
86      real cbmf1(len)      ! will be altered by the subroutine if dry convective adjustment
87      real VPrecip1(len, nd+1)      ! occurs and if IPBL is not equal to 0.
88      real Ma1(len, nd)  
89      real upwd1(len, nd)      ! q: Array of specific humidity (gm/gm) of dimension KLEV, with first
90      real dnwd1(len, nd)      ! index corresponding to lowest model level. Must be defined
91      real dnwd01(len, nd)      ! at same grid levels as T. Note that this array will be altered
92        ! if dry convective adjustment occurs and if IPBL is not equal to 0.
93      real qcondc1(len, nd)     ! cld  
94      real wd1(len)            ! gust      ! qs: Array of saturation specific humidity of dimension KLEV, with first
95      real cape1(len)      ! index corresponding to lowest model level. Must be defined
96        ! at same grid levels as T. Note that this array will be altered
97      real da1(len, nd), phi1(len, nd, nd), mp1(len, nd)      ! if dry convective adjustment occurs and if IPBL is not equal to 0.
98      real da(len, nd), phi(len, nd, nd), mp(len, nd)  
99      real, intent(in):: tra1(len, nd, ntra)      ! u: Array of zonal wind velocity (m/s) of dimension KLEV, witth first
100      real ftra1(len, nd, ntra)      ! index corresponding with the lowest model level. Defined at
101        ! same levels as T. Note that this array will be altered if
102        ! dry convective adjustment occurs and if IPBL is not equal to 0.
103    
104        ! v: Same as u but for meridional velocity.
105    
106        ! p: Array of pressure (mb) of dimension KLEV, with first
107        ! index corresponding to lowest model level. Must be defined
108        ! at same grid levels as T.
109    
110        ! ph: Array of pressure (mb) of dimension KLEV + 1, with first index
111        ! corresponding to lowest level. These pressures are defined at
112        ! levels intermediate between those of P, T, Q and QS. The first
113        ! value of PH should be greater than (i.e. at a lower level than)
114        ! the first value of the array P.
115    
116        ! nl: The maximum number of levels to which convection can penetrate, plus 1
117        ! NL MUST be less than or equal to KLEV-1.
118    
119        ! delt: The model time step (sec) between calls to CONVECT
120    
121        ! On Output:
122    
123        ! iflag: An output integer whose value denotes the following:
124        ! VALUE INTERPRETATION
125        ! ----- --------------
126        ! 0 Moist convection occurs.
127        ! 1 Moist convection occurs, but a CFL condition
128        ! on the subsidence warming is violated. This
129        ! does not cause the scheme to terminate.
130        ! 2 Moist convection, but no precip because ep(inb) lt 0.0001
131        ! 3 No moist convection because new cbmf is 0 and old cbmf is 0.
132        ! 4 No moist convection; atmosphere is not
133        ! unstable
134        ! 6 No moist convection because ihmin le minorig.
135        ! 7 No moist convection because unreasonable
136        ! parcel level temperature or specific humidity.
137        ! 8 No moist convection: lifted condensation
138        ! level is above the 200 mb level.
139        ! 9 No moist convection: cloud base is higher
140        ! then the level NL-1.
141    
142        ! ft: Array of temperature tendency (K/s) of dimension KLEV, defined at same
143        ! grid levels as T, Q, QS and P.
144    
145        ! fq: Array of specific humidity tendencies ((gm/gm)/s) of dimension KLEV,
146        ! defined at same grid levels as T, Q, QS and P.
147    
148        ! fu: Array of forcing of zonal velocity (m/s^2) of dimension KLEV,
149        ! defined at same grid levels as T.
150    
151        ! fv: Same as FU, but for forcing of meridional velocity.
152    
153        ! precip: Scalar convective precipitation rate (mm/day).
154    
155        ! VPrecip: Vertical profile of convective precipitation (kg/m2/s).
156    
157        ! wd: A convective downdraft velocity scale. For use in surface
158        ! flux parameterizations. See convect.ps file for details.
159    
160        ! tprime: A convective downdraft temperature perturbation scale (K).
161        ! For use in surface flux parameterizations. See convect.ps
162        ! file for details.
163    
164        ! qprime: A convective downdraft specific humidity
165        ! perturbation scale (gm/gm).
166        ! For use in surface flux parameterizations. See convect.ps
167        ! file for details.
168    
169        ! cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST
170        ! BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT
171        ! ITS NEXT CALL. That is, the value of CBMF must be "remembered"
172        ! by the calling program between calls to CONVECT.
173    
174      real, intent(in):: delt      ! det: Array of detrainment mass flux of dimension KLEV.
175    
176      !-------------------------------------------------------------------      ! Local arrays
177      ! --- ARGUMENTS  
178      !-------------------------------------------------------------------      real da(klon, klev), phi(klon, klev, klev), mp(klon, klev)
     ! --- On input:  
     !  
     !  t:   Array of absolute temperature (K) of dimension ND, with first  
     !       index corresponding to lowest model level. Note that this array  
     !       will be altered by the subroutine if dry convective adjustment  
     !       occurs and if IPBL is not equal to 0.  
     !  
     !  q:   Array of specific humidity (gm/gm) of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
     !  
     !  qs:  Array of saturation specific humidity of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
     !  
     !  u:   Array of zonal wind velocity (m/s) of dimension ND, witth first  
     !       index corresponding with the lowest model level. Defined at  
     !       same levels as T. Note that this array will be altered if  
     !       dry convective adjustment occurs and if IPBL is not equal to 0.  
     !  
     !  v:   Same as u but for meridional velocity.  
     !  
     !  tra: Array of passive tracer mixing ratio, of dimensions (ND, NTRA),  
     !       where NTRA is the number of different tracers. If no  
     !       convective tracer transport is needed, define a dummy  
     !       input array of dimension (ND, 1). Tracers are defined at  
     !       same vertical levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
     !  
     !  p:   Array of pressure (mb) of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T.  
     !  
     !  ph:  Array of pressure (mb) of dimension ND+1, with first index  
     !       corresponding to lowest level. These pressures are defined at  
     !       levels intermediate between those of P, T, Q and QS. The first  
     !       value of PH should be greater than (i.e. at a lower level than)  
     !       the first value of the array P.  
     !  
     !  nl:  The maximum number of levels to which convection can penetrate, plus 1.  
     !       NL MUST be less than or equal to ND-1.  
     !  
     !  delt: The model time step (sec) between calls to CONVECT  
     !  
     !----------------------------------------------------------------------------  
     ! ---   On Output:  
     !  
     !  iflag: An output integer whose value denotes the following:  
     !       VALUE   INTERPRETATION  
     !       -----   --------------  
     !         0     Moist convection occurs.  
     !         1     Moist convection occurs, but a CFL condition  
     !               on the subsidence warming is violated. This  
     !               does not cause the scheme to terminate.  
     !         2     Moist convection, but no precip because ep(inb) lt 0.0001  
     !         3     No moist convection because new cbmf is 0 and old cbmf is 0.  
     !         4     No moist convection; atmosphere is not  
     !               unstable  
     !         6     No moist convection because ihmin le minorig.  
     !         7     No moist convection because unreasonable  
     !               parcel level temperature or specific humidity.  
     !         8     No moist convection: lifted condensation  
     !               level is above the 200 mb level.  
     !         9     No moist convection: cloud base is higher  
     !               then the level NL-1.  
     !  
     !  ft:   Array of temperature tendency (K/s) of dimension ND, defined at same  
     !        grid levels as T, Q, QS and P.  
     !  
     !  fq:   Array of specific humidity tendencies ((gm/gm)/s) of dimension ND,  
     !        defined at same grid levels as T, Q, QS and P.  
     !  
     !  fu:   Array of forcing of zonal velocity (m/s^2) of dimension ND,  
     !        defined at same grid levels as T.  
     !  
     !  fv:   Same as FU, but for forcing of meridional velocity.  
     !  
     !  ftra: Array of forcing of tracer content, in tracer mixing ratio per  
     !        second, defined at same levels as T. Dimensioned (ND, NTRA).  
     !  
     !  precip: Scalar convective precipitation rate (mm/day).  
     !  
     !  VPrecip: Vertical profile of convective precipitation (kg/m2/s).  
     !  
     !  wd:   A convective downdraft velocity scale. For use in surface  
     !        flux parameterizations. See convect.ps file for details.  
     !  
     !  tprime: A convective downdraft temperature perturbation scale (K).  
     !          For use in surface flux parameterizations. See convect.ps  
     !          file for details.  
     !  
     !  qprime: A convective downdraft specific humidity  
     !          perturbation scale (gm/gm).  
     !          For use in surface flux parameterizations. See convect.ps  
     !          file for details.  
     !  
     !  cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST  
     !        BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT  
     !        ITS NEXT CALL. That is, the value of CBMF must be "remembered"  
     !        by the calling program between calls to CONVECT.  
     !  
     !  det:   Array of detrainment mass flux of dimension ND.  
     !  
     !-------------------------------------------------------------------  
     !  
     !  Local arrays  
     !  
179    
180      integer i, k, n, il, j      integer i, k, il
181      integer icbmax      integer icbmax
182      integer nk1(klon)      integer nk1(klon)
     integer icb1(klon)  
     integer inb1(klon)  
183      integer icbs1(klon)      integer icbs1(klon)
184    
185      real plcl1(klon)      real plcl1(klon)
186      real tnk1(klon)      real tnk1(klon)
187      real qnk1(klon)      real qnk1(klon)
188      real gznk1(klon)      real gznk1(klon)
     real pnk1(klon)  
     real qsnk1(klon)  
189      real pbase1(klon)      real pbase1(klon)
190      real buoybase1(klon)      real buoybase1(klon)
191    
# Line 239  contains Line 198  contains
198      real tp1(klon, klev)      real tp1(klon, klev)
199      real tvp1(klon, klev)      real tvp1(klon, klev)
200      real clw1(klon, klev)      real clw1(klon, klev)
     real sig1(klon, klev)  
     real w01(klon, klev)  
201      real th1(klon, klev)      real th1(klon, klev)
202      !  
203      integer ncum      integer ncum
204      !  
205      ! (local) compressed fields:      ! (local) compressed fields:
     !  
     integer nloc  
     parameter (nloc=klon) ! pour l'instant  
   
     integer idcum(nloc)  
     integer iflag(nloc), nk(nloc), icb(nloc)  
     integer nent(nloc, klev)  
     integer icbs(nloc)  
     integer inb(nloc), inbis(nloc)  
   
     real cbmf(nloc), plcl(nloc), tnk(nloc), qnk(nloc), gznk(nloc)  
     real t(nloc, klev), q(nloc, klev), qs(nloc, klev)  
     real u(nloc, klev), v(nloc, klev)  
     real gz(nloc, klev), h(nloc, klev), lv(nloc, klev), cpn(nloc, klev)  
     real p(nloc, klev), ph(nloc, klev+1), tv(nloc, klev), tp(nloc, klev)  
     real clw(nloc, klev)  
     real dph(nloc, klev)  
     real pbase(nloc), buoybase(nloc), th(nloc, klev)  
     real tvp(nloc, klev)  
     real sig(nloc, klev), w0(nloc, klev)  
     real hp(nloc, klev), ep(nloc, klev), sigp(nloc, klev)  
     real frac(nloc), buoy(nloc, klev)  
     real cape(nloc)  
     real m(nloc, klev), ment(nloc, klev, klev), qent(nloc, klev, klev)  
     real uent(nloc, klev, klev), vent(nloc, klev, klev)  
     real ments(nloc, klev, klev), qents(nloc, klev, klev)  
     real sij(nloc, klev, klev), elij(nloc, klev, klev)  
     real qp(nloc, klev), up(nloc, klev), vp(nloc, klev)  
     real wt(nloc, klev), water(nloc, klev), evap(nloc, klev)  
     real b(nloc, klev), ft(nloc, klev), fq(nloc, klev)  
     real fu(nloc, klev), fv(nloc, klev)  
     real upwd(nloc, klev), dnwd(nloc, klev), dnwd0(nloc, klev)  
     real Ma(nloc, klev), mike(nloc, klev), tls(nloc, klev)  
     real tps(nloc, klev), qprime(nloc), tprime(nloc)  
     real precip(nloc)  
     real VPrecip(nloc, klev+1)  
     real tra(nloc, klev, ntra), trap(nloc, klev, ntra)  
     real ftra(nloc, klev, ntra), traent(nloc, klev, klev, ntra)  
     real qcondc(nloc, klev)  ! cld  
     real wd(nloc)           ! gust  
206    
207      !-------------------------------------------------------------------      integer idcum(klon)
208      ! --- SET CONSTANTS AND PARAMETERS      integer iflag(klon), nk(klon), icb(klon)
209      !-------------------------------------------------------------------      integer nent(klon, klev)
210        integer icbs(klon)
211        integer inb(klon), inbis(klon)
212    
213        real cbmf(klon), plcl(klon), tnk(klon), qnk(klon), gznk(klon)
214        real t(klon, klev), q(klon, klev), qs(klon, klev)
215        real u(klon, klev), v(klon, klev)
216        real gz(klon, klev), h(klon, klev), lv(klon, klev), cpn(klon, klev)
217        real p(klon, klev), ph(klon, klev + 1), tv(klon, klev), tp(klon, klev)
218        real clw(klon, klev)
219        real dph(klon, klev)
220        real pbase(klon), buoybase(klon), th(klon, klev)
221        real tvp(klon, klev)
222        real sig(klon, klev), w0(klon, klev)
223        real hp(klon, klev), ep(klon, klev), sigp(klon, klev)
224        real frac(klon), buoy(klon, klev)
225        real cape(klon)
226        real m(klon, klev), ment(klon, klev, klev), qent(klon, klev, klev)
227        real uent(klon, klev, klev), vent(klon, klev, klev)
228        real ments(klon, klev, klev), qents(klon, klev, klev)
229        real sij(klon, klev, klev), elij(klon, klev, klev)
230        real qp(klon, klev), up(klon, klev), vp(klon, klev)
231        real wt(klon, klev), water(klon, klev), evap(klon, klev)
232        real b(klon, klev), ft(klon, klev), fq(klon, klev)
233        real fu(klon, klev), fv(klon, klev)
234        real upwd(klon, klev), dnwd(klon, klev), dnwd0(klon, klev)
235        real Ma(klon, klev), mike(klon, klev), tls(klon, klev)
236        real tps(klon, klev), qprime(klon), tprime(klon)
237        real precip(klon)
238        real VPrecip(klon, klev + 1)
239        real qcondc(klon, klev) ! cld
240        real wd(klon) ! gust
241    
242      ! -- set simulation flags:      !-------------------------------------------------------------------
     !   (common cvflag)  
243    
244      CALL cv_flag      ! SET CONSTANTS AND PARAMETERS
245    
246      ! -- set thermodynamical constants:      ! set simulation flags:
247      !     (common cvthermo)      ! (common cvflag)
248    
249      CALL cv_thermo(iflag_con)      CALL cv_flag
250    
251      ! -- set convect parameters      ! set thermodynamical constants:
252      !      ! (common cvthermo)
     !     includes microphysical parameters and parameters that  
     !     control the rate of approach to quasi-equilibrium)  
     !     (common cvparam)  
253    
254      if (iflag_con.eq.3) then      CALL cv_thermo
        CALL cv3_param(nd, delt)  
     endif  
255    
256      if (iflag_con.eq.4) then      ! set convect parameters
        CALL cv_param(nd)  
     endif  
257    
258      !---------------------------------------------------------------------      ! includes microphysical parameters and parameters that
259      ! --- INITIALIZE OUTPUT ARRAYS AND PARAMETERS      ! control the rate of approach to quasi-equilibrium)
260      !---------------------------------------------------------------------      ! (common cvparam)
261    
262      do k=1, nd      if (iflag_con == 3) CALL cv3_param(klev, delt)
263         do  i=1, len  
264            ft1(i, k)=0.0      ! INITIALIZE OUTPUT ARRAYS AND PARAMETERS
265            fq1(i, k)=0.0  
266            fu1(i, k)=0.0      do k = 1, klev
267            fv1(i, k)=0.0         do i = 1, klon
268            tvp1(i, k)=0.0            ft1(i, k) = 0.0
269            tp1(i, k)=0.0            fq1(i, k) = 0.0
270            clw1(i, k)=0.0            fu1(i, k) = 0.0
271              fv1(i, k) = 0.0
272              tvp1(i, k) = 0.0
273              tp1(i, k) = 0.0
274              clw1(i, k) = 0.0
275            !ym            !ym
276            clw(i, k)=0.0            clw(i, k) = 0.0
277            gz1(i, k) = 0.            gz1(i, k) = 0.
278            VPrecip1(i, k) = 0.            VPrecip1(i, k) = 0.
279            Ma1(i, k)=0.0            Ma1(i, k) = 0.0
280            upwd1(i, k)=0.0            upwd1(i, k) = 0.0
281            dnwd1(i, k)=0.0            dnwd1(i, k) = 0.0
282            dnwd01(i, k)=0.0            dnwd01(i, k) = 0.0
283            qcondc1(i, k)=0.0            qcondc1(i, k) = 0.0
        end do  
     end do  
   
     do  j=1, ntra  
        do  k=1, nd  
           do  i=1, len  
              ftra1(i, k, j)=0.0  
           end do  
284         end do         end do
285      end do      end do
286    
287      do  i=1, len      do i = 1, klon
288         precip1(i)=0.0         precip1(i) = 0.0
289         iflag1(i)=0         iflag1(i) = 0
290         wd1(i)=0.0         wd1(i) = 0.0
291         cape1(i)=0.0         cape1(i) = 0.0
292         VPrecip1(i, nd+1)=0.0         VPrecip1(i, klev + 1) = 0.0
293      end do      end do
294    
295      if (iflag_con.eq.3) then      if (iflag_con == 3) then
296         do il=1, len         do il = 1, klon
297            sig1(il, nd)=sig1(il, nd)+1.            sig1(il, klev) = sig1(il, klev) + 1.
298            sig1(il, nd)=amin1(sig1(il, nd), 12.1)            sig1(il, klev) = min(sig1(il, klev), 12.1)
299         enddo         enddo
300      endif      endif
301    
302      !--------------------------------------------------------------------      ! CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY
     ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY  
     !--------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_prelim(len, nd, ndp1, t1, q1, p1, ph1, lv1, cpn1, tv1, gz1, &  
             h1, hm1, th1)! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_prelim(len, nd, ndp1, t1, q1, p1, ph1 &  
             , lv1, cpn1, tv1, gz1, h1, hm1)  
     endif  
   
     !--------------------------------------------------------------------  
     ! --- CONVECTIVE FEED  
     !--------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_feed(len, nd, t1, q1, qs1, p1, ph1, hm1, gz1            &  
             , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_feed(len, nd, t1, q1, qs1, p1, hm1, gz1 &  
             , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1)  
     endif  
   
     !--------------------------------------------------------------------  
     ! --- UNDILUTE (ADIABATIC) UPDRAFT / 1st part  
     ! (up through ICB for convect4, up through ICB+1 for convect3)  
     !     Calculates the lifted parcel virtual temperature at nk, the  
     !     actual temperature, and the adiabatic liquid water content.  
     !--------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_undilute1(len, nd, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1   &  
             , tp1, tvp1, clw1, icbs1) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_undilute1(len, nd, t1, q1, qs1, gz1, p1, nk1, icb1, icbmax &  
             , tp1, tvp1, clw1)  
     endif  
   
     !-------------------------------------------------------------------  
     ! --- TRIGGERING  
     !-------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_trigger(len, nd, icb1, plcl1, p1, th1, tv1, tvp1       &  
             , pbase1, buoybase1, iflag1, sig1, w01) ! nd->na  
     endif  
303    
304      if (iflag_con.eq.4) then      if (iflag_con == 3) then
305         CALL cv_trigger(len, nd, icb1, cbmf1, tv1, tvp1, iflag1)         CALL cv3_prelim(klon, klev, klev + 1, t1, q1, p1, ph1, lv1, cpn1, tv1, &
306      endif              gz1, h1, hm1, th1)
307        else
308      !=====================================================================         ! iflag_con == 4
309      ! --- IF THIS POINT IS REACHED, MOIST CONVECTIVE ADJUSTMENT IS NECESSARY         CALL cv_prelim(klon, klev, klev + 1, t1, q1, p1, ph1, lv1, cpn1, tv1, &
310      !=====================================================================              gz1, h1, hm1)
311        endif
312      ncum=0  
313      do  i=1, len      ! CONVECTIVE FEED
314         if(iflag1(i).eq.0)then  
315            ncum=ncum+1      if (iflag_con == 3) then
316            idcum(ncum)=i         CALL cv3_feed(klon, klev, t1, q1, qs1, p1, ph1, gz1, nk1, icb1, &
317                icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! klev->na
318        else
319           ! iflag_con == 4
320           CALL cv_feed(klon, klev, t1, q1, qs1, p1, hm1, gz1, nk1, icb1, icbmax, &
321                iflag1, tnk1, qnk1, gznk1, plcl1)
322        endif
323    
324        ! UNDILUTE (ADIABATIC) UPDRAFT / 1st part
325        ! (up through ICB for convect4, up through ICB + 1 for convect3)
326        ! Calculates the lifted parcel virtual temperature at nk, the
327        ! actual temperature, and the adiabatic liquid water content.
328    
329        if (iflag_con == 3) then
330           CALL cv3_undilute1(klon, klev, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1, &
331                tp1, tvp1, clw1, icbs1) ! klev->na
332        else
333           ! iflag_con == 4
334           CALL cv_undilute1(klon, klev, t1, q1, qs1, gz1, p1, nk1, icb1, icbmax, &
335                tp1, tvp1, clw1)
336        endif
337    
338        ! TRIGGERING
339    
340        if (iflag_con == 3) then
341           CALL cv3_trigger(klon, klev, icb1, plcl1, p1, th1, tv1, tvp1, pbase1, &
342                buoybase1, iflag1, sig1, w01) ! klev->na
343        else
344           ! iflag_con == 4
345           CALL cv_trigger(klon, klev, icb1, cbmf1, tv1, tvp1, iflag1)
346        end if
347    
348        ! Moist convective adjustment is necessary
349    
350        ncum = 0
351        do i = 1, klon
352           if (iflag1(i) == 0) then
353              ncum = ncum + 1
354              idcum(ncum) = i
355         endif         endif
356      end do      end do
357    
358      !       print*, 'klon, ncum = ', len, ncum      IF (ncum > 0) THEN
359           ! COMPRESS THE FIELDS
360      IF (ncum.gt.0) THEN         ! (-> vectorization over convective gridpoints)
361    
362         !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^         if (iflag_con == 3) then
363         ! --- COMPRESS THE FIELDS            CALL cv3_compress(klon, klon, ncum, klev, iflag1, nk1, icb1, icbs1, &
364         !        (-> vectorization over convective gridpoints)                 plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1, t1, q1, qs1, u1, &
365         !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^                 v1, gz1, th1, h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1, &
366                   sig1, w01, iflag, nk, icb, icbs, plcl, tnk, qnk, gznk, pbase, &
367         if (iflag_con.eq.3) then                 buoybase, t, q, qs, u, v, gz, th, h, lv, cpn, p, ph, tv, tp, &
368            CALL cv3_compress( len, nloc, ncum, nd, ntra &                 tvp, clw, sig, w0)
369                 , iflag1, nk1, icb1, icbs1 &         else
370                 , plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1 &            ! iflag_con == 4
371                 , t1, q1, qs1, u1, v1, gz1, th1 &            CALL cv_compress(klon, klon, ncum, klev, iflag1, nk1, icb1, cbmf1, &
372                 , tra1 &                 plcl1, tnk1, qnk1, gznk1, t1, q1, qs1, u1, v1, gz1, h1, lv1, &
373                 , h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1  &                 cpn1, p1, ph1, tv1, tp1, tvp1, clw1, iflag, nk, icb, cbmf, &
374                 , sig1, w01 &                 plcl, tnk, qnk, gznk, t, q, qs, u, v, gz, h, lv, cpn, p, ph, &
375                 , iflag, nk, icb, icbs &                 tv, tp, tvp, clw, dph)
376                 , plcl, tnk, qnk, gznk, pbase, buoybase &         endif
377                 , t, q, qs, u, v, gz, th &  
378                 , tra &         ! UNDILUTE (ADIABATIC) UPDRAFT / second part :
379                 , h, lv, cpn, p, ph, tv, tp, tvp, clw  &         ! FIND THE REST OF THE LIFTED PARCEL TEMPERATURES
380                 , sig, w0  )         ! &
381         endif         ! COMPUTE THE PRECIPITATION EFFICIENCIES AND THE
382           ! FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD
383         if (iflag_con.eq.4) then         ! &
384            CALL cv_compress( len, nloc, ncum, nd &         ! FIND THE LEVEL OF NEUTRAL BUOYANCY
385                 , iflag1, nk1, icb1 &  
386                 , cbmf1, plcl1, tnk1, qnk1, gznk1 &         if (iflag_con == 3) then
387                 , t1, q1, qs1, u1, v1, gz1 &            CALL cv3_undilute2(klon, ncum, klev, icb, icbs, nk, tnk, qnk, gznk, &
388                 , h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1 &                 t, qs, gz, p, h, tv, lv, pbase, buoybase, plcl, inb, tp, &
389                 , iflag, nk, icb &                 tvp, clw, hp, ep, sigp, buoy) !na->klev
390                 , cbmf, plcl, tnk, qnk, gznk &         else
391                 , t, q, qs, u, v, gz, h, lv, cpn, p, ph, tv, tp, tvp, clw  &            ! iflag_con == 4
392                 , dph )            CALL cv_undilute2(klon, ncum, klev, icb, nk, tnk, qnk, gznk, t, &
393         endif                 qs, gz, p, dph, h, tv, lv, inb, inbis, tp, tvp, clw, hp, ep, &
394                   sigp, frac)
395         !-------------------------------------------------------------------         endif
396         ! --- UNDILUTE (ADIABATIC) UPDRAFT / second part :  
397         ! ---   FIND THE REST OF THE LIFTED PARCEL TEMPERATURES         ! CLOSURE
398         ! ---   &  
399         ! ---   COMPUTE THE PRECIPITATION EFFICIENCIES AND THE         if (iflag_con == 3) then
400         ! ---   FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD            CALL cv3_closure(klon, ncum, klev, icb, inb, pbase, p, ph, tv, &
401         ! ---   &                 buoy, sig, w0, cape, m) ! na->klev
402         ! ---   FIND THE LEVEL OF NEUTRAL BUOYANCY         else
403         !-------------------------------------------------------------------            ! iflag_con == 4
404              CALL cv_closure(klon, ncum, klev, nk, icb, tv, tvp, p, ph, dph, &
405         if (iflag_con.eq.3) then                 plcl, cpn, iflag, cbmf)
406            CALL cv3_undilute2(nloc, ncum, nd, icb, icbs, nk         &         endif
407                 , tnk, qnk, gznk, t, q, qs, gz &  
408                 , p, h, tv, lv, pbase, buoybase, plcl &         ! MIXING
409                 , inb, tp, tvp, clw, hp, ep, sigp, buoy) !na->nd  
410         endif         if (iflag_con == 3) then
411              CALL cv3_mixing(klon, ncum, klev, klev, icb, nk, inb, t, q, qs, u, &
412         if (iflag_con.eq.4) then                 v, h, lv, hp, ep, clw, m, sig, ment, qent, uent, vent, nent, &
413            CALL cv_undilute2(nloc, ncum, nd, icb, nk &                 sij, elij, ments, qents)
414                 , tnk, qnk, gznk, t, q, qs, gz &         else
415                 , p, dph, h, tv, lv &            ! iflag_con == 4
416                 , inb, inbis, tp, tvp, clw, hp, ep, sigp, frac)            CALL cv_mixing(klon, ncum, klev, icb, nk, inb, inbis, ph, t, q, qs, &
417         endif                 u, v, h, lv, qnk, hp, tv, tvp, ep, clw, cbmf, m, ment, qent, &
418                   uent, vent, nent, sij, elij)
419         !-------------------------------------------------------------------         endif
420         ! --- CLOSURE  
421         !-------------------------------------------------------------------         ! UNSATURATED (PRECIPITATING) DOWNDRAFTS
422    
423         if (iflag_con.eq.3) then         if (iflag_con == 3) then
424            CALL cv3_closure(nloc, ncum, nd, icb, inb               &            CALL cv3_unsat(klon, ncum, klev, klev, icb, inb, t, q, qs, gz, u, &
425                 , pbase, p, ph, tv, buoy &                 v, p, ph, th, tv, lv, cpn, ep, sigp, clw, m, ment, elij, delt, &
426                 , sig, w0, cape, m) ! na->nd                 plcl, mp, qp, up, vp, wt, water, evap, b)! na->klev
427         endif         else
428              ! iflag_con == 4
429         if (iflag_con.eq.4) then            CALL cv_unsat(klon, ncum, klev, inb, t, q, qs, gz, u, v, p, ph, h, &
430            CALL cv_closure(nloc, ncum, nd, nk, icb &                 lv, ep, sigp, clw, m, ment, elij, iflag, mp, qp, up, vp, wt, &
431                 , tv, tvp, p, ph, dph, plcl, cpn &                 water, evap)
432                 , iflag, cbmf)         endif
433         endif  
434           ! YIELD
435         !-------------------------------------------------------------------         ! (tendencies, precipitation, variables of interface with other
436         ! --- MIXING         ! processes, etc)
437         !-------------------------------------------------------------------  
438           if (iflag_con == 3) then
439         if (iflag_con.eq.3) then            CALL cv3_yield(klon, ncum, klev, klev, icb, inb, delt, t, q, u, v, &
440            CALL cv3_mixing(nloc, ncum, nd, nd, ntra, icb, nk, inb     &                 gz, p, ph, h, hp, lv, cpn, th, ep, clw, m, tp, mp, qp, up, vp, &
441                 , ph, t, q, qs, u, v, tra, h, lv, qnk &                 wt, water, evap, b, ment, qent, uent, vent, nent, elij, sig, &
442                 , hp, tv, tvp, ep, clw, m, sig &                 tv, tvp, iflag, precip, VPrecip, ft, fq, fu, fv, upwd, dnwd, &
443                 , ment, qent, uent, vent, nent, sij, elij, ments, qents, traent)! na->nd                 dnwd0, ma, mike, tls, tps, qcondc, wd)! na->klev
444         endif         else
445              ! iflag_con == 4
446         if (iflag_con.eq.4) then            CALL cv_yield(klon, ncum, klev, nk, icb, inb, delt, t, q, u, v, gz, &
447            CALL cv_mixing(nloc, ncum, nd, icb, nk, inb, inbis &                 p, ph, h, hp, lv, cpn, ep, clw, frac, m, mp, qp, up, vp, wt, &
448                 , ph, t, q, qs, u, v, h, lv, qnk &                 water, evap, ment, qent, uent, vent, nent, elij, tv, tvp, &
449                 , hp, tv, tvp, ep, clw, cbmf &                 iflag, wd, qprime, tprime, precip, cbmf, ft, fq, fu, fv, Ma, &
450                 , m, ment, qent, uent, vent, nent, sij, elij)                 qcondc)
451         endif         endif
452    
453         !-------------------------------------------------------------------         ! passive tracers
454         ! --- UNSATURATED (PRECIPITATING) DOWNDRAFTS  
455         !-------------------------------------------------------------------         if (iflag_con == 3) CALL cv3_tracer(klon, ncum, klev, ment, sij, da, phi)
456    
457         if (iflag_con.eq.3) then         ! UNCOMPRESS THE FIELDS
458            CALL cv3_unsat(nloc, ncum, nd, nd, ntra, icb, inb     &  
459                 , t, q, qs, gz, u, v, tra, p, ph &         ! set iflag1 = 42 for non convective points
460                 , th, tv, lv, cpn, ep, sigp, clw &         do i = 1, klon
461                 , m, ment, elij, delt, plcl &            iflag1(i) = 42
                , mp, qp, up, vp, trap, wt, water, evap, b)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_unsat(nloc, ncum, nd, inb, t, q, qs, gz, u, v, p, ph &  
                , h, lv, ep, sigp, clw, m, ment, elij &  
                , iflag, mp, qp, up, vp, wt, water, evap)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- YIELD  
        !     (tendencies, precipitation, variables of interface with other  
        !      processes, etc)  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_yield(nloc, ncum, nd, nd, ntra             &  
                , icb, inb, delt &  
                , t, q, u, v, tra, gz, p, ph, h, hp, lv, cpn, th &  
                , ep, clw, m, tp, mp, qp, up, vp, trap &  
                , wt, water, evap, b &  
                , ment, qent, uent, vent, nent, elij, traent, sig &  
                , tv, tvp &  
                , iflag, precip, VPrecip, ft, fq, fu, fv, ftra &  
                , upwd, dnwd, dnwd0, ma, mike, tls, tps, qcondc, wd)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_yield(nloc, ncum, nd, nk, icb, inb, delt &  
                , t, q, u, v, gz, p, ph, h, hp, lv, cpn &  
                , ep, clw, frac, m, mp, qp, up, vp &  
                , wt, water, evap &  
                , ment, qent, uent, vent, nent, elij &  
                , tv, tvp &  
                , iflag, wd, qprime, tprime &  
                , precip, cbmf, ft, fq, fu, fv, Ma, qcondc)  
        endif  
   
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! --- passive tracers  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
   
        if (iflag_con.eq.3) then  
           CALL cv3_tracer(nloc, len, ncum, nd, nd, &  
                ment, sij, da, phi)  
        endif  
   
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! --- UNCOMPRESS THE FIELDS  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! set iflag1 =42 for non convective points  
        do  i=1, len  
           iflag1(i)=42  
462         end do         end do
        !  
        if (iflag_con.eq.3) then  
           CALL cv3_uncompress(nloc, len, ncum, nd, ntra, idcum &  
                , iflag &  
                , precip, VPrecip, sig, w0 &  
                , ft, fq, fu, fv, ftra &  
                , inb  &  
                , Ma, upwd, dnwd, dnwd0, qcondc, wd, cape &  
                , da, phi, mp &  
                , iflag1 &  
                , precip1, VPrecip1, sig1, w01 &  
                , ft1, fq1, fu1, fv1, ftra1 &  
                , inb1 &  
                , Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, cape1  &  
                , da1, phi1, mp1)  
        endif  
463    
464         if (iflag_con.eq.4) then         if (iflag_con == 3) then
465            CALL cv_uncompress(nloc, len, ncum, nd, idcum &            CALL cv3_uncompress(idcum(:ncum), iflag, precip, VPrecip, sig, w0, &
466                 , iflag &                 ft, fq, fu, fv, inb, Ma, upwd, dnwd, dnwd0, qcondc, wd, cape, &
467                 , precip, cbmf &                 da, phi, mp, iflag1, precip1, VPrecip1, sig1, w01, ft1, fq1, &
468                 , ft, fq, fu, fv &                 fu1, fv1, inb1, Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, &
469                 , Ma, qcondc             &                 cape1, da1, phi1, mp1)
470                 , iflag1 &         else
471                 , precip1, cbmf1 &            ! iflag_con == 4
472                 , ft1, fq1, fu1, fv1 &            CALL cv_uncompress(idcum(:ncum), iflag, precip, cbmf, ft, fq, fu, &
473                 , Ma1, qcondc1 )                 fv, Ma, qcondc, iflag1, precip1, cbmf1, ft1, fq1, fu1, fv1, &
474                   Ma1, qcondc1)
475         endif         endif
476      ENDIF ! ncum>0      ENDIF ! ncum>0
477    

Legend:
Removed from v.52  
changed lines
  Added in v.180

  ViewVC Help
Powered by ViewVC 1.1.21