/[lmdze]/trunk/Sources/phylmd/cv_driver.f
ViewVC logotype

Diff of /trunk/Sources/phylmd/cv_driver.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/phylmd/cv_driver.f revision 91 by guez, Wed Mar 26 17:18:58 2014 UTC trunk/Sources/phylmd/cv_driver.f revision 183 by guez, Wed Mar 16 14:42:58 2016 UTC
# Line 4  module cv_driver_m Line 4  module cv_driver_m
4    
5  contains  contains
6    
7    SUBROUTINE cv_driver(len, nd, ndp1, ntra, t1, q1, qs1, u1, v1, tra1, p1, &    SUBROUTINE cv_driver(t1, q1, qs1, u1, v1, p1, ph1, iflag1, ft1, fq1, fu1, &
8         ph1, iflag1, ft1, fq1, fu1, fv1, ftra1, precip1, VPrecip1, cbmf1, &         fv1, precip1, VPrecip1, sig1, w01, icb1, inb1, delt, Ma1, upwd1, &
9         sig1, w01, icb1, inb1, delt, Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, &         dnwd1, dnwd01, qcondc1, wd1, cape1, da1, phi1, mp1)
        cape1, da1, phi1, mp1)  
10    
11      ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3, 2005/04/15 12:36:17      ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3, 2005/04/15 12:36:17
   
12      ! Main driver for convection      ! Main driver for convection
13        ! Author: S. Bony, March 2002
     ! S. Bony, March 2002:  
14    
15      ! Several modules corresponding to different physical processes      ! Several modules corresponding to different physical processes
16    
     ! Several versions of convect may be used:  
     ! - iflag_con = 3: version lmd  (previously named convect3)  
     ! - iflag_con = 4: version 4.3b (vect. version, previously convect1/2)  
   
     ! Plus tard :  
     ! - iflag_con = 5: version lmd with ice (previously named convectg)  
   
     ! S. Bony, Oct 2002:  
     ! Vectorization of convect3 (ie version lmd)  
   
     use clesphys2, only: iflag_con  
17      use cv3_compress_m, only: cv3_compress      use cv3_compress_m, only: cv3_compress
18        use cv3_feed_m, only: cv3_feed
19        use cv3_mixing_m, only: cv3_mixing
20      use cv3_param_m, only: cv3_param      use cv3_param_m, only: cv3_param
21        use cv3_prelim_m, only: cv3_prelim
22        use cv3_tracer_m, only: cv3_tracer
23        use cv3_uncompress_m, only: cv3_uncompress
24        use cv3_undilute2_m, only: cv3_undilute2
25        use cv3_unsat_m, only: cv3_unsat
26        use cv3_yield_m, only: cv3_yield
27      USE dimphy, ONLY: klev, klon      USE dimphy, ONLY: klev, klon
28    
29      ! PARAMETERS:      real, intent(in):: t1(klon, klev) ! temperature
30      !      Name            Type         Usage            Description      real, intent(in):: q1(klon, klev) ! specific hum
31      !   ----------      ----------     -------  ----------------------------      real, intent(in):: qs1(klon, klev) ! sat specific hum
32        real, intent(in):: u1(klon, klev) ! u-wind
33      !      len           Integer        Input        first (i) dimension      real, intent(in):: v1(klon, klev) ! v-wind
34      !      nd            Integer        Input        vertical (k) dimension      real, intent(in):: p1(klon, klev) ! full level pressure
35      !      ndp1          Integer        Input        nd + 1      real, intent(in):: ph1(klon, klev + 1) ! half level pressure
36      !      ntra          Integer        Input        number of tracors      integer, intent(out):: iflag1(klon) ! flag for Emanuel conditions
37      !      t1            Real           Input        temperature      real, intent(out):: ft1(klon, klev) ! temp tend
38      !      q1            Real           Input        specific hum      real, intent(out):: fq1(klon, klev) ! spec hum tend
39      !      qs1           Real           Input        sat specific hum      real, intent(out):: fu1(klon, klev) ! u-wind tend
40      !      u1            Real           Input        u-wind      real, intent(out):: fv1(klon, klev) ! v-wind tend
41      !      v1            Real           Input        v-wind      real, intent(out):: precip1(klon) ! precipitation
42      !      tra1          Real           Input        tracors  
43      !      p1            Real           Input        full level pressure      real, intent(out):: VPrecip1(klon, klev + 1)
44      !      ph1           Real           Input        half level pressure      ! vertical profile of precipitation
45      !      iflag1        Integer        Output       flag for Emanuel conditions  
     !      ft1           Real           Output       temp tend  
     !      fq1           Real           Output       spec hum tend  
     !      fu1           Real           Output       u-wind tend  
     !      fv1           Real           Output       v-wind tend  
     !      ftra1         Real           Output       tracor tend  
     !      precip1       Real           Output       precipitation  
     !      VPrecip1      Real           Output       vertical profile of precipitations  
     !      cbmf1         Real           Output       cloud base mass flux  
     !      delt          Real           Input        time step  
     !      Ma1           Real           Output       mass flux adiabatic updraft  
     !      qcondc1       Real           Output       in-cld mixing ratio of condensed water  
     !      wd1           Real           Output       downdraft velocity scale for sfc fluxes  
     !      cape1         Real           Output       CAPE  
   
     integer len  
     integer nd  
     integer ndp1  
     integer, intent(in):: ntra  
     real, intent(in):: t1(len, nd)  
     real q1(len, nd)  
     real qs1(len, nd)  
     real, intent(in):: u1(len, nd)  
     real, intent(in):: v1(len, nd)  
     real, intent(in):: tra1(len, nd, ntra)  
     real p1(len, nd)  
     real ph1(len, ndp1)  
     integer iflag1(len)  
     real ft1(len, nd)  
     real fq1(len, nd)  
     real fu1(len, nd)  
     real fv1(len, nd)  
     real ftra1(len, nd, ntra)  
     real precip1(len)  
     real VPrecip1(len, nd+1)  
     real cbmf1(len)  
46      real, intent(inout):: sig1(klon, klev) ! section adiabatic updraft      real, intent(inout):: sig1(klon, klev) ! section adiabatic updraft
47    
48      real, intent(inout):: w01(klon, klev)      real, intent(inout):: w01(klon, klev)
49      ! vertical velocity within adiabatic updraft      ! vertical velocity within adiabatic updraft
50    
51      integer icb1(klon)      integer, intent(out):: icb1(klon)
52      integer inb1(klon)      integer, intent(inout):: inb1(klon)
53      real, intent(in):: delt      real, intent(in):: delt ! time step
54      real Ma1(len, nd)      real Ma1(klon, klev)
55      real, intent(out):: upwd1(len, nd) ! total upward mass flux (adiab+mixed)      ! Ma1 Real Output mass flux adiabatic updraft
     real, intent(out):: dnwd1(len, nd) ! saturated downward mass flux (mixed)  
     real, intent(out):: dnwd01(len, nd) ! unsaturated downward mass flux  
   
     real qcondc1(len, nd)     ! cld  
     real wd1(len)            ! gust  
     real cape1(len)  
56    
57      real da1(len, nd), phi1(len, nd, nd), mp1(len, nd)      real, intent(out):: upwd1(klon, klev)
58        ! total upward mass flux (adiab + mixed)
59    
60      !-------------------------------------------------------------------      real, intent(out):: dnwd1(klon, klev) ! saturated downward mass flux (mixed)
61      ! --- ARGUMENTS      real, intent(out):: dnwd01(klon, klev) ! unsaturated downward mass flux
     !-------------------------------------------------------------------  
     ! --- On input:  
62    
63      !  t:   Array of absolute temperature (K) of dimension ND, with first      real qcondc1(klon, klev) ! cld
64      !       index corresponding to lowest model level. Note that this array      ! qcondc1 Real Output in-cld mixing ratio of condensed water
65      !       will be altered by the subroutine if dry convective adjustment      real wd1(klon) ! gust
66      !       occurs and if IPBL is not equal to 0.      ! wd1 Real Output downdraft velocity scale for sfc fluxes
67        real cape1(klon)
68      !  q:   Array of specific humidity (gm/gm) of dimension ND, with first      ! cape1 Real Output CAPE
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  qs:  Array of saturation specific humidity of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  u:   Array of zonal wind velocity (m/s) of dimension ND, witth first  
     !       index corresponding with the lowest model level. Defined at  
     !       same levels as T. Note that this array will be altered if  
     !       dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  v:   Same as u but for meridional velocity.  
   
     !  tra: Array of passive tracer mixing ratio, of dimensions (ND, NTRA),  
     !       where NTRA is the number of different tracers. If no  
     !       convective tracer transport is needed, define a dummy  
     !       input array of dimension (ND, 1). Tracers are defined at  
     !       same vertical levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  p:   Array of pressure (mb) of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T.  
   
     !  ph:  Array of pressure (mb) of dimension ND+1, with first index  
     !       corresponding to lowest level. These pressures are defined at  
     !       levels intermediate between those of P, T, Q and QS. The first  
     !       value of PH should be greater than (i.e. at a lower level than)  
     !       the first value of the array P.  
   
     !  nl:  The maximum number of levels to which convection can penetrate, plus 1.  
     !       NL MUST be less than or equal to ND-1.  
   
     !  delt: The model time step (sec) between calls to CONVECT  
   
     !----------------------------------------------------------------------------  
     ! ---   On Output:  
   
     !  iflag: An output integer whose value denotes the following:  
     !       VALUE   INTERPRETATION  
     !       -----   --------------  
     !         0     Moist convection occurs.  
     !         1     Moist convection occurs, but a CFL condition  
     !               on the subsidence warming is violated. This  
     !               does not cause the scheme to terminate.  
     !         2     Moist convection, but no precip because ep(inb) lt 0.0001  
     !         3     No moist convection because new cbmf is 0 and old cbmf is 0.  
     !         4     No moist convection; atmosphere is not  
     !               unstable  
     !         6     No moist convection because ihmin le minorig.  
     !         7     No moist convection because unreasonable  
     !               parcel level temperature or specific humidity.  
     !         8     No moist convection: lifted condensation  
     !               level is above the 200 mb level.  
     !         9     No moist convection: cloud base is higher  
     !               then the level NL-1.  
   
     !  ft:   Array of temperature tendency (K/s) of dimension ND, defined at same  
     !        grid levels as T, Q, QS and P.  
   
     !  fq:   Array of specific humidity tendencies ((gm/gm)/s) of dimension ND,  
     !        defined at same grid levels as T, Q, QS and P.  
   
     !  fu:   Array of forcing of zonal velocity (m/s^2) of dimension ND,  
     !        defined at same grid levels as T.  
   
     !  fv:   Same as FU, but for forcing of meridional velocity.  
   
     !  ftra: Array of forcing of tracer content, in tracer mixing ratio per  
     !        second, defined at same levels as T. Dimensioned (ND, NTRA).  
   
     !  precip: Scalar convective precipitation rate (mm/day).  
   
     !  VPrecip: Vertical profile of convective precipitation (kg/m2/s).  
   
     !  wd:   A convective downdraft velocity scale. For use in surface  
     !        flux parameterizations. See convect.ps file for details.  
   
     !  tprime: A convective downdraft temperature perturbation scale (K).  
     !          For use in surface flux parameterizations. See convect.ps  
     !          file for details.  
   
     !  qprime: A convective downdraft specific humidity  
     !          perturbation scale (gm/gm).  
     !          For use in surface flux parameterizations. See convect.ps  
     !          file for details.  
   
     !  cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST  
     !        BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT  
     !        ITS NEXT CALL. That is, the value of CBMF must be "remembered"  
     !        by the calling program between calls to CONVECT.  
69    
70      !  det:   Array of detrainment mass flux of dimension ND.      real, intent(inout):: da1(klon, klev), phi1(klon, klev, klev)
71        real, intent(inout):: mp1(klon, klev)
72    
73      !-------------------------------------------------------------------      ! ARGUMENTS
74    
75        ! On input:
76    
77        ! t: Array of absolute temperature (K) of dimension KLEV, with first
78        ! index corresponding to lowest model level. Note that this array
79        ! will be altered by the subroutine if dry convective adjustment
80        ! occurs and if IPBL is not equal to 0.
81    
82        ! q: Array of specific humidity (gm/gm) of dimension KLEV, with first
83        ! index corresponding to lowest model level. Must be defined
84        ! at same grid levels as T. Note that this array will be altered
85        ! if dry convective adjustment occurs and if IPBL is not equal to 0.
86    
87        ! qs: Array of saturation specific humidity of dimension KLEV, with first
88        ! index corresponding to lowest model level. Must be defined
89        ! at same grid levels as T. Note that this array will be altered
90        ! if dry convective adjustment occurs and if IPBL is not equal to 0.
91    
92        ! u: Array of zonal wind velocity (m/s) of dimension KLEV, witth first
93        ! index corresponding with the lowest model level. Defined at
94        ! same levels as T. Note that this array will be altered if
95        ! dry convective adjustment occurs and if IPBL is not equal to 0.
96    
97        ! v: Same as u but for meridional velocity.
98    
99        ! p: Array of pressure (mb) of dimension KLEV, with first
100        ! index corresponding to lowest model level. Must be defined
101        ! at same grid levels as T.
102    
103        ! ph: Array of pressure (mb) of dimension KLEV + 1, with first index
104        ! corresponding to lowest level. These pressures are defined at
105        ! levels intermediate between those of P, T, Q and QS. The first
106        ! value of PH should be greater than (i.e. at a lower level than)
107        ! the first value of the array P.
108    
109      !  Local arrays      ! nl: The maximum number of levels to which convection can penetrate, plus 1
110        ! NL MUST be less than or equal to KLEV-1.
111    
112      integer noff      ! delt: The model time step (sec) between calls to CONVECT
     real da(len, nd), phi(len, nd, nd), mp(len, nd)  
113    
114      integer i, k, n, il, j      ! On Output:
115    
116        ! iflag: An output integer whose value denotes the following:
117        ! VALUE INTERPRETATION
118        ! ----- --------------
119        ! 0 Moist convection occurs.
120        ! 1 Moist convection occurs, but a CFL condition
121        ! on the subsidence warming is violated. This
122        ! does not cause the scheme to terminate.
123        ! 2 Moist convection, but no precip because ep(inb) lt 0.0001
124        ! 3 No moist convection because new cbmf is 0 and old cbmf is 0.
125        ! 4 No moist convection; atmosphere is not
126        ! unstable
127        ! 6 No moist convection because ihmin le minorig.
128        ! 7 No moist convection because unreasonable
129        ! parcel level temperature or specific humidity.
130        ! 8 No moist convection: lifted condensation
131        ! level is above the 200 mb level.
132        ! 9 No moist convection: cloud base is higher
133        ! then the level NL-1.
134    
135        ! ft: Array of temperature tendency (K/s) of dimension KLEV, defined at same
136        ! grid levels as T, Q, QS and P.
137    
138        ! fq: Array of specific humidity tendencies ((gm/gm)/s) of dimension KLEV,
139        ! defined at same grid levels as T, Q, QS and P.
140    
141        ! fu: Array of forcing of zonal velocity (m/s^2) of dimension KLEV,
142        ! defined at same grid levels as T.
143    
144        ! fv: Same as FU, but for forcing of meridional velocity.
145    
146        ! precip: Scalar convective precipitation rate (mm/day).
147    
148        ! VPrecip: Vertical profile of convective precipitation (kg/m2/s).
149    
150        ! wd: A convective downdraft velocity scale. For use in surface
151        ! flux parameterizations. See convect.ps file for details.
152    
153        ! tprime: A convective downdraft temperature perturbation scale (K).
154        ! For use in surface flux parameterizations. See convect.ps
155        ! file for details.
156    
157        ! qprime: A convective downdraft specific humidity
158        ! perturbation scale (gm/gm).
159        ! For use in surface flux parameterizations. See convect.ps
160        ! file for details.
161    
162        ! cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST
163        ! BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT
164        ! ITS NEXT CALL. That is, the value of CBMF must be "remembered"
165        ! by the calling program between calls to CONVECT.
166    
167        ! det: Array of detrainment mass flux of dimension KLEV.
168    
169        ! Local arrays
170    
171        real da(klon, klev), phi(klon, klev, klev), mp(klon, klev)
172    
173        integer i, k, il
174      integer icbmax      integer icbmax
175      integer nk1(klon)      integer nk1(klon)
176      integer icbs1(klon)      integer icbs1(klon)
# Line 227  contains Line 179  contains
179      real tnk1(klon)      real tnk1(klon)
180      real qnk1(klon)      real qnk1(klon)
181      real gznk1(klon)      real gznk1(klon)
     real pnk1(klon)  
     real qsnk1(klon)  
182      real pbase1(klon)      real pbase1(klon)
183      real buoybase1(klon)      real buoybase1(klon)
184    
# Line 247  contains Line 197  contains
197    
198      ! (local) compressed fields:      ! (local) compressed fields:
199    
200      integer nloc      integer idcum(klon)
201      parameter (nloc = klon) ! pour l'instant      integer iflag(klon), nk(klon), icb(klon)
202        integer nent(klon, klev)
203      integer idcum(nloc)      integer icbs(klon)
204      integer iflag(nloc), nk(nloc), icb(nloc)      integer inb(klon)
205      integer nent(nloc, klev)  
206      integer icbs(nloc)      real plcl(klon), tnk(klon), qnk(klon), gznk(klon)
207      integer inb(nloc), inbis(nloc)      real t(klon, klev), q(klon, klev), qs(klon, klev)
208        real u(klon, klev), v(klon, klev)
209      real cbmf(nloc), plcl(nloc), tnk(nloc), qnk(nloc), gznk(nloc)      real gz(klon, klev), h(klon, klev), lv(klon, klev), cpn(klon, klev)
210      real t(nloc, klev), q(nloc, klev), qs(nloc, klev)      real p(klon, klev), ph(klon, klev + 1), tv(klon, klev), tp(klon, klev)
211      real u(nloc, klev), v(nloc, klev)      real clw(klon, klev)
212      real gz(nloc, klev), h(nloc, klev), lv(nloc, klev), cpn(nloc, klev)      real pbase(klon), buoybase(klon), th(klon, klev)
213      real p(nloc, klev), ph(nloc, klev+1), tv(nloc, klev), tp(nloc, klev)      real tvp(klon, klev)
214      real clw(nloc, klev)      real sig(klon, klev), w0(klon, klev)
215      real dph(nloc, klev)      real hp(klon, klev), ep(klon, klev), sigp(klon, klev)
216      real pbase(nloc), buoybase(nloc), th(nloc, klev)      real buoy(klon, klev)
217      real tvp(nloc, klev)      real cape(klon)
218      real sig(nloc, klev), w0(nloc, klev)      real m(klon, klev), ment(klon, klev, klev), qent(klon, klev, klev)
219      real hp(nloc, klev), ep(nloc, klev), sigp(nloc, klev)      real uent(klon, klev, klev), vent(klon, klev, klev)
220      real frac(nloc), buoy(nloc, klev)      real ments(klon, klev, klev), qents(klon, klev, klev)
221      real cape(nloc)      real sij(klon, klev, klev), elij(klon, klev, klev)
222      real m(nloc, klev), ment(nloc, klev, klev), qent(nloc, klev, klev)      real qp(klon, klev), up(klon, klev), vp(klon, klev)
223      real uent(nloc, klev, klev), vent(nloc, klev, klev)      real wt(klon, klev), water(klon, klev), evap(klon, klev)
224      real ments(nloc, klev, klev), qents(nloc, klev, klev)      real b(klon, klev), ft(klon, klev), fq(klon, klev)
225      real sij(nloc, klev, klev), elij(nloc, klev, klev)      real fu(klon, klev), fv(klon, klev)
226      real qp(nloc, klev), up(nloc, klev), vp(nloc, klev)      real upwd(klon, klev), dnwd(klon, klev), dnwd0(klon, klev)
227      real wt(nloc, klev), water(nloc, klev), evap(nloc, klev)      real Ma(klon, klev), mike(klon, klev), tls(klon, klev)
228      real b(nloc, klev), ft(nloc, klev), fq(nloc, klev)      real tps(klon, klev)
229      real fu(nloc, klev), fv(nloc, klev)      real precip(klon)
230      real upwd(nloc, klev), dnwd(nloc, klev), dnwd0(nloc, klev)      real VPrecip(klon, klev + 1)
231      real Ma(nloc, klev), mike(nloc, klev), tls(nloc, klev)      real qcondc(klon, klev) ! cld
232      real tps(nloc, klev), qprime(nloc), tprime(nloc)      real wd(klon) ! gust
     real precip(nloc)  
     real VPrecip(nloc, klev+1)  
     real tra(nloc, klev, ntra), trap(nloc, klev, ntra)  
     real ftra(nloc, klev, ntra), traent(nloc, klev, klev, ntra)  
     real qcondc(nloc, klev)  ! cld  
     real wd(nloc)           ! gust  
233    
234      !-------------------------------------------------------------------      !-------------------------------------------------------------------
     ! --- SET CONSTANTS AND PARAMETERS  
     !-------------------------------------------------------------------  
235    
236      ! -- set simulation flags:      ! SET CONSTANTS AND PARAMETERS
     !   (common cvflag)  
237    
238        ! set simulation flags:
239        ! (common cvflag)
240      CALL cv_flag      CALL cv_flag
241    
242      ! -- set thermodynamical constants:      ! set thermodynamical constants:
243      !     (common cvthermo)      ! (common cvthermo)
   
244      CALL cv_thermo      CALL cv_thermo
245    
246      ! -- set convect parameters      ! set convect parameters
247        ! includes microphysical parameters and parameters that
248        ! control the rate of approach to quasi-equilibrium)
249        ! (common cvparam)
250    
251      !     includes microphysical parameters and parameters that      CALL cv3_param(klev, delt)
     !     control the rate of approach to quasi-equilibrium)  
     !     (common cvparam)  
   
     if (iflag_con.eq.3) then  
        CALL cv3_param(nd, delt)  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_param(nd)  
     endif  
   
     !---------------------------------------------------------------------  
     ! --- INITIALIZE OUTPUT ARRAYS AND PARAMETERS  
     !---------------------------------------------------------------------  
252    
253      do k = 1, nd      ! INITIALIZE OUTPUT ARRAYS AND PARAMETERS
254         do  i = 1, len  
255        do k = 1, klev
256           do i = 1, klon
257            ft1(i, k) = 0.0            ft1(i, k) = 0.0
258            fq1(i, k) = 0.0            fq1(i, k) = 0.0
259            fu1(i, k) = 0.0            fu1(i, k) = 0.0
# Line 328  contains Line 261  contains
261            tvp1(i, k) = 0.0            tvp1(i, k) = 0.0
262            tp1(i, k) = 0.0            tp1(i, k) = 0.0
263            clw1(i, k) = 0.0            clw1(i, k) = 0.0
           !ym  
264            clw(i, k) = 0.0            clw(i, k) = 0.0
265            gz1(i, k)  =  0.            gz1(i, k) = 0.
266            VPrecip1(i, k) = 0.            VPrecip1(i, k) = 0.
267            Ma1(i, k) = 0.0            Ma1(i, k) = 0.0
268            upwd1(i, k) = 0.0            upwd1(i, k) = 0.0
# Line 340  contains Line 272  contains
272         end do         end do
273      end do      end do
274    
275      do  j = 1, ntra      do i = 1, klon
        do  k = 1, nd  
           do  i = 1, len  
              ftra1(i, k, j) = 0.0  
           end do  
        end do  
     end do  
   
     do  i = 1, len  
276         precip1(i) = 0.0         precip1(i) = 0.0
277         iflag1(i) = 0         iflag1(i) = 0
278         wd1(i) = 0.0         wd1(i) = 0.0
279         cape1(i) = 0.0         cape1(i) = 0.0
280         VPrecip1(i, nd+1) = 0.0         VPrecip1(i, klev + 1) = 0.0
281      end do      end do
282    
283      if (iflag_con.eq.3) then      do il = 1, klon
284         do il = 1, len         sig1(il, klev) = sig1(il, klev) + 1.
285            sig1(il, nd) = sig1(il, nd) + 1.         sig1(il, klev) = min(sig1(il, klev), 12.1)
286            sig1(il, nd)  =  min(sig1(il, nd), 12.1)      enddo
287         enddo  
288      endif      ! CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY
289        CALL cv3_prelim(klon, klev, klev + 1, t1, q1, p1, ph1, lv1, cpn1, tv1, &
290      !--------------------------------------------------------------------           gz1, h1, hm1, th1)
291      ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY  
292      !--------------------------------------------------------------------      ! CONVECTIVE FEED
293        CALL cv3_feed(klon, klev, t1, q1, qs1, p1, ph1, gz1, nk1, icb1, &
294      if (iflag_con.eq.3) then           icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! klev->na
295         CALL cv3_prelim(len, nd, ndp1, t1, q1, p1, ph1, lv1, cpn1, tv1, gz1, &  
296              h1, hm1, th1)! nd->na      ! UNDILUTE (ADIABATIC) UPDRAFT / 1st part
297      endif      ! (up through ICB for convect4, up through ICB + 1 for convect3)
298        ! Calculates the lifted parcel virtual temperature at nk, the
299      if (iflag_con.eq.4) then      ! actual temperature, and the adiabatic liquid water content.
300         CALL cv_prelim(len, nd, ndp1, t1, q1, p1, ph1 &      CALL cv3_undilute1(klon, klev, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1, &
301              , lv1, cpn1, tv1, gz1, h1, hm1)           tp1, tvp1, clw1, icbs1) ! klev->na
302      endif  
303        ! TRIGGERING
304      !--------------------------------------------------------------------      CALL cv3_trigger(klon, klev, icb1, plcl1, p1, th1, tv1, tvp1, pbase1, &
305      ! --- CONVECTIVE FEED           buoybase1, iflag1, sig1, w01) ! klev->na
     !--------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_feed(len, nd, t1, q1, qs1, p1, ph1, hm1, gz1            &  
             , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_feed(len, nd, t1, q1, qs1, p1, hm1, gz1 &  
             , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1)  
     endif  
   
     !--------------------------------------------------------------------  
     ! --- UNDILUTE (ADIABATIC) UPDRAFT / 1st part  
     ! (up through ICB for convect4, up through ICB+1 for convect3)  
     !     Calculates the lifted parcel virtual temperature at nk, the  
     !     actual temperature, and the adiabatic liquid water content.  
     !--------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_undilute1(len, nd, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1   &  
             , tp1, tvp1, clw1, icbs1) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_undilute1(len, nd, t1, q1, qs1, gz1, p1, nk1, icb1, icbmax &  
             , tp1, tvp1, clw1)  
     endif  
306    
307      !-------------------------------------------------------------------      ! Moist convective adjustment is necessary
     ! --- TRIGGERING  
     !-------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_trigger(len, nd, icb1, plcl1, p1, th1, tv1, tvp1, pbase1, &  
             buoybase1, iflag1, sig1, w01) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_trigger(len, nd, icb1, cbmf1, tv1, tvp1, iflag1)  
     endif  
   
     ! --- IF THIS POINT IS REACHED, MOIST CONVECTIVE ADJUSTMENT IS NECESSARY  
308    
309      ncum = 0      ncum = 0
310      do  i = 1, len      do i = 1, klon
311         if(iflag1(i).eq.0)then         if (iflag1(i) == 0) then
312            ncum = ncum+1            ncum = ncum + 1
313            idcum(ncum) = i            idcum(ncum) = i
314         endif         endif
315      end do      end do
316    
317      !       print*, 'klon, ncum = ', len, ncum      IF (ncum > 0) THEN
318           ! COMPRESS THE FIELDS
319      IF (ncum.gt.0) THEN         ! (-> vectorization over convective gridpoints)
320           CALL cv3_compress(klon, klon, ncum, klev, iflag1, nk1, icb1, icbs1, &
321         !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^              plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1, t1, q1, qs1, u1, &
322         ! --- COMPRESS THE FIELDS              v1, gz1, th1, h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1, &
323         !        (-> vectorization over convective gridpoints)              sig1, w01, iflag, nk, icb, icbs, plcl, tnk, qnk, gznk, pbase, &
324         !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^              buoybase, t, q, qs, u, v, gz, th, h, lv, cpn, p, ph, tv, tp, &
325                tvp, clw, sig, w0)
326         if (iflag_con.eq.3) then  
327            CALL cv3_compress(len, nloc, ncum, nd, ntra, iflag1, nk1, icb1, &         ! UNDILUTE (ADIABATIC) UPDRAFT / second part :
328                 icbs1, plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1, t1, q1, &         ! FIND THE REST OF THE LIFTED PARCEL TEMPERATURES
329                 qs1, u1, v1, gz1, th1, tra1, h1, lv1, cpn1, p1, ph1, tv1, tp1, &         ! &
330                 tvp1, clw1, sig1, w01, iflag, nk, icb, icbs, plcl, tnk, qnk, &         ! COMPUTE THE PRECIPITATION EFFICIENCIES AND THE
331                 gznk, pbase, buoybase, t, q, qs, u, v, gz, th, tra, h, lv, &         ! FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD
332                 cpn, p, ph, tv, tp, tvp, clw, sig, w0)         ! &
333         endif         ! FIND THE LEVEL OF NEUTRAL BUOYANCY
334           CALL cv3_undilute2(klon, ncum, klev, icb, icbs, nk, tnk, qnk, gznk, &
335         if (iflag_con.eq.4) then              t, qs, gz, p, h, tv, lv, pbase, buoybase, plcl, inb, tp, &
336            CALL cv_compress( len, nloc, ncum, nd &              tvp, clw, hp, ep, sigp, buoy) !na->klev
337                 , iflag1, nk1, icb1 &  
338                 , cbmf1, plcl1, tnk1, qnk1, gznk1 &         ! CLOSURE
339                 , t1, q1, qs1, u1, v1, gz1 &         CALL cv3_closure(klon, ncum, klev, icb, inb, pbase, p, ph, tv, &
340                 , h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1 &              buoy, sig, w0, cape, m) ! na->klev
341                 , iflag, nk, icb &  
342                 , cbmf, plcl, tnk, qnk, gznk &         ! MIXING
343                 , t, q, qs, u, v, gz, h, lv, cpn, p, ph, tv, tp, tvp, clw  &         CALL cv3_mixing(klon, ncum, klev, klev, icb, nk, inb, t, q, qs, u, &
344                 , dph )              v, h, lv, hp, ep, clw, m, sig, ment, qent, uent, vent, nent, &
345         endif              sij, elij, ments, qents)
346    
347         !-------------------------------------------------------------------         ! UNSATURATED (PRECIPITATING) DOWNDRAFTS
348         ! --- UNDILUTE (ADIABATIC) UPDRAFT / second part :         CALL cv3_unsat(klon, ncum, klev, klev, icb, inb, t, q, qs, gz, u, &
349         ! ---   FIND THE REST OF THE LIFTED PARCEL TEMPERATURES              v, p, ph, th, tv, lv, cpn, ep, sigp, clw, m, ment, elij, delt, &
350         ! ---   &              plcl, mp, qp, up, vp, wt, water, evap, b)! na->klev
351         ! ---   COMPUTE THE PRECIPITATION EFFICIENCIES AND THE  
352         ! ---   FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD         ! YIELD
353         ! ---   &         ! (tendencies, precipitation, variables of interface with other
354         ! ---   FIND THE LEVEL OF NEUTRAL BUOYANCY         ! processes, etc)
355         !-------------------------------------------------------------------         CALL cv3_yield(klon, ncum, klev, klev, icb, inb, delt, t, q, u, v, &
356                gz, p, ph, h, hp, lv, cpn, th, ep, clw, m, tp, mp, qp, up, vp, &
357         if (iflag_con.eq.3) then              wt, water, evap, b, ment, qent, uent, vent, nent, elij, sig, &
358            CALL cv3_undilute2(nloc, ncum, nd, icb, icbs, nk         &              tv, tvp, iflag, precip, VPrecip, ft, fq, fu, fv, upwd, dnwd, &
359                 , tnk, qnk, gznk, t, q, qs, gz &              dnwd0, ma, mike, tls, tps, qcondc, wd)! na->klev
                , p, h, tv, lv, pbase, buoybase, plcl &  
                , inb, tp, tvp, clw, hp, ep, sigp, buoy) !na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_undilute2(nloc, ncum, nd, icb, nk &  
                , tnk, qnk, gznk, t, q, qs, gz &  
                , p, dph, h, tv, lv &  
                , inb, inbis, tp, tvp, clw, hp, ep, sigp, frac)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- CLOSURE  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_closure(nloc, ncum, nd, icb, inb               &  
                , pbase, p, ph, tv, buoy &  
                , sig, w0, cape, m) ! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_closure(nloc, ncum, nd, nk, icb &  
                , tv, tvp, p, ph, dph, plcl, cpn &  
                , iflag, cbmf)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- MIXING  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_mixing(nloc, ncum, nd, nd, ntra, icb, nk, inb     &  
                , ph, t, q, qs, u, v, tra, h, lv, qnk &  
                , hp, tv, tvp, ep, clw, m, sig &  
                , ment, qent, uent, vent, nent, sij, elij, ments, qents, traent)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_mixing(nloc, ncum, nd, icb, nk, inb, inbis &  
                , ph, t, q, qs, u, v, h, lv, qnk &  
                , hp, tv, tvp, ep, clw, cbmf &  
                , m, ment, qent, uent, vent, nent, sij, elij)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- UNSATURATED (PRECIPITATING) DOWNDRAFTS  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_unsat(nloc, ncum, nd, nd, ntra, icb, inb     &  
                , t, q, qs, gz, u, v, tra, p, ph &  
                , th, tv, lv, cpn, ep, sigp, clw &  
                , m, ment, elij, delt, plcl &  
                , mp, qp, up, vp, trap, wt, water, evap, b)! na->nd  
        endif  
360    
361         if (iflag_con.eq.4) then         ! passive tracers
362            CALL cv_unsat(nloc, ncum, nd, inb, t, q, qs, gz, u, v, p, ph &         CALL cv3_tracer(klon, ncum, klev, ment, sij, da, phi)
                , h, lv, ep, sigp, clw, m, ment, elij &  
                , iflag, mp, qp, up, vp, wt, water, evap)  
        endif  
363    
364         !-------------------------------------------------------------------         ! UNCOMPRESS THE FIELDS
        ! --- YIELD  
        !     (tendencies, precipitation, variables of interface with other  
        !      processes, etc)  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_yield(nloc, ncum, nd, nd, ntra             &  
                , icb, inb, delt &  
                , t, q, u, v, tra, gz, p, ph, h, hp, lv, cpn, th &  
                , ep, clw, m, tp, mp, qp, up, vp, trap &  
                , wt, water, evap, b &  
                , ment, qent, uent, vent, nent, elij, traent, sig &  
                , tv, tvp &  
                , iflag, precip, VPrecip, ft, fq, fu, fv, ftra &  
                , upwd, dnwd, dnwd0, ma, mike, tls, tps, qcondc, wd)! na->nd  
        endif  
365    
366         if (iflag_con.eq.4) then         ! set iflag1 = 42 for non convective points
367            CALL cv_yield(nloc, ncum, nd, nk, icb, inb, delt &         do i = 1, klon
                , t, q, u, v, gz, p, ph, h, hp, lv, cpn &  
                , ep, clw, frac, m, mp, qp, up, vp &  
                , wt, water, evap &  
                , ment, qent, uent, vent, nent, elij &  
                , tv, tvp &  
                , iflag, wd, qprime, tprime &  
                , precip, cbmf, ft, fq, fu, fv, Ma, qcondc)  
        endif  
   
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! --- passive tracers  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
   
        if (iflag_con.eq.3) then  
           CALL cv3_tracer(nloc, len, ncum, nd, nd, &  
                ment, sij, da, phi)  
        endif  
   
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! --- UNCOMPRESS THE FIELDS  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! set iflag1  = 42 for non convective points  
        do  i = 1, len  
368            iflag1(i) = 42            iflag1(i) = 42
369         end do         end do
370    
371         if (iflag_con.eq.3) then         CALL cv3_uncompress(idcum(:ncum), iflag, precip, VPrecip, sig, w0, &
372            CALL cv3_uncompress(nloc, len, ncum, nd, ntra, idcum &              ft, fq, fu, fv, inb, Ma, upwd, dnwd, dnwd0, qcondc, wd, cape, &
373                 , iflag &              da, phi, mp, iflag1, precip1, VPrecip1, sig1, w01, ft1, fq1, &
374                 , precip, VPrecip, sig, w0 &              fu1, fv1, inb1, Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, &
375                 , ft, fq, fu, fv, ftra &              cape1, da1, phi1, mp1)
376                 , inb  &      ENDIF
                , Ma, upwd, dnwd, dnwd0, qcondc, wd, cape &  
                , da, phi, mp &  
                , iflag1 &  
                , precip1, VPrecip1, sig1, w01 &  
                , ft1, fq1, fu1, fv1, ftra1 &  
                , inb1 &  
                , Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, cape1  &  
                , da1, phi1, mp1)  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_uncompress(nloc, len, ncum, nd, idcum &  
                , iflag &  
                , precip, cbmf &  
                , ft, fq, fu, fv &  
                , Ma, qcondc             &  
                , iflag1 &  
                , precip1, cbmf1 &  
                , ft1, fq1, fu1, fv1 &  
                , Ma1, qcondc1 )  
        endif  
     ENDIF ! ncum>0  
377    
378    end SUBROUTINE cv_driver    end SUBROUTINE cv_driver
379    

Legend:
Removed from v.91  
changed lines
  Added in v.183

  ViewVC Help
Powered by ViewVC 1.1.21