/[lmdze]/trunk/Sources/phylmd/cv_driver.f
ViewVC logotype

Diff of /trunk/Sources/phylmd/cv_driver.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/phylmd/cv_driver.f revision 91 by guez, Wed Mar 26 17:18:58 2014 UTC trunk/Sources/phylmd/cv_driver.f revision 181 by guez, Tue Mar 15 17:51:30 2016 UTC
# Line 4  module cv_driver_m Line 4  module cv_driver_m
4    
5  contains  contains
6    
7    SUBROUTINE cv_driver(len, nd, ndp1, ntra, t1, q1, qs1, u1, v1, tra1, p1, &    SUBROUTINE cv_driver(t1, q1, qs1, u1, v1, p1, ph1, iflag1, ft1, &
8         ph1, iflag1, ft1, fq1, fu1, fv1, ftra1, precip1, VPrecip1, cbmf1, &         fq1, fu1, fv1, precip1, VPrecip1, cbmf1, sig1, w01, icb1, inb1, delt, &
9         sig1, w01, icb1, inb1, delt, Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, &         Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, cape1, da1, phi1, mp1)
        cape1, da1, phi1, mp1)  
10    
11      ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3, 2005/04/15 12:36:17      ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3, 2005/04/15 12:36:17
   
12      ! Main driver for convection      ! Main driver for convection
13        ! Author: S. Bony, March 2002
     ! S. Bony, March 2002:  
14    
15      ! Several modules corresponding to different physical processes      ! Several modules corresponding to different physical processes
16    
     ! Several versions of convect may be used:  
     ! - iflag_con = 3: version lmd  (previously named convect3)  
     ! - iflag_con = 4: version 4.3b (vect. version, previously convect1/2)  
   
     ! Plus tard :  
     ! - iflag_con = 5: version lmd with ice (previously named convectg)  
   
     ! S. Bony, Oct 2002:  
     ! Vectorization of convect3 (ie version lmd)  
   
     use clesphys2, only: iflag_con  
17      use cv3_compress_m, only: cv3_compress      use cv3_compress_m, only: cv3_compress
18        use cv3_feed_m, only: cv3_feed
19        use cv3_mixing_m, only: cv3_mixing
20      use cv3_param_m, only: cv3_param      use cv3_param_m, only: cv3_param
21        use cv3_prelim_m, only: cv3_prelim
22        use cv3_tracer_m, only: cv3_tracer
23        use cv3_uncompress_m, only: cv3_uncompress
24        use cv3_unsat_m, only: cv3_unsat
25        use cv3_yield_m, only: cv3_yield
26      USE dimphy, ONLY: klev, klon      USE dimphy, ONLY: klev, klon
27    
28      ! PARAMETERS:      real, intent(in):: t1(klon, klev) ! temperature
29      !      Name            Type         Usage            Description      real, intent(in):: q1(klon, klev) ! specific hum
30      !   ----------      ----------     -------  ----------------------------      real, intent(in):: qs1(klon, klev) ! sat specific hum
31        real, intent(in):: u1(klon, klev) ! u-wind
32      !      len           Integer        Input        first (i) dimension      real, intent(in):: v1(klon, klev) ! v-wind
33      !      nd            Integer        Input        vertical (k) dimension      real, intent(in):: p1(klon, klev) ! full level pressure
34      !      ndp1          Integer        Input        nd + 1      real, intent(in):: ph1(klon, klev + 1) ! half level pressure
35      !      ntra          Integer        Input        number of tracors      integer, intent(out):: iflag1(klon) ! flag for Emanuel conditions
36      !      t1            Real           Input        temperature      real, intent(out):: ft1(klon, klev) ! temp tend
37      !      q1            Real           Input        specific hum      real, intent(out):: fq1(klon, klev) ! spec hum tend
38      !      qs1           Real           Input        sat specific hum      real, intent(out):: fu1(klon, klev) ! u-wind tend
39      !      u1            Real           Input        u-wind      real, intent(out):: fv1(klon, klev) ! v-wind tend
40      !      v1            Real           Input        v-wind      real, intent(out):: precip1(klon) ! precipitation
41      !      tra1          Real           Input        tracors  
42      !      p1            Real           Input        full level pressure      real, intent(out):: VPrecip1(klon, klev + 1)
43      !      ph1           Real           Input        half level pressure      ! vertical profile of precipitation
44      !      iflag1        Integer        Output       flag for Emanuel conditions  
45      !      ft1           Real           Output       temp tend      real, intent(inout):: cbmf1(klon) ! cloud base mass flux
     !      fq1           Real           Output       spec hum tend  
     !      fu1           Real           Output       u-wind tend  
     !      fv1           Real           Output       v-wind tend  
     !      ftra1         Real           Output       tracor tend  
     !      precip1       Real           Output       precipitation  
     !      VPrecip1      Real           Output       vertical profile of precipitations  
     !      cbmf1         Real           Output       cloud base mass flux  
     !      delt          Real           Input        time step  
     !      Ma1           Real           Output       mass flux adiabatic updraft  
     !      qcondc1       Real           Output       in-cld mixing ratio of condensed water  
     !      wd1           Real           Output       downdraft velocity scale for sfc fluxes  
     !      cape1         Real           Output       CAPE  
   
     integer len  
     integer nd  
     integer ndp1  
     integer, intent(in):: ntra  
     real, intent(in):: t1(len, nd)  
     real q1(len, nd)  
     real qs1(len, nd)  
     real, intent(in):: u1(len, nd)  
     real, intent(in):: v1(len, nd)  
     real, intent(in):: tra1(len, nd, ntra)  
     real p1(len, nd)  
     real ph1(len, ndp1)  
     integer iflag1(len)  
     real ft1(len, nd)  
     real fq1(len, nd)  
     real fu1(len, nd)  
     real fv1(len, nd)  
     real ftra1(len, nd, ntra)  
     real precip1(len)  
     real VPrecip1(len, nd+1)  
     real cbmf1(len)  
46      real, intent(inout):: sig1(klon, klev) ! section adiabatic updraft      real, intent(inout):: sig1(klon, klev) ! section adiabatic updraft
47    
48      real, intent(inout):: w01(klon, klev)      real, intent(inout):: w01(klon, klev)
49      ! vertical velocity within adiabatic updraft      ! vertical velocity within adiabatic updraft
50    
51      integer icb1(klon)      integer, intent(out):: icb1(klon)
52      integer inb1(klon)      integer, intent(inout):: inb1(klon)
53      real, intent(in):: delt      real, intent(in):: delt ! time step
54      real Ma1(len, nd)      real Ma1(klon, klev)
55      real, intent(out):: upwd1(len, nd) ! total upward mass flux (adiab+mixed)      ! Ma1 Real Output mass flux adiabatic updraft
     real, intent(out):: dnwd1(len, nd) ! saturated downward mass flux (mixed)  
     real, intent(out):: dnwd01(len, nd) ! unsaturated downward mass flux  
   
     real qcondc1(len, nd)     ! cld  
     real wd1(len)            ! gust  
     real cape1(len)  
56    
57      real da1(len, nd), phi1(len, nd, nd), mp1(len, nd)      real, intent(out):: upwd1(klon, klev)
58        ! total upward mass flux (adiab + mixed)
59    
60      !-------------------------------------------------------------------      real, intent(out):: dnwd1(klon, klev) ! saturated downward mass flux (mixed)
61      ! --- ARGUMENTS      real, intent(out):: dnwd01(klon, klev) ! unsaturated downward mass flux
     !-------------------------------------------------------------------  
     ! --- On input:  
62    
63      !  t:   Array of absolute temperature (K) of dimension ND, with first      real qcondc1(klon, klev) ! cld
64      !       index corresponding to lowest model level. Note that this array      ! qcondc1 Real Output in-cld mixing ratio of condensed water
65      !       will be altered by the subroutine if dry convective adjustment      real wd1(klon) ! gust
66      !       occurs and if IPBL is not equal to 0.      ! wd1 Real Output downdraft velocity scale for sfc fluxes
67        real cape1(klon)
68      !  q:   Array of specific humidity (gm/gm) of dimension ND, with first      ! cape1 Real Output CAPE
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  qs:  Array of saturation specific humidity of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  u:   Array of zonal wind velocity (m/s) of dimension ND, witth first  
     !       index corresponding with the lowest model level. Defined at  
     !       same levels as T. Note that this array will be altered if  
     !       dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  v:   Same as u but for meridional velocity.  
   
     !  tra: Array of passive tracer mixing ratio, of dimensions (ND, NTRA),  
     !       where NTRA is the number of different tracers. If no  
     !       convective tracer transport is needed, define a dummy  
     !       input array of dimension (ND, 1). Tracers are defined at  
     !       same vertical levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  p:   Array of pressure (mb) of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T.  
   
     !  ph:  Array of pressure (mb) of dimension ND+1, with first index  
     !       corresponding to lowest level. These pressures are defined at  
     !       levels intermediate between those of P, T, Q and QS. The first  
     !       value of PH should be greater than (i.e. at a lower level than)  
     !       the first value of the array P.  
   
     !  nl:  The maximum number of levels to which convection can penetrate, plus 1.  
     !       NL MUST be less than or equal to ND-1.  
   
     !  delt: The model time step (sec) between calls to CONVECT  
   
     !----------------------------------------------------------------------------  
     ! ---   On Output:  
   
     !  iflag: An output integer whose value denotes the following:  
     !       VALUE   INTERPRETATION  
     !       -----   --------------  
     !         0     Moist convection occurs.  
     !         1     Moist convection occurs, but a CFL condition  
     !               on the subsidence warming is violated. This  
     !               does not cause the scheme to terminate.  
     !         2     Moist convection, but no precip because ep(inb) lt 0.0001  
     !         3     No moist convection because new cbmf is 0 and old cbmf is 0.  
     !         4     No moist convection; atmosphere is not  
     !               unstable  
     !         6     No moist convection because ihmin le minorig.  
     !         7     No moist convection because unreasonable  
     !               parcel level temperature or specific humidity.  
     !         8     No moist convection: lifted condensation  
     !               level is above the 200 mb level.  
     !         9     No moist convection: cloud base is higher  
     !               then the level NL-1.  
   
     !  ft:   Array of temperature tendency (K/s) of dimension ND, defined at same  
     !        grid levels as T, Q, QS and P.  
   
     !  fq:   Array of specific humidity tendencies ((gm/gm)/s) of dimension ND,  
     !        defined at same grid levels as T, Q, QS and P.  
   
     !  fu:   Array of forcing of zonal velocity (m/s^2) of dimension ND,  
     !        defined at same grid levels as T.  
   
     !  fv:   Same as FU, but for forcing of meridional velocity.  
   
     !  ftra: Array of forcing of tracer content, in tracer mixing ratio per  
     !        second, defined at same levels as T. Dimensioned (ND, NTRA).  
   
     !  precip: Scalar convective precipitation rate (mm/day).  
   
     !  VPrecip: Vertical profile of convective precipitation (kg/m2/s).  
   
     !  wd:   A convective downdraft velocity scale. For use in surface  
     !        flux parameterizations. See convect.ps file for details.  
   
     !  tprime: A convective downdraft temperature perturbation scale (K).  
     !          For use in surface flux parameterizations. See convect.ps  
     !          file for details.  
   
     !  qprime: A convective downdraft specific humidity  
     !          perturbation scale (gm/gm).  
     !          For use in surface flux parameterizations. See convect.ps  
     !          file for details.  
   
     !  cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST  
     !        BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT  
     !        ITS NEXT CALL. That is, the value of CBMF must be "remembered"  
     !        by the calling program between calls to CONVECT.  
69    
70      !  det:   Array of detrainment mass flux of dimension ND.      real, intent(inout):: da1(klon, klev), phi1(klon, klev, klev)
71        real, intent(inout):: mp1(klon, klev)
72    
73      !-------------------------------------------------------------------      ! ARGUMENTS
74    
75        ! On input:
76    
77        ! t: Array of absolute temperature (K) of dimension KLEV, with first
78        ! index corresponding to lowest model level. Note that this array
79        ! will be altered by the subroutine if dry convective adjustment
80        ! occurs and if IPBL is not equal to 0.
81    
82        ! q: Array of specific humidity (gm/gm) of dimension KLEV, with first
83        ! index corresponding to lowest model level. Must be defined
84        ! at same grid levels as T. Note that this array will be altered
85        ! if dry convective adjustment occurs and if IPBL is not equal to 0.
86    
87        ! qs: Array of saturation specific humidity of dimension KLEV, with first
88        ! index corresponding to lowest model level. Must be defined
89        ! at same grid levels as T. Note that this array will be altered
90        ! if dry convective adjustment occurs and if IPBL is not equal to 0.
91    
92        ! u: Array of zonal wind velocity (m/s) of dimension KLEV, witth first
93        ! index corresponding with the lowest model level. Defined at
94        ! same levels as T. Note that this array will be altered if
95        ! dry convective adjustment occurs and if IPBL is not equal to 0.
96    
97        ! v: Same as u but for meridional velocity.
98    
99        ! p: Array of pressure (mb) of dimension KLEV, with first
100        ! index corresponding to lowest model level. Must be defined
101        ! at same grid levels as T.
102    
103        ! ph: Array of pressure (mb) of dimension KLEV + 1, with first index
104        ! corresponding to lowest level. These pressures are defined at
105        ! levels intermediate between those of P, T, Q and QS. The first
106        ! value of PH should be greater than (i.e. at a lower level than)
107        ! the first value of the array P.
108    
109        ! nl: The maximum number of levels to which convection can penetrate, plus 1
110        ! NL MUST be less than or equal to KLEV-1.
111    
112        ! delt: The model time step (sec) between calls to CONVECT
113    
114        ! On Output:
115    
116        ! iflag: An output integer whose value denotes the following:
117        ! VALUE INTERPRETATION
118        ! ----- --------------
119        ! 0 Moist convection occurs.
120        ! 1 Moist convection occurs, but a CFL condition
121        ! on the subsidence warming is violated. This
122        ! does not cause the scheme to terminate.
123        ! 2 Moist convection, but no precip because ep(inb) lt 0.0001
124        ! 3 No moist convection because new cbmf is 0 and old cbmf is 0.
125        ! 4 No moist convection; atmosphere is not
126        ! unstable
127        ! 6 No moist convection because ihmin le minorig.
128        ! 7 No moist convection because unreasonable
129        ! parcel level temperature or specific humidity.
130        ! 8 No moist convection: lifted condensation
131        ! level is above the 200 mb level.
132        ! 9 No moist convection: cloud base is higher
133        ! then the level NL-1.
134    
135        ! ft: Array of temperature tendency (K/s) of dimension KLEV, defined at same
136        ! grid levels as T, Q, QS and P.
137    
138        ! fq: Array of specific humidity tendencies ((gm/gm)/s) of dimension KLEV,
139        ! defined at same grid levels as T, Q, QS and P.
140    
141        ! fu: Array of forcing of zonal velocity (m/s^2) of dimension KLEV,
142        ! defined at same grid levels as T.
143    
144        ! fv: Same as FU, but for forcing of meridional velocity.
145    
146        ! precip: Scalar convective precipitation rate (mm/day).
147    
148        ! VPrecip: Vertical profile of convective precipitation (kg/m2/s).
149    
150        ! wd: A convective downdraft velocity scale. For use in surface
151        ! flux parameterizations. See convect.ps file for details.
152    
153        ! tprime: A convective downdraft temperature perturbation scale (K).
154        ! For use in surface flux parameterizations. See convect.ps
155        ! file for details.
156    
157        ! qprime: A convective downdraft specific humidity
158        ! perturbation scale (gm/gm).
159        ! For use in surface flux parameterizations. See convect.ps
160        ! file for details.
161    
162        ! cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST
163        ! BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT
164        ! ITS NEXT CALL. That is, the value of CBMF must be "remembered"
165        ! by the calling program between calls to CONVECT.
166    
167        ! det: Array of detrainment mass flux of dimension KLEV.
168    
169      !  Local arrays      ! Local arrays
170    
171      integer noff      real da(klon, klev), phi(klon, klev, klev), mp(klon, klev)
     real da(len, nd), phi(len, nd, nd), mp(len, nd)  
172    
173      integer i, k, n, il, j      integer i, k, il
174      integer icbmax      integer icbmax
175      integer nk1(klon)      integer nk1(klon)
176      integer icbs1(klon)      integer icbs1(klon)
# Line 227  contains Line 179  contains
179      real tnk1(klon)      real tnk1(klon)
180      real qnk1(klon)      real qnk1(klon)
181      real gznk1(klon)      real gznk1(klon)
     real pnk1(klon)  
     real qsnk1(klon)  
182      real pbase1(klon)      real pbase1(klon)
183      real buoybase1(klon)      real buoybase1(klon)
184    
# Line 247  contains Line 197  contains
197    
198      ! (local) compressed fields:      ! (local) compressed fields:
199    
200      integer nloc      integer idcum(klon)
201      parameter (nloc = klon) ! pour l'instant      integer iflag(klon), nk(klon), icb(klon)
202        integer nent(klon, klev)
203        integer icbs(klon)
204        integer inb(klon), inbis(klon)
205    
206        real cbmf(klon), plcl(klon), tnk(klon), qnk(klon), gznk(klon)
207        real t(klon, klev), q(klon, klev), qs(klon, klev)
208        real u(klon, klev), v(klon, klev)
209        real gz(klon, klev), h(klon, klev), lv(klon, klev), cpn(klon, klev)
210        real p(klon, klev), ph(klon, klev + 1), tv(klon, klev), tp(klon, klev)
211        real clw(klon, klev)
212        real dph(klon, klev)
213        real pbase(klon), buoybase(klon), th(klon, klev)
214        real tvp(klon, klev)
215        real sig(klon, klev), w0(klon, klev)
216        real hp(klon, klev), ep(klon, klev), sigp(klon, klev)
217        real frac(klon), buoy(klon, klev)
218        real cape(klon)
219        real m(klon, klev), ment(klon, klev, klev), qent(klon, klev, klev)
220        real uent(klon, klev, klev), vent(klon, klev, klev)
221        real ments(klon, klev, klev), qents(klon, klev, klev)
222        real sij(klon, klev, klev), elij(klon, klev, klev)
223        real qp(klon, klev), up(klon, klev), vp(klon, klev)
224        real wt(klon, klev), water(klon, klev), evap(klon, klev)
225        real b(klon, klev), ft(klon, klev), fq(klon, klev)
226        real fu(klon, klev), fv(klon, klev)
227        real upwd(klon, klev), dnwd(klon, klev), dnwd0(klon, klev)
228        real Ma(klon, klev), mike(klon, klev), tls(klon, klev)
229        real tps(klon, klev), qprime(klon), tprime(klon)
230        real precip(klon)
231        real VPrecip(klon, klev + 1)
232        real qcondc(klon, klev) ! cld
233        real wd(klon) ! gust
234    
     integer idcum(nloc)  
     integer iflag(nloc), nk(nloc), icb(nloc)  
     integer nent(nloc, klev)  
     integer icbs(nloc)  
     integer inb(nloc), inbis(nloc)  
   
     real cbmf(nloc), plcl(nloc), tnk(nloc), qnk(nloc), gznk(nloc)  
     real t(nloc, klev), q(nloc, klev), qs(nloc, klev)  
     real u(nloc, klev), v(nloc, klev)  
     real gz(nloc, klev), h(nloc, klev), lv(nloc, klev), cpn(nloc, klev)  
     real p(nloc, klev), ph(nloc, klev+1), tv(nloc, klev), tp(nloc, klev)  
     real clw(nloc, klev)  
     real dph(nloc, klev)  
     real pbase(nloc), buoybase(nloc), th(nloc, klev)  
     real tvp(nloc, klev)  
     real sig(nloc, klev), w0(nloc, klev)  
     real hp(nloc, klev), ep(nloc, klev), sigp(nloc, klev)  
     real frac(nloc), buoy(nloc, klev)  
     real cape(nloc)  
     real m(nloc, klev), ment(nloc, klev, klev), qent(nloc, klev, klev)  
     real uent(nloc, klev, klev), vent(nloc, klev, klev)  
     real ments(nloc, klev, klev), qents(nloc, klev, klev)  
     real sij(nloc, klev, klev), elij(nloc, klev, klev)  
     real qp(nloc, klev), up(nloc, klev), vp(nloc, klev)  
     real wt(nloc, klev), water(nloc, klev), evap(nloc, klev)  
     real b(nloc, klev), ft(nloc, klev), fq(nloc, klev)  
     real fu(nloc, klev), fv(nloc, klev)  
     real upwd(nloc, klev), dnwd(nloc, klev), dnwd0(nloc, klev)  
     real Ma(nloc, klev), mike(nloc, klev), tls(nloc, klev)  
     real tps(nloc, klev), qprime(nloc), tprime(nloc)  
     real precip(nloc)  
     real VPrecip(nloc, klev+1)  
     real tra(nloc, klev, ntra), trap(nloc, klev, ntra)  
     real ftra(nloc, klev, ntra), traent(nloc, klev, klev, ntra)  
     real qcondc(nloc, klev)  ! cld  
     real wd(nloc)           ! gust  
   
     !-------------------------------------------------------------------  
     ! --- SET CONSTANTS AND PARAMETERS  
235      !-------------------------------------------------------------------      !-------------------------------------------------------------------
236    
237      ! -- set simulation flags:      ! SET CONSTANTS AND PARAMETERS
238      !   (common cvflag)  
239        ! set simulation flags:
240        ! (common cvflag)
241    
242      CALL cv_flag      CALL cv_flag
243    
244      ! -- set thermodynamical constants:      ! set thermodynamical constants:
245      !     (common cvthermo)      ! (common cvthermo)
246    
247      CALL cv_thermo      CALL cv_thermo
248    
249      ! -- set convect parameters      ! set convect parameters
250    
251        ! includes microphysical parameters and parameters that
252        ! control the rate of approach to quasi-equilibrium)
253        ! (common cvparam)
254    
255      !     includes microphysical parameters and parameters that      CALL cv3_param(klev, delt)
     !     control the rate of approach to quasi-equilibrium)  
     !     (common cvparam)  
   
     if (iflag_con.eq.3) then  
        CALL cv3_param(nd, delt)  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_param(nd)  
     endif  
   
     !---------------------------------------------------------------------  
     ! --- INITIALIZE OUTPUT ARRAYS AND PARAMETERS  
     !---------------------------------------------------------------------  
256    
257      do k = 1, nd      ! INITIALIZE OUTPUT ARRAYS AND PARAMETERS
258         do  i = 1, len  
259        do k = 1, klev
260           do i = 1, klon
261            ft1(i, k) = 0.0            ft1(i, k) = 0.0
262            fq1(i, k) = 0.0            fq1(i, k) = 0.0
263            fu1(i, k) = 0.0            fu1(i, k) = 0.0
# Line 330  contains Line 267  contains
267            clw1(i, k) = 0.0            clw1(i, k) = 0.0
268            !ym            !ym
269            clw(i, k) = 0.0            clw(i, k) = 0.0
270            gz1(i, k)  =  0.            gz1(i, k) = 0.
271            VPrecip1(i, k) = 0.            VPrecip1(i, k) = 0.
272            Ma1(i, k) = 0.0            Ma1(i, k) = 0.0
273            upwd1(i, k) = 0.0            upwd1(i, k) = 0.0
# Line 340  contains Line 277  contains
277         end do         end do
278      end do      end do
279    
280      do  j = 1, ntra      do i = 1, klon
        do  k = 1, nd  
           do  i = 1, len  
              ftra1(i, k, j) = 0.0  
           end do  
        end do  
     end do  
   
     do  i = 1, len  
281         precip1(i) = 0.0         precip1(i) = 0.0
282         iflag1(i) = 0         iflag1(i) = 0
283         wd1(i) = 0.0         wd1(i) = 0.0
284         cape1(i) = 0.0         cape1(i) = 0.0
285         VPrecip1(i, nd+1) = 0.0         VPrecip1(i, klev + 1) = 0.0
286      end do      end do
287    
288      if (iflag_con.eq.3) then      do il = 1, klon
289         do il = 1, len         sig1(il, klev) = sig1(il, klev) + 1.
290            sig1(il, nd) = sig1(il, nd) + 1.         sig1(il, klev) = min(sig1(il, klev), 12.1)
291            sig1(il, nd)  =  min(sig1(il, nd), 12.1)      enddo
        enddo  
     endif  
   
     !--------------------------------------------------------------------  
     ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY  
     !--------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_prelim(len, nd, ndp1, t1, q1, p1, ph1, lv1, cpn1, tv1, gz1, &  
             h1, hm1, th1)! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_prelim(len, nd, ndp1, t1, q1, p1, ph1 &  
             , lv1, cpn1, tv1, gz1, h1, hm1)  
     endif  
   
     !--------------------------------------------------------------------  
     ! --- CONVECTIVE FEED  
     !--------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_feed(len, nd, t1, q1, qs1, p1, ph1, hm1, gz1            &  
             , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_feed(len, nd, t1, q1, qs1, p1, hm1, gz1 &  
             , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1)  
     endif  
   
     !--------------------------------------------------------------------  
     ! --- UNDILUTE (ADIABATIC) UPDRAFT / 1st part  
     ! (up through ICB for convect4, up through ICB+1 for convect3)  
     !     Calculates the lifted parcel virtual temperature at nk, the  
     !     actual temperature, and the adiabatic liquid water content.  
     !--------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_undilute1(len, nd, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1   &  
             , tp1, tvp1, clw1, icbs1) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_undilute1(len, nd, t1, q1, qs1, gz1, p1, nk1, icb1, icbmax &  
             , tp1, tvp1, clw1)  
     endif  
292    
293      !-------------------------------------------------------------------      ! CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY
294      ! --- TRIGGERING  
295      !-------------------------------------------------------------------      CALL cv3_prelim(klon, klev, klev + 1, t1, q1, p1, ph1, lv1, cpn1, tv1, &
296             gz1, h1, hm1, th1)
297    
298        ! CONVECTIVE FEED
299    
300        CALL cv3_feed(klon, klev, t1, q1, qs1, p1, ph1, gz1, nk1, icb1, &
301             icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! klev->na
302    
303        ! UNDILUTE (ADIABATIC) UPDRAFT / 1st part
304        ! (up through ICB for convect4, up through ICB + 1 for convect3)
305        ! Calculates the lifted parcel virtual temperature at nk, the
306        ! actual temperature, and the adiabatic liquid water content.
307    
308        CALL cv3_undilute1(klon, klev, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1, &
309             tp1, tvp1, clw1, icbs1) ! klev->na
310    
311        ! TRIGGERING
312    
313      if (iflag_con.eq.3) then      CALL cv3_trigger(klon, klev, icb1, plcl1, p1, th1, tv1, tvp1, pbase1, &
314         CALL cv3_trigger(len, nd, icb1, plcl1, p1, th1, tv1, tvp1, pbase1, &           buoybase1, iflag1, sig1, w01) ! klev->na
             buoybase1, iflag1, sig1, w01) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_trigger(len, nd, icb1, cbmf1, tv1, tvp1, iflag1)  
     endif  
315    
316      ! --- IF THIS POINT IS REACHED, MOIST CONVECTIVE ADJUSTMENT IS NECESSARY      ! Moist convective adjustment is necessary
317    
318      ncum = 0      ncum = 0
319      do  i = 1, len      do i = 1, klon
320         if(iflag1(i).eq.0)then         if (iflag1(i) == 0) then
321            ncum = ncum+1            ncum = ncum + 1
322            idcum(ncum) = i            idcum(ncum) = i
323         endif         endif
324      end do      end do
325    
326      !       print*, 'klon, ncum = ', len, ncum      IF (ncum > 0) THEN
327           ! COMPRESS THE FIELDS
328           ! (-> vectorization over convective gridpoints)
329    
330      IF (ncum.gt.0) THEN         CALL cv3_compress(klon, klon, ncum, klev, iflag1, nk1, icb1, icbs1, &
331                plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1, t1, q1, qs1, u1, &
332                v1, gz1, th1, h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1, &
333                sig1, w01, iflag, nk, icb, icbs, plcl, tnk, qnk, gznk, pbase, &
334                buoybase, t, q, qs, u, v, gz, th, h, lv, cpn, p, ph, tv, tp, &
335                tvp, clw, sig, w0)
336    
337         !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^         ! UNDILUTE (ADIABATIC) UPDRAFT / second part :
338         ! --- COMPRESS THE FIELDS         ! FIND THE REST OF THE LIFTED PARCEL TEMPERATURES
339         !        (-> vectorization over convective gridpoints)         ! &
340         !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^         ! COMPUTE THE PRECIPITATION EFFICIENCIES AND THE
341           ! FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD
342         if (iflag_con.eq.3) then         ! &
343            CALL cv3_compress(len, nloc, ncum, nd, ntra, iflag1, nk1, icb1, &         ! FIND THE LEVEL OF NEUTRAL BUOYANCY
                icbs1, plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1, t1, q1, &  
                qs1, u1, v1, gz1, th1, tra1, h1, lv1, cpn1, p1, ph1, tv1, tp1, &  
                tvp1, clw1, sig1, w01, iflag, nk, icb, icbs, plcl, tnk, qnk, &  
                gznk, pbase, buoybase, t, q, qs, u, v, gz, th, tra, h, lv, &  
                cpn, p, ph, tv, tp, tvp, clw, sig, w0)  
        endif  
344    
345         if (iflag_con.eq.4) then         CALL cv3_undilute2(klon, ncum, klev, icb, icbs, nk, tnk, qnk, gznk, &
346            CALL cv_compress( len, nloc, ncum, nd &              t, qs, gz, p, h, tv, lv, pbase, buoybase, plcl, inb, tp, &
347                 , iflag1, nk1, icb1 &              tvp, clw, hp, ep, sigp, buoy) !na->klev
                , cbmf1, plcl1, tnk1, qnk1, gznk1 &  
                , t1, q1, qs1, u1, v1, gz1 &  
                , h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1 &  
                , iflag, nk, icb &  
                , cbmf, plcl, tnk, qnk, gznk &  
                , t, q, qs, u, v, gz, h, lv, cpn, p, ph, tv, tp, tvp, clw  &  
                , dph )  
        endif  
348    
349         !-------------------------------------------------------------------         ! CLOSURE
        ! --- UNDILUTE (ADIABATIC) UPDRAFT / second part :  
        ! ---   FIND THE REST OF THE LIFTED PARCEL TEMPERATURES  
        ! ---   &  
        ! ---   COMPUTE THE PRECIPITATION EFFICIENCIES AND THE  
        ! ---   FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD  
        ! ---   &  
        ! ---   FIND THE LEVEL OF NEUTRAL BUOYANCY  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_undilute2(nloc, ncum, nd, icb, icbs, nk         &  
                , tnk, qnk, gznk, t, q, qs, gz &  
                , p, h, tv, lv, pbase, buoybase, plcl &  
                , inb, tp, tvp, clw, hp, ep, sigp, buoy) !na->nd  
        endif  
350    
351         if (iflag_con.eq.4) then         CALL cv3_closure(klon, ncum, klev, icb, inb, pbase, p, ph, tv, &
352            CALL cv_undilute2(nloc, ncum, nd, icb, nk &              buoy, sig, w0, cape, m) ! na->klev
                , tnk, qnk, gznk, t, q, qs, gz &  
                , p, dph, h, tv, lv &  
                , inb, inbis, tp, tvp, clw, hp, ep, sigp, frac)  
        endif  
353    
354         !-------------------------------------------------------------------         ! MIXING
        ! --- CLOSURE  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_closure(nloc, ncum, nd, icb, inb               &  
                , pbase, p, ph, tv, buoy &  
                , sig, w0, cape, m) ! na->nd  
        endif  
355    
356         if (iflag_con.eq.4) then         CALL cv3_mixing(klon, ncum, klev, klev, icb, nk, inb, t, q, qs, u, &
357            CALL cv_closure(nloc, ncum, nd, nk, icb &              v, h, lv, hp, ep, clw, m, sig, ment, qent, uent, vent, nent, &
358                 , tv, tvp, p, ph, dph, plcl, cpn &              sij, elij, ments, qents)
                , iflag, cbmf)  
        endif  
359    
360         !-------------------------------------------------------------------         ! UNSATURATED (PRECIPITATING) DOWNDRAFTS
        ! --- MIXING  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_mixing(nloc, ncum, nd, nd, ntra, icb, nk, inb     &  
                , ph, t, q, qs, u, v, tra, h, lv, qnk &  
                , hp, tv, tvp, ep, clw, m, sig &  
                , ment, qent, uent, vent, nent, sij, elij, ments, qents, traent)! na->nd  
        endif  
361    
362         if (iflag_con.eq.4) then         CALL cv3_unsat(klon, ncum, klev, klev, icb, inb, t, q, qs, gz, u, &
363            CALL cv_mixing(nloc, ncum, nd, icb, nk, inb, inbis &              v, p, ph, th, tv, lv, cpn, ep, sigp, clw, m, ment, elij, delt, &
364                 , ph, t, q, qs, u, v, h, lv, qnk &              plcl, mp, qp, up, vp, wt, water, evap, b)! na->klev
                , hp, tv, tvp, ep, clw, cbmf &  
                , m, ment, qent, uent, vent, nent, sij, elij)  
        endif  
365    
366         !-------------------------------------------------------------------         ! YIELD
367         ! --- UNSATURATED (PRECIPITATING) DOWNDRAFTS         ! (tendencies, precipitation, variables of interface with other
368         !-------------------------------------------------------------------         ! processes, etc)
   
        if (iflag_con.eq.3) then  
           CALL cv3_unsat(nloc, ncum, nd, nd, ntra, icb, inb     &  
                , t, q, qs, gz, u, v, tra, p, ph &  
                , th, tv, lv, cpn, ep, sigp, clw &  
                , m, ment, elij, delt, plcl &  
                , mp, qp, up, vp, trap, wt, water, evap, b)! na->nd  
        endif  
369    
370         if (iflag_con.eq.4) then         CALL cv3_yield(klon, ncum, klev, klev, icb, inb, delt, t, q, u, v, &
371            CALL cv_unsat(nloc, ncum, nd, inb, t, q, qs, gz, u, v, p, ph &              gz, p, ph, h, hp, lv, cpn, th, ep, clw, m, tp, mp, qp, up, vp, &
372                 , h, lv, ep, sigp, clw, m, ment, elij &              wt, water, evap, b, ment, qent, uent, vent, nent, elij, sig, &
373                 , iflag, mp, qp, up, vp, wt, water, evap)              tv, tvp, iflag, precip, VPrecip, ft, fq, fu, fv, upwd, dnwd, &
374         endif              dnwd0, ma, mike, tls, tps, qcondc, wd)! na->klev
375    
376         !-------------------------------------------------------------------         ! passive tracers
        ! --- YIELD  
        !     (tendencies, precipitation, variables of interface with other  
        !      processes, etc)  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_yield(nloc, ncum, nd, nd, ntra             &  
                , icb, inb, delt &  
                , t, q, u, v, tra, gz, p, ph, h, hp, lv, cpn, th &  
                , ep, clw, m, tp, mp, qp, up, vp, trap &  
                , wt, water, evap, b &  
                , ment, qent, uent, vent, nent, elij, traent, sig &  
                , tv, tvp &  
                , iflag, precip, VPrecip, ft, fq, fu, fv, ftra &  
                , upwd, dnwd, dnwd0, ma, mike, tls, tps, qcondc, wd)! na->nd  
        endif  
377    
378         if (iflag_con.eq.4) then         CALL cv3_tracer(klon, ncum, klev, ment, sij, da, phi)
           CALL cv_yield(nloc, ncum, nd, nk, icb, inb, delt &  
                , t, q, u, v, gz, p, ph, h, hp, lv, cpn &  
                , ep, clw, frac, m, mp, qp, up, vp &  
                , wt, water, evap &  
                , ment, qent, uent, vent, nent, elij &  
                , tv, tvp &  
                , iflag, wd, qprime, tprime &  
                , precip, cbmf, ft, fq, fu, fv, Ma, qcondc)  
        endif  
379    
380         !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^         ! UNCOMPRESS THE FIELDS
        ! --- passive tracers  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
   
        if (iflag_con.eq.3) then  
           CALL cv3_tracer(nloc, len, ncum, nd, nd, &  
                ment, sij, da, phi)  
        endif  
381    
382         !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^         ! set iflag1 = 42 for non convective points
383         ! --- UNCOMPRESS THE FIELDS         do i = 1, klon
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! set iflag1  = 42 for non convective points  
        do  i = 1, len  
384            iflag1(i) = 42            iflag1(i) = 42
385         end do         end do
386    
387         if (iflag_con.eq.3) then         CALL cv3_uncompress(idcum(:ncum), iflag, precip, VPrecip, sig, w0, &
388            CALL cv3_uncompress(nloc, len, ncum, nd, ntra, idcum &              ft, fq, fu, fv, inb, Ma, upwd, dnwd, dnwd0, qcondc, wd, cape, &
389                 , iflag &              da, phi, mp, iflag1, precip1, VPrecip1, sig1, w01, ft1, fq1, &
390                 , precip, VPrecip, sig, w0 &              fu1, fv1, inb1, Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, &
391                 , ft, fq, fu, fv, ftra &              cape1, da1, phi1, mp1)
                , inb  &  
                , Ma, upwd, dnwd, dnwd0, qcondc, wd, cape &  
                , da, phi, mp &  
                , iflag1 &  
                , precip1, VPrecip1, sig1, w01 &  
                , ft1, fq1, fu1, fv1, ftra1 &  
                , inb1 &  
                , Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, cape1  &  
                , da1, phi1, mp1)  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_uncompress(nloc, len, ncum, nd, idcum &  
                , iflag &  
                , precip, cbmf &  
                , ft, fq, fu, fv &  
                , Ma, qcondc             &  
                , iflag1 &  
                , precip1, cbmf1 &  
                , ft1, fq1, fu1, fv1 &  
                , Ma1, qcondc1 )  
        endif  
392      ENDIF ! ncum>0      ENDIF ! ncum>0
393    
394    end SUBROUTINE cv_driver    end SUBROUTINE cv_driver

Legend:
Removed from v.91  
changed lines
  Added in v.181

  ViewVC Help
Powered by ViewVC 1.1.21