/[lmdze]/trunk/Sources/phylmd/cv_driver.f
ViewVC logotype

Diff of /trunk/Sources/phylmd/cv_driver.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/libf/phylmd/cv_driver.f revision 3 by guez, Wed Feb 27 13:16:39 2008 UTC trunk/Sources/phylmd/cv_driver.f revision 182 by guez, Wed Mar 16 11:11:27 2016 UTC
# Line 1  Line 1 
1  !  module cv_driver_m
 ! $Header: /home/cvsroot/LMDZ4/libf/phylmd/cv_driver.F,v 1.3 2005/04/15 12:36:17 lmdzadmin Exp $  
 !  
       SUBROUTINE cv_driver(len,nd,ndp1,ntra,iflag_con,  
      &                   t1,q1,qs1,u1,v1,tra1,  
      &                   p1,ph1,iflag1,ft1,fq1,fu1,fv1,ftra1,  
      &                   precip1,VPrecip1,  
      &                   cbmf1,sig1,w01,  
      &                   icb1,inb1,  
      &                   delt,Ma1,upwd1,dnwd1,dnwd01,qcondc1,wd1,cape1,  
      &                   da1,phi1,mp1)  
 C  
       use dimens_m  
       use dimphy  
       implicit none  
 C  
 C.............................START PROLOGUE............................  
 C  
 C PARAMETERS:  
 C      Name            Type         Usage            Description  
 C   ----------      ----------     -------  ----------------------------  
 C  
 C      len           Integer        Input        first (i) dimension  
 C      nd            Integer        Input        vertical (k) dimension  
 C      ndp1          Integer        Input        nd + 1  
 C      ntra          Integer        Input        number of tracors  
 C      iflag_con     Integer        Input        version of convect (3/4)  
 C      t1            Real           Input        temperature  
 C      q1            Real           Input        specific hum  
 C      qs1           Real           Input        sat specific hum  
 C      u1            Real           Input        u-wind  
 C      v1            Real           Input        v-wind  
 C      tra1          Real           Input        tracors  
 C      p1            Real           Input        full level pressure  
 C      ph1           Real           Input        half level pressure  
 C      iflag1        Integer        Output       flag for Emanuel conditions  
 C      ft1           Real           Output       temp tend  
 C      fq1           Real           Output       spec hum tend  
 C      fu1           Real           Output       u-wind tend  
 C      fv1           Real           Output       v-wind tend  
 C      ftra1         Real           Output       tracor tend  
 C      precip1       Real           Output       precipitation  
 C      VPrecip1      Real           Output       vertical profile of precipitations  
 C      cbmf1         Real           Output       cloud base mass flux  
 C      sig1          Real           In/Out       section adiabatic updraft  
 C      w01           Real           In/Out       vertical velocity within adiab updraft  
 C      delt          Real           Input        time step  
 C      Ma1           Real           Output       mass flux adiabatic updraft  
 C      upwd1         Real           Output       total upward mass flux (adiab+mixed)  
 C      dnwd1         Real           Output       saturated downward mass flux (mixed)  
 C      dnwd01        Real           Output       unsaturated downward mass flux  
 C      qcondc1       Real           Output       in-cld mixing ratio of condensed water  
 C      wd1           Real           Output       downdraft velocity scale for sfc fluxes  
 C      cape1         Real           Output       CAPE  
 C  
 C S. Bony, Mar 2002:  
 C       * Several modules corresponding to different physical processes  
 C       * Several versions of convect may be used:  
 C               - iflag_con=3: version lmd  (previously named convect3)  
 C               - iflag_con=4: version 4.3b (vect. version, previously convect1/2)  
 C   + tard:     - iflag_con=5: version lmd with ice (previously named convectg)  
 C S. Bony, Oct 2002:  
 C       * Vectorization of convect3 (ie version lmd)  
 C  
 C..............................END PROLOGUE.............................  
 c  
 c  
   
       integer len  
       integer nd  
       integer ndp1  
       integer noff  
       integer iflag_con  
       integer ntra  
       real t1(len,nd)  
       real q1(len,nd)  
       real qs1(len,nd)  
       real u1(len,nd)  
       real v1(len,nd)  
       real p1(len,nd)  
       real ph1(len,ndp1)  
       integer iflag1(len)  
       real ft1(len,nd)  
       real fq1(len,nd)  
       real fu1(len,nd)  
       real fv1(len,nd)  
       real precip1(len)  
       real cbmf1(len)  
       real VPrecip1(len,nd+1)  
       real Ma1(len,nd)  
       real upwd1(len,nd)  
       real dnwd1(len,nd)  
       real dnwd01(len,nd)  
   
       real qcondc1(len,nd)     ! cld  
       real wd1(len)            ! gust  
       real cape1(len)      
   
       real da1(len,nd),phi1(len,nd,nd),mp1(len,nd)  
       real da(len,nd),phi(len,nd,nd),mp(len,nd)  
       real, intent(in):: tra1(len,nd,ntra)  
       real ftra1(len,nd,ntra)  
   
       real delt  
   
 !-------------------------------------------------------------------  
 ! --- ARGUMENTS  
 !-------------------------------------------------------------------  
 ! --- On input:  
 !  
 !  t:   Array of absolute temperature (K) of dimension ND, with first  
 !       index corresponding to lowest model level. Note that this array  
 !       will be altered by the subroutine if dry convective adjustment  
 !       occurs and if IPBL is not equal to 0.  
 !  
 !  q:   Array of specific humidity (gm/gm) of dimension ND, with first  
 !       index corresponding to lowest model level. Must be defined  
 !       at same grid levels as T. Note that this array will be altered  
 !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
 !  
 !  qs:  Array of saturation specific humidity of dimension ND, with first  
 !       index corresponding to lowest model level. Must be defined  
 !       at same grid levels as T. Note that this array will be altered  
 !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
 !  
 !  u:   Array of zonal wind velocity (m/s) of dimension ND, witth first  
 !       index corresponding with the lowest model level. Defined at  
 !       same levels as T. Note that this array will be altered if  
 !       dry convective adjustment occurs and if IPBL is not equal to 0.  
 !  
 !  v:   Same as u but for meridional velocity.  
 !  
 !  tra: Array of passive tracer mixing ratio, of dimensions (ND,NTRA),  
 !       where NTRA is the number of different tracers. If no  
 !       convective tracer transport is needed, define a dummy  
 !       input array of dimension (ND,1). Tracers are defined at  
 !       same vertical levels as T. Note that this array will be altered  
 !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
 !  
 !  p:   Array of pressure (mb) of dimension ND, with first  
 !       index corresponding to lowest model level. Must be defined  
 !       at same grid levels as T.  
 !  
 !  ph:  Array of pressure (mb) of dimension ND+1, with first index  
 !       corresponding to lowest level. These pressures are defined at  
 !       levels intermediate between those of P, T, Q and QS. The first  
 !       value of PH should be greater than (i.e. at a lower level than)  
 !       the first value of the array P.  
 !  
 !  nl:  The maximum number of levels to which convection can penetrate, plus 1.  
 !       NL MUST be less than or equal to ND-1.  
 !  
 !  delt: The model time step (sec) between calls to CONVECT  
 !  
 !----------------------------------------------------------------------------  
 ! ---   On Output:  
 !  
 !  iflag: An output integer whose value denotes the following:  
 !       VALUE   INTERPRETATION  
 !       -----   --------------  
 !         0     Moist convection occurs.  
 !         1     Moist convection occurs, but a CFL condition  
 !               on the subsidence warming is violated. This  
 !               does not cause the scheme to terminate.  
 !         2     Moist convection, but no precip because ep(inb) lt 0.0001  
 !         3     No moist convection because new cbmf is 0 and old cbmf is 0.  
 !         4     No moist convection; atmosphere is not  
 !               unstable  
 !         6     No moist convection because ihmin le minorig.  
 !         7     No moist convection because unreasonable  
 !               parcel level temperature or specific humidity.  
 !         8     No moist convection: lifted condensation  
 !               level is above the 200 mb level.  
 !         9     No moist convection: cloud base is higher  
 !               then the level NL-1.  
 !  
 !  ft:   Array of temperature tendency (K/s) of dimension ND, defined at same  
 !        grid levels as T, Q, QS and P.  
 !  
 !  fq:   Array of specific humidity tendencies ((gm/gm)/s) of dimension ND,  
 !        defined at same grid levels as T, Q, QS and P.  
 !  
 !  fu:   Array of forcing of zonal velocity (m/s^2) of dimension ND,  
 !        defined at same grid levels as T.  
 !  
 !  fv:   Same as FU, but for forcing of meridional velocity.  
 !  
 !  ftra: Array of forcing of tracer content, in tracer mixing ratio per  
 !        second, defined at same levels as T. Dimensioned (ND,NTRA).  
 !  
 !  precip: Scalar convective precipitation rate (mm/day).  
 !  
 !  VPrecip: Vertical profile of convective precipitation (kg/m2/s).  
 !  
 !  wd:   A convective downdraft velocity scale. For use in surface  
 !        flux parameterizations. See convect.ps file for details.  
 !  
 !  tprime: A convective downdraft temperature perturbation scale (K).  
 !          For use in surface flux parameterizations. See convect.ps  
 !          file for details.  
 !  
 !  qprime: A convective downdraft specific humidity  
 !          perturbation scale (gm/gm).  
 !          For use in surface flux parameterizations. See convect.ps  
 !          file for details.  
 !  
 !  cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST  
 !        BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT  
 !        ITS NEXT CALL. That is, the value of CBMF must be "remembered"  
 !        by the calling program between calls to CONVECT.  
 !  
 !  det:   Array of detrainment mass flux of dimension ND.  
 !  
 !-------------------------------------------------------------------  
 c  
 c  Local arrays  
 c  
   
       integer i,k,n,il,j  
       integer icbmax  
       integer nk1(klon)  
       integer icb1(klon)  
       integer inb1(klon)  
       integer icbs1(klon)  
   
       real plcl1(klon)  
       real tnk1(klon)  
       real qnk1(klon)  
       real gznk1(klon)  
       real pnk1(klon)  
       real qsnk1(klon)  
       real pbase1(klon)  
       real buoybase1(klon)  
   
       real lv1(klon,klev)  
       real cpn1(klon,klev)  
       real tv1(klon,klev)  
       real gz1(klon,klev)  
       real hm1(klon,klev)  
       real h1(klon,klev)  
       real tp1(klon,klev)  
       real tvp1(klon,klev)  
       real clw1(klon,klev)  
       real sig1(klon,klev)  
       real w01(klon,klev)  
       real th1(klon,klev)  
 c  
       integer ncum  
 c  
 c (local) compressed fields:  
 c  
       integer nloc  
       parameter (nloc=klon) ! pour l'instant  
   
       integer idcum(nloc)  
       integer iflag(nloc),nk(nloc),icb(nloc)  
       integer nent(nloc,klev)  
       integer icbs(nloc)  
       integer inb(nloc), inbis(nloc)  
   
       real cbmf(nloc),plcl(nloc),tnk(nloc),qnk(nloc),gznk(nloc)  
       real t(nloc,klev),q(nloc,klev),qs(nloc,klev)  
       real u(nloc,klev),v(nloc,klev)  
       real gz(nloc,klev),h(nloc,klev),lv(nloc,klev),cpn(nloc,klev)  
       real p(nloc,klev),ph(nloc,klev+1),tv(nloc,klev),tp(nloc,klev)  
       real clw(nloc,klev)  
       real dph(nloc,klev)  
       real pbase(nloc), buoybase(nloc), th(nloc,klev)  
       real tvp(nloc,klev)  
       real sig(nloc,klev), w0(nloc,klev)  
       real hp(nloc,klev), ep(nloc,klev), sigp(nloc,klev)  
       real frac(nloc), buoy(nloc,klev)  
       real cape(nloc)  
       real m(nloc,klev), ment(nloc,klev,klev), qent(nloc,klev,klev)  
       real uent(nloc,klev,klev), vent(nloc,klev,klev)  
       real ments(nloc,klev,klev), qents(nloc,klev,klev)  
       real sij(nloc,klev,klev), elij(nloc,klev,klev)  
       real qp(nloc,klev), up(nloc,klev), vp(nloc,klev)  
       real wt(nloc,klev), water(nloc,klev), evap(nloc,klev)  
       real b(nloc,klev), ft(nloc,klev), fq(nloc,klev)  
       real fu(nloc,klev), fv(nloc,klev)  
       real upwd(nloc,klev), dnwd(nloc,klev), dnwd0(nloc,klev)  
       real Ma(nloc,klev), mike(nloc,klev), tls(nloc,klev)  
       real tps(nloc,klev), qprime(nloc), tprime(nloc)  
       real precip(nloc)  
       real VPrecip(nloc,klev+1)  
       real tra(nloc,klev,ntra), trap(nloc,klev,ntra)  
       real ftra(nloc,klev,ntra), traent(nloc,klev,klev,ntra)  
       real qcondc(nloc,klev)  ! cld  
       real wd(nloc)           ! gust  
   
 !-------------------------------------------------------------------  
 ! --- SET CONSTANTS AND PARAMETERS  
 !-------------------------------------------------------------------  
   
 c -- set simulation flags:  
 c   (common cvflag)  
   
        CALL cv_flag  
   
 c -- set thermodynamical constants:  
 c       (common cvthermo)  
   
        CALL cv_thermo(iflag_con)  
   
 c -- set convect parameters  
 c  
 c       includes microphysical parameters and parameters that  
 c       control the rate of approach to quasi-equilibrium)  
 c       (common cvparam)  
   
       if (iflag_con.eq.3) then  
        CALL cv3_param(nd,delt)  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_param(nd)  
       endif  
   
 !---------------------------------------------------------------------  
 ! --- INITIALIZE OUTPUT ARRAYS AND PARAMETERS  
 !---------------------------------------------------------------------  
   
       do 20 k=1,nd  
         do 10 i=1,len  
          ft1(i,k)=0.0  
          fq1(i,k)=0.0  
          fu1(i,k)=0.0  
          fv1(i,k)=0.0  
          tvp1(i,k)=0.0  
          tp1(i,k)=0.0  
          clw1(i,k)=0.0  
 cym  
          clw(i,k)=0.0      
          gz1(i,k) = 0.  
          VPrecip1(i,k) = 0.  
          Ma1(i,k)=0.0  
          upwd1(i,k)=0.0  
          dnwd1(i,k)=0.0  
          dnwd01(i,k)=0.0  
          qcondc1(i,k)=0.0  
  10     continue  
  20   continue  
   
       do 30 j=1,ntra  
        do 31 k=1,nd  
         do 32 i=1,len  
          ftra1(i,k,j)=0.0  
  32     continue      
  31    continue      
  30   continue      
   
       do 60 i=1,len  
         precip1(i)=0.0  
         iflag1(i)=0  
         wd1(i)=0.0  
         cape1(i)=0.0  
         VPrecip1(i,nd+1)=0.0  
  60   continue  
   
       if (iflag_con.eq.3) then  
         do il=1,len  
          sig1(il,nd)=sig1(il,nd)+1.  
          sig1(il,nd)=amin1(sig1(il,nd),12.1)  
         enddo  
       endif  
   
 !--------------------------------------------------------------------  
 ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY  
 !--------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_prelim(len,nd,ndp1,t1,q1,p1,ph1            ! nd->na  
      o               ,lv1,cpn1,tv1,gz1,h1,hm1,th1)  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_prelim(len,nd,ndp1,t1,q1,p1,ph1  
      o               ,lv1,cpn1,tv1,gz1,h1,hm1)  
       endif  
   
 !--------------------------------------------------------------------  
 ! --- CONVECTIVE FEED  
 !--------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_feed(len,nd,t1,q1,qs1,p1,ph1,hm1,gz1           ! nd->na  
      o         ,nk1,icb1,icbmax,iflag1,tnk1,qnk1,gznk1,plcl1)  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_feed(len,nd,t1,q1,qs1,p1,hm1,gz1  
      o         ,nk1,icb1,icbmax,iflag1,tnk1,qnk1,gznk1,plcl1)  
       endif  
   
 !--------------------------------------------------------------------  
 ! --- UNDILUTE (ADIABATIC) UPDRAFT / 1st part  
 ! (up through ICB for convect4, up through ICB+1 for convect3)  
 !     Calculates the lifted parcel virtual temperature at nk, the  
 !     actual temperature, and the adiabatic liquid water content.  
 !--------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_undilute1(len,nd,t1,q1,qs1,gz1,plcl1,p1,nk1,icb1  ! nd->na  
      o                        ,tp1,tvp1,clw1,icbs1)  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_undilute1(len,nd,t1,q1,qs1,gz1,p1,nk1,icb1,icbmax  
      :                        ,tp1,tvp1,clw1)  
       endif  
   
 !-------------------------------------------------------------------  
 ! --- TRIGGERING  
 !-------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_trigger(len,nd,icb1,plcl1,p1,th1,tv1,tvp1      ! nd->na  
      o                 ,pbase1,buoybase1,iflag1,sig1,w01)  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_trigger(len,nd,icb1,cbmf1,tv1,tvp1,iflag1)  
       endif  
   
 !=====================================================================  
 ! --- IF THIS POINT IS REACHED, MOIST CONVECTIVE ADJUSTMENT IS NECESSARY  
 !=====================================================================  
   
       ncum=0  
       do 400 i=1,len  
         if(iflag1(i).eq.0)then  
            ncum=ncum+1  
            idcum(ncum)=i  
         endif  
  400  continue  
   
 c       print*,'klon, ncum = ',len,ncum  
   
       IF (ncum.gt.0) THEN  
   
 !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
 ! --- COMPRESS THE FIELDS  
 !               (-> vectorization over convective gridpoints)  
 !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
   
       if (iflag_con.eq.3) then  
        CALL cv3_compress( len,nloc,ncum,nd,ntra  
      :    ,iflag1,nk1,icb1,icbs1  
      :    ,plcl1,tnk1,qnk1,gznk1,pbase1,buoybase1  
      :    ,t1,q1,qs1,u1,v1,gz1,th1  
      :    ,tra1  
      :    ,h1,lv1,cpn1,p1,ph1,tv1,tp1,tvp1,clw1  
      :    ,sig1,w01  
      o    ,iflag,nk,icb,icbs  
      o    ,plcl,tnk,qnk,gznk,pbase,buoybase  
      o    ,t,q,qs,u,v,gz,th  
      o    ,tra  
      o    ,h,lv,cpn,p,ph,tv,tp,tvp,clw  
      o    ,sig,w0  )  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_compress( len,nloc,ncum,nd  
      :    ,iflag1,nk1,icb1  
      :    ,cbmf1,plcl1,tnk1,qnk1,gznk1  
      :    ,t1,q1,qs1,u1,v1,gz1  
      :    ,h1,lv1,cpn1,p1,ph1,tv1,tp1,tvp1,clw1  
      o    ,iflag,nk,icb  
      o    ,cbmf,plcl,tnk,qnk,gznk  
      o    ,t,q,qs,u,v,gz,h,lv,cpn,p,ph,tv,tp,tvp,clw  
      o    ,dph )  
       endif  
   
 !-------------------------------------------------------------------  
 ! --- UNDILUTE (ADIABATIC) UPDRAFT / second part :  
 ! ---   FIND THE REST OF THE LIFTED PARCEL TEMPERATURES  
 ! ---   &  
 ! ---   COMPUTE THE PRECIPITATION EFFICIENCIES AND THE  
 ! ---   FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD  
 ! ---   &  
 ! ---   FIND THE LEVEL OF NEUTRAL BUOYANCY  
 !-------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_undilute2(nloc,ncum,nd,icb,icbs,nk        !na->nd  
      :                        ,tnk,qnk,gznk,t,q,qs,gz  
      :                        ,p,h,tv,lv,pbase,buoybase,plcl  
      o                        ,inb,tp,tvp,clw,hp,ep,sigp,buoy)  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_undilute2(nloc,ncum,nd,icb,nk  
      :                        ,tnk,qnk,gznk,t,q,qs,gz  
      :                        ,p,dph,h,tv,lv  
      o             ,inb,inbis,tp,tvp,clw,hp,ep,sigp,frac)  
       endif  
   
 !-------------------------------------------------------------------  
 ! --- CLOSURE  
 !-------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_closure(nloc,ncum,nd,icb,inb              ! na->nd  
      :                       ,pbase,p,ph,tv,buoy  
      o                       ,sig,w0,cape,m)  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_closure(nloc,ncum,nd,nk,icb  
      :                ,tv,tvp,p,ph,dph,plcl,cpn  
      o                ,iflag,cbmf)  
       endif  
   
 !-------------------------------------------------------------------  
 ! --- MIXING  
 !-------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_mixing(nloc,ncum,nd,nd,ntra,icb,nk,inb    ! na->nd  
      :                     ,ph,t,q,qs,u,v,tra,h,lv,qnk  
      :                     ,hp,tv,tvp,ep,clw,m,sig  
      o ,ment,qent,uent,vent,sij,elij,ments,qents,traent)  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_mixing(nloc,ncum,nd,icb,nk,inb,inbis  
      :                     ,ph,t,q,qs,u,v,h,lv,qnk  
      :                     ,hp,tv,tvp,ep,clw,cbmf  
      o                     ,m,ment,qent,uent,vent,nent,sij,elij)  
       endif  
   
 !-------------------------------------------------------------------  
 ! --- UNSATURATED (PRECIPITATING) DOWNDRAFTS  
 !-------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_unsat(nloc,ncum,nd,nd,ntra,icb,inb    ! na->nd  
      :               ,t,q,qs,gz,u,v,tra,p,ph  
      :               ,th,tv,lv,cpn,ep,sigp,clw  
      :               ,m,ment,elij,delt,plcl  
      o          ,mp,qp,up,vp,trap,wt,water,evap,b)  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_unsat(nloc,ncum,nd,inb,t,q,qs,gz,u,v,p,ph  
      :                   ,h,lv,ep,sigp,clw,m,ment,elij  
      o                   ,iflag,mp,qp,up,vp,wt,water,evap)  
       endif  
   
 !-------------------------------------------------------------------  
 ! --- YIELD  
 !     (tendencies, precipitation, variables of interface with other  
 !      processes, etc)  
 !-------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_yield(nloc,ncum,nd,nd,ntra            ! na->nd  
      :                     ,icb,inb,delt  
      :                     ,t,q,u,v,tra,gz,p,ph,h,hp,lv,cpn,th  
      :                     ,ep,clw,m,tp,mp,qp,up,vp,trap  
      :                     ,wt,water,evap,b  
      :                     ,ment,qent,uent,vent,nent,elij,traent,sig  
      :                     ,tv,tvp  
      o                     ,iflag,precip,VPrecip,ft,fq,fu,fv,ftra  
      o                     ,upwd,dnwd,dnwd0,ma,mike,tls,tps,qcondc,wd)  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_yield(nloc,ncum,nd,nk,icb,inb,delt  
      :              ,t,q,u,v,gz,p,ph,h,hp,lv,cpn  
      :              ,ep,clw,frac,m,mp,qp,up,vp  
      :              ,wt,water,evap  
      :              ,ment,qent,uent,vent,nent,elij  
      :              ,tv,tvp  
      o              ,iflag,wd,qprime,tprime  
      o              ,precip,cbmf,ft,fq,fu,fv,Ma,qcondc)  
       endif  
   
 !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
 ! --- passive tracers  
 !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
   
       if (iflag_con.eq.3) then  
        CALL cv3_tracer(nloc,len,ncum,nd,nd,  
      :                  ment,sij,da,phi)  
       endif  
   
 !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
 ! --- UNCOMPRESS THE FIELDS  
 !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
 c set iflag1 =42 for non convective points  
       do  i=1,len  
         iflag1(i)=42  
       end do  
 c  
       if (iflag_con.eq.3) then  
        CALL cv3_uncompress(nloc,len,ncum,nd,ntra,idcum  
      :          ,iflag  
      :          ,precip,VPrecip,sig,w0  
      :          ,ft,fq,fu,fv,ftra  
      :          ,inb  
      :          ,Ma,upwd,dnwd,dnwd0,qcondc,wd,cape  
      :          ,da,phi,mp  
      o          ,iflag1  
      o          ,precip1,VPrecip1,sig1,w01  
      o          ,ft1,fq1,fu1,fv1,ftra1  
      o          ,inb1  
      o          ,Ma1,upwd1,dnwd1,dnwd01,qcondc1,wd1,cape1  
      o          ,da1,phi1,mp1)  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_uncompress(nloc,len,ncum,nd,idcum  
      :          ,iflag  
      :          ,precip,cbmf  
      :          ,ft,fq,fu,fv  
      :          ,Ma,qcondc              
      o          ,iflag1  
      o          ,precip1,cbmf1  
      o          ,ft1,fq1,fu1,fv1  
      o          ,Ma1,qcondc1 )            
       endif  
   
       ENDIF ! ncum>0  
   
 9999  continue  
   
       return  
       end  
   
 !==================================================================  
       SUBROUTINE cv_flag  
       implicit none  
   
       include "cvflag.h"  
   
 c -- si .TRUE., on rend la gravite plus explicite et eventuellement  
 c differente de 10.0 dans convect3:  
       cvflag_grav = .TRUE.  
   
       return  
       end  
   
 !==================================================================  
       SUBROUTINE cv_thermo(iflag_con)  
       use YOMCST  
           implicit none  
   
 c-------------------------------------------------------------  
 c Set thermodynamical constants for convectL  
 c-------------------------------------------------------------  
   
       include "cvthermo.h"  
   
       integer iflag_con  
   
   
 c original set from convect:  
       if (iflag_con.eq.4) then  
        cpd=1005.7  
        cpv=1870.0  
        cl=4190.0  
        rrv=461.5  
        rrd=287.04  
        lv0=2.501E6  
        g=9.8  
        t0=273.15  
        grav=g  
       endif  
   
 c constants consistent with LMDZ:  
       if (iflag_con.eq.3) then  
        cpd = RCPD  
        cpv = RCPV  
        cl  = RCW  
        rrv = RV  
        rrd = RD  
        lv0 = RLVTT  
        g   = RG     ! not used in convect3  
 c ori      t0  = RTT  
        t0  = 273.15 ! convect3 (RTT=273.16)  
 c maf       grav= 10.    ! implicitely or explicitely used in convect3  
        grav= g    ! implicitely or explicitely used in convect3  
       endif  
   
       rowl=1000.0 !(a quelle variable de YOMCST cela correspond-il?)  
   
       clmcpv=cl-cpv  
       clmcpd=cl-cpd  
       cpdmcp=cpd-cpv  
       cpvmcpd=cpv-cpd  
       cpvmcl=cl-cpv ! for convect3  
       eps=rrd/rrv  
       epsi=1.0/eps  
       epsim1=epsi-1.0  
 c      ginv=1.0/g  
       ginv=1.0/grav  
       hrd=0.5*rrd  
2    
3        return    implicit none
       end  
4    
5    contains
6    
7      SUBROUTINE cv_driver(t1, q1, qs1, u1, v1, p1, ph1, iflag1, ft1, &
8           fq1, fu1, fv1, precip1, VPrecip1, cbmf1, sig1, w01, icb1, inb1, delt, &
9           Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, cape1, da1, phi1, mp1)
10    
11        ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3, 2005/04/15 12:36:17
12        ! Main driver for convection
13        ! Author: S. Bony, March 2002
14    
15        ! Several modules corresponding to different physical processes
16    
17        use cv3_compress_m, only: cv3_compress
18        use cv3_feed_m, only: cv3_feed
19        use cv3_mixing_m, only: cv3_mixing
20        use cv3_param_m, only: cv3_param
21        use cv3_prelim_m, only: cv3_prelim
22        use cv3_tracer_m, only: cv3_tracer
23        use cv3_uncompress_m, only: cv3_uncompress
24        use cv3_unsat_m, only: cv3_unsat
25        use cv3_yield_m, only: cv3_yield
26        USE dimphy, ONLY: klev, klon
27    
28        real, intent(in):: t1(klon, klev) ! temperature
29        real, intent(in):: q1(klon, klev) ! specific hum
30        real, intent(in):: qs1(klon, klev) ! sat specific hum
31        real, intent(in):: u1(klon, klev) ! u-wind
32        real, intent(in):: v1(klon, klev) ! v-wind
33        real, intent(in):: p1(klon, klev) ! full level pressure
34        real, intent(in):: ph1(klon, klev + 1) ! half level pressure
35        integer, intent(out):: iflag1(klon) ! flag for Emanuel conditions
36        real, intent(out):: ft1(klon, klev) ! temp tend
37        real, intent(out):: fq1(klon, klev) ! spec hum tend
38        real, intent(out):: fu1(klon, klev) ! u-wind tend
39        real, intent(out):: fv1(klon, klev) ! v-wind tend
40        real, intent(out):: precip1(klon) ! precipitation
41    
42        real, intent(out):: VPrecip1(klon, klev + 1)
43        ! vertical profile of precipitation
44    
45        real, intent(inout):: cbmf1(klon) ! cloud base mass flux
46        real, intent(inout):: sig1(klon, klev) ! section adiabatic updraft
47    
48        real, intent(inout):: w01(klon, klev)
49        ! vertical velocity within adiabatic updraft
50    
51        integer, intent(out):: icb1(klon)
52        integer, intent(inout):: inb1(klon)
53        real, intent(in):: delt ! time step
54        real Ma1(klon, klev)
55        ! Ma1 Real Output mass flux adiabatic updraft
56    
57        real, intent(out):: upwd1(klon, klev)
58        ! total upward mass flux (adiab + mixed)
59    
60        real, intent(out):: dnwd1(klon, klev) ! saturated downward mass flux (mixed)
61        real, intent(out):: dnwd01(klon, klev) ! unsaturated downward mass flux
62    
63        real qcondc1(klon, klev) ! cld
64        ! qcondc1 Real Output in-cld mixing ratio of condensed water
65        real wd1(klon) ! gust
66        ! wd1 Real Output downdraft velocity scale for sfc fluxes
67        real cape1(klon)
68        ! cape1 Real Output CAPE
69    
70        real, intent(inout):: da1(klon, klev), phi1(klon, klev, klev)
71        real, intent(inout):: mp1(klon, klev)
72    
73        ! ARGUMENTS
74    
75        ! On input:
76    
77        ! t: Array of absolute temperature (K) of dimension KLEV, with first
78        ! index corresponding to lowest model level. Note that this array
79        ! will be altered by the subroutine if dry convective adjustment
80        ! occurs and if IPBL is not equal to 0.
81    
82        ! q: Array of specific humidity (gm/gm) of dimension KLEV, with first
83        ! index corresponding to lowest model level. Must be defined
84        ! at same grid levels as T. Note that this array will be altered
85        ! if dry convective adjustment occurs and if IPBL is not equal to 0.
86    
87        ! qs: Array of saturation specific humidity of dimension KLEV, with first
88        ! index corresponding to lowest model level. Must be defined
89        ! at same grid levels as T. Note that this array will be altered
90        ! if dry convective adjustment occurs and if IPBL is not equal to 0.
91    
92        ! u: Array of zonal wind velocity (m/s) of dimension KLEV, witth first
93        ! index corresponding with the lowest model level. Defined at
94        ! same levels as T. Note that this array will be altered if
95        ! dry convective adjustment occurs and if IPBL is not equal to 0.
96    
97        ! v: Same as u but for meridional velocity.
98    
99        ! p: Array of pressure (mb) of dimension KLEV, with first
100        ! index corresponding to lowest model level. Must be defined
101        ! at same grid levels as T.
102    
103        ! ph: Array of pressure (mb) of dimension KLEV + 1, with first index
104        ! corresponding to lowest level. These pressures are defined at
105        ! levels intermediate between those of P, T, Q and QS. The first
106        ! value of PH should be greater than (i.e. at a lower level than)
107        ! the first value of the array P.
108    
109        ! nl: The maximum number of levels to which convection can penetrate, plus 1
110        ! NL MUST be less than or equal to KLEV-1.
111    
112        ! delt: The model time step (sec) between calls to CONVECT
113    
114        ! On Output:
115    
116        ! iflag: An output integer whose value denotes the following:
117        ! VALUE INTERPRETATION
118        ! ----- --------------
119        ! 0 Moist convection occurs.
120        ! 1 Moist convection occurs, but a CFL condition
121        ! on the subsidence warming is violated. This
122        ! does not cause the scheme to terminate.
123        ! 2 Moist convection, but no precip because ep(inb) lt 0.0001
124        ! 3 No moist convection because new cbmf is 0 and old cbmf is 0.
125        ! 4 No moist convection; atmosphere is not
126        ! unstable
127        ! 6 No moist convection because ihmin le minorig.
128        ! 7 No moist convection because unreasonable
129        ! parcel level temperature or specific humidity.
130        ! 8 No moist convection: lifted condensation
131        ! level is above the 200 mb level.
132        ! 9 No moist convection: cloud base is higher
133        ! then the level NL-1.
134    
135        ! ft: Array of temperature tendency (K/s) of dimension KLEV, defined at same
136        ! grid levels as T, Q, QS and P.
137    
138        ! fq: Array of specific humidity tendencies ((gm/gm)/s) of dimension KLEV,
139        ! defined at same grid levels as T, Q, QS and P.
140    
141        ! fu: Array of forcing of zonal velocity (m/s^2) of dimension KLEV,
142        ! defined at same grid levels as T.
143    
144        ! fv: Same as FU, but for forcing of meridional velocity.
145    
146        ! precip: Scalar convective precipitation rate (mm/day).
147    
148        ! VPrecip: Vertical profile of convective precipitation (kg/m2/s).
149    
150        ! wd: A convective downdraft velocity scale. For use in surface
151        ! flux parameterizations. See convect.ps file for details.
152    
153        ! tprime: A convective downdraft temperature perturbation scale (K).
154        ! For use in surface flux parameterizations. See convect.ps
155        ! file for details.
156    
157        ! qprime: A convective downdraft specific humidity
158        ! perturbation scale (gm/gm).
159        ! For use in surface flux parameterizations. See convect.ps
160        ! file for details.
161    
162        ! cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST
163        ! BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT
164        ! ITS NEXT CALL. That is, the value of CBMF must be "remembered"
165        ! by the calling program between calls to CONVECT.
166    
167        ! det: Array of detrainment mass flux of dimension KLEV.
168    
169        ! Local arrays
170    
171        real da(klon, klev), phi(klon, klev, klev), mp(klon, klev)
172    
173        integer i, k, il
174        integer icbmax
175        integer nk1(klon)
176        integer icbs1(klon)
177    
178        real plcl1(klon)
179        real tnk1(klon)
180        real qnk1(klon)
181        real gznk1(klon)
182        real pbase1(klon)
183        real buoybase1(klon)
184    
185        real lv1(klon, klev)
186        real cpn1(klon, klev)
187        real tv1(klon, klev)
188        real gz1(klon, klev)
189        real hm1(klon, klev)
190        real h1(klon, klev)
191        real tp1(klon, klev)
192        real tvp1(klon, klev)
193        real clw1(klon, klev)
194        real th1(klon, klev)
195    
196        integer ncum
197    
198        ! (local) compressed fields:
199    
200        integer idcum(klon)
201        integer iflag(klon), nk(klon), icb(klon)
202        integer nent(klon, klev)
203        integer icbs(klon)
204        integer inb(klon), inbis(klon)
205    
206        real plcl(klon), tnk(klon), qnk(klon), gznk(klon)
207        real t(klon, klev), q(klon, klev), qs(klon, klev)
208        real u(klon, klev), v(klon, klev)
209        real gz(klon, klev), h(klon, klev), lv(klon, klev), cpn(klon, klev)
210        real p(klon, klev), ph(klon, klev + 1), tv(klon, klev), tp(klon, klev)
211        real clw(klon, klev)
212        real dph(klon, klev)
213        real pbase(klon), buoybase(klon), th(klon, klev)
214        real tvp(klon, klev)
215        real sig(klon, klev), w0(klon, klev)
216        real hp(klon, klev), ep(klon, klev), sigp(klon, klev)
217        real frac(klon), buoy(klon, klev)
218        real cape(klon)
219        real m(klon, klev), ment(klon, klev, klev), qent(klon, klev, klev)
220        real uent(klon, klev, klev), vent(klon, klev, klev)
221        real ments(klon, klev, klev), qents(klon, klev, klev)
222        real sij(klon, klev, klev), elij(klon, klev, klev)
223        real qp(klon, klev), up(klon, klev), vp(klon, klev)
224        real wt(klon, klev), water(klon, klev), evap(klon, klev)
225        real b(klon, klev), ft(klon, klev), fq(klon, klev)
226        real fu(klon, klev), fv(klon, klev)
227        real upwd(klon, klev), dnwd(klon, klev), dnwd0(klon, klev)
228        real Ma(klon, klev), mike(klon, klev), tls(klon, klev)
229        real tps(klon, klev), qprime(klon), tprime(klon)
230        real precip(klon)
231        real VPrecip(klon, klev + 1)
232        real qcondc(klon, klev) ! cld
233        real wd(klon) ! gust
234    
235        !-------------------------------------------------------------------
236    
237        ! SET CONSTANTS AND PARAMETERS
238    
239        ! set simulation flags:
240        ! (common cvflag)
241    
242        CALL cv_flag
243    
244        ! set thermodynamical constants:
245        ! (common cvthermo)
246    
247        CALL cv_thermo
248    
249        ! set convect parameters
250    
251        ! includes microphysical parameters and parameters that
252        ! control the rate of approach to quasi-equilibrium)
253        ! (common cvparam)
254    
255        CALL cv3_param(klev, delt)
256    
257        ! INITIALIZE OUTPUT ARRAYS AND PARAMETERS
258    
259        do k = 1, klev
260           do i = 1, klon
261              ft1(i, k) = 0.0
262              fq1(i, k) = 0.0
263              fu1(i, k) = 0.0
264              fv1(i, k) = 0.0
265              tvp1(i, k) = 0.0
266              tp1(i, k) = 0.0
267              clw1(i, k) = 0.0
268              !ym
269              clw(i, k) = 0.0
270              gz1(i, k) = 0.
271              VPrecip1(i, k) = 0.
272              Ma1(i, k) = 0.0
273              upwd1(i, k) = 0.0
274              dnwd1(i, k) = 0.0
275              dnwd01(i, k) = 0.0
276              qcondc1(i, k) = 0.0
277           end do
278        end do
279    
280        do i = 1, klon
281           precip1(i) = 0.0
282           iflag1(i) = 0
283           wd1(i) = 0.0
284           cape1(i) = 0.0
285           VPrecip1(i, klev + 1) = 0.0
286        end do
287    
288        do il = 1, klon
289           sig1(il, klev) = sig1(il, klev) + 1.
290           sig1(il, klev) = min(sig1(il, klev), 12.1)
291        enddo
292    
293        ! CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY
294    
295        CALL cv3_prelim(klon, klev, klev + 1, t1, q1, p1, ph1, lv1, cpn1, tv1, &
296             gz1, h1, hm1, th1)
297    
298        ! CONVECTIVE FEED
299    
300        CALL cv3_feed(klon, klev, t1, q1, qs1, p1, ph1, gz1, nk1, icb1, &
301             icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! klev->na
302    
303        ! UNDILUTE (ADIABATIC) UPDRAFT / 1st part
304        ! (up through ICB for convect4, up through ICB + 1 for convect3)
305        ! Calculates the lifted parcel virtual temperature at nk, the
306        ! actual temperature, and the adiabatic liquid water content.
307    
308        CALL cv3_undilute1(klon, klev, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1, &
309             tp1, tvp1, clw1, icbs1) ! klev->na
310    
311        ! TRIGGERING
312    
313        CALL cv3_trigger(klon, klev, icb1, plcl1, p1, th1, tv1, tvp1, pbase1, &
314             buoybase1, iflag1, sig1, w01) ! klev->na
315    
316        ! Moist convective adjustment is necessary
317    
318        ncum = 0
319        do i = 1, klon
320           if (iflag1(i) == 0) then
321              ncum = ncum + 1
322              idcum(ncum) = i
323           endif
324        end do
325    
326        IF (ncum > 0) THEN
327           ! COMPRESS THE FIELDS
328           ! (-> vectorization over convective gridpoints)
329    
330           CALL cv3_compress(klon, klon, ncum, klev, iflag1, nk1, icb1, icbs1, &
331                plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1, t1, q1, qs1, u1, &
332                v1, gz1, th1, h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1, &
333                sig1, w01, iflag, nk, icb, icbs, plcl, tnk, qnk, gznk, pbase, &
334                buoybase, t, q, qs, u, v, gz, th, h, lv, cpn, p, ph, tv, tp, &
335                tvp, clw, sig, w0)
336    
337           ! UNDILUTE (ADIABATIC) UPDRAFT / second part :
338           ! FIND THE REST OF THE LIFTED PARCEL TEMPERATURES
339           ! &
340           ! COMPUTE THE PRECIPITATION EFFICIENCIES AND THE
341           ! FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD
342           ! &
343           ! FIND THE LEVEL OF NEUTRAL BUOYANCY
344    
345           CALL cv3_undilute2(klon, ncum, klev, icb, icbs, nk, tnk, qnk, gznk, &
346                t, qs, gz, p, h, tv, lv, pbase, buoybase, plcl, inb, tp, &
347                tvp, clw, hp, ep, sigp, buoy) !na->klev
348    
349           ! CLOSURE
350    
351           CALL cv3_closure(klon, ncum, klev, icb, inb, pbase, p, ph, tv, &
352                buoy, sig, w0, cape, m) ! na->klev
353    
354           ! MIXING
355    
356           CALL cv3_mixing(klon, ncum, klev, klev, icb, nk, inb, t, q, qs, u, &
357                v, h, lv, hp, ep, clw, m, sig, ment, qent, uent, vent, nent, &
358                sij, elij, ments, qents)
359    
360           ! UNSATURATED (PRECIPITATING) DOWNDRAFTS
361    
362           CALL cv3_unsat(klon, ncum, klev, klev, icb, inb, t, q, qs, gz, u, &
363                v, p, ph, th, tv, lv, cpn, ep, sigp, clw, m, ment, elij, delt, &
364                plcl, mp, qp, up, vp, wt, water, evap, b)! na->klev
365    
366           ! YIELD
367           ! (tendencies, precipitation, variables of interface with other
368           ! processes, etc)
369    
370           CALL cv3_yield(klon, ncum, klev, klev, icb, inb, delt, t, q, u, v, &
371                gz, p, ph, h, hp, lv, cpn, th, ep, clw, m, tp, mp, qp, up, vp, &
372                wt, water, evap, b, ment, qent, uent, vent, nent, elij, sig, &
373                tv, tvp, iflag, precip, VPrecip, ft, fq, fu, fv, upwd, dnwd, &
374                dnwd0, ma, mike, tls, tps, qcondc, wd)! na->klev
375    
376           ! passive tracers
377    
378           CALL cv3_tracer(klon, ncum, klev, ment, sij, da, phi)
379    
380           ! UNCOMPRESS THE FIELDS
381    
382           ! set iflag1 = 42 for non convective points
383           do i = 1, klon
384              iflag1(i) = 42
385           end do
386    
387           CALL cv3_uncompress(idcum(:ncum), iflag, precip, VPrecip, sig, w0, &
388                ft, fq, fu, fv, inb, Ma, upwd, dnwd, dnwd0, qcondc, wd, cape, &
389                da, phi, mp, iflag1, precip1, VPrecip1, sig1, w01, ft1, fq1, &
390                fu1, fv1, inb1, Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, &
391                cape1, da1, phi1, mp1)
392        ENDIF ! ncum>0
393    
394      end SUBROUTINE cv_driver
395    
396    end module cv_driver_m

Legend:
Removed from v.3  
changed lines
  Added in v.182

  ViewVC Help
Powered by ViewVC 1.1.21