/[lmdze]/trunk/Sources/phylmd/cv_driver.f
ViewVC logotype

Diff of /trunk/Sources/phylmd/cv_driver.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/phylmd/cv_driver.f revision 99 by guez, Wed Jul 2 18:39:15 2014 UTC trunk/Sources/phylmd/cv_driver.f revision 185 by guez, Wed Mar 16 15:04:46 2016 UTC
# Line 4  module cv_driver_m Line 4  module cv_driver_m
4    
5  contains  contains
6    
7    SUBROUTINE cv_driver(len, nd, t1, q1, qs1, u1, v1, p1, ph1, iflag1, ft1, &    SUBROUTINE cv_driver(t1, q1, qs1, u1, v1, p1, ph1, iflag1, ft1, fq1, fu1, &
8         fq1, fu1, fv1, precip1, VPrecip1, cbmf1, sig1, w01, icb1, inb1, delt, &         fv1, precip1, VPrecip1, sig1, w01, icb1, inb1, delt, Ma1, upwd1, &
9         Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, cape1, da1, phi1, mp1)         dnwd1, dnwd01, qcondc1, wd1, cape1, da1, phi1, mp1)
10    
11      ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3, 2005/04/15 12:36:17      ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3, 2005/04/15 12:36:17
12      ! Main driver for convection      ! Main driver for convection
# Line 14  contains Line 14  contains
14    
15      ! Several modules corresponding to different physical processes      ! Several modules corresponding to different physical processes
16    
17      ! Several versions of convect may be used:      use cv30_compress_m, only: cv30_compress
18      ! - iflag_con = 3: version lmd      use cv30_feed_m, only: cv30_feed
19      ! - iflag_con = 4: version 4.3b      use cv30_mixing_m, only: cv30_mixing
20        use cv30_param_m, only: cv30_param
21      use clesphys2, only: iflag_con      use cv30_prelim_m, only: cv30_prelim
22      use cv3_compress_m, only: cv3_compress      use cv30_tracer_m, only: cv30_tracer
23      use cv3_mixing_m, only: cv3_mixing      use cv30_uncompress_m, only: cv30_uncompress
24      use cv3_param_m, only: cv3_param      use cv30_undilute2_m, only: cv30_undilute2
25      use cv3_prelim_m, only: cv3_prelim      use cv30_unsat_m, only: cv30_unsat
26      use cv3_tracer_m, only: cv3_tracer      use cv30_yield_m, only: cv30_yield
     use cv3_uncompress_m, only: cv3_uncompress  
     use cv3_unsat_m, only: cv3_unsat  
     use cv3_yield_m, only: cv3_yield  
     use cv_uncompress_m, only: cv_uncompress  
27      USE dimphy, ONLY: klev, klon      USE dimphy, ONLY: klev, klon
28    
29      integer, intent(in):: len ! first dimension      real, intent(in):: t1(klon, klev) ! temperature
30      integer, intent(in):: nd ! vertical dimension      real, intent(in):: q1(klon, klev) ! specific hum
31      real, intent(in):: t1(len, nd) ! temperature      real, intent(in):: qs1(klon, klev) ! sat specific hum
32      real q1(len, nd) !           Input        specific hum      real, intent(in):: u1(klon, klev) ! u-wind
33      real qs1(len, nd)      real, intent(in):: v1(klon, klev) ! v-wind
34      !      qs1           Real           Input        sat specific hum      real, intent(in):: p1(klon, klev) ! full level pressure
35      real, intent(in):: u1(len, nd)      real, intent(in):: ph1(klon, klev + 1) ! half level pressure
36      !      u1            Real           Input        u-wind      integer, intent(out):: iflag1(klon) ! flag for Emanuel conditions
37      real, intent(in):: v1(len, nd)      real, intent(out):: ft1(klon, klev) ! temp tend
38      !      v1            Real           Input        v-wind      real, intent(out):: fq1(klon, klev) ! spec hum tend
39      real p1(len, nd)      real, intent(out):: fu1(klon, klev) ! u-wind tend
40      !      p1            Real           Input        full level pressure      real, intent(out):: fv1(klon, klev) ! v-wind tend
41      real ph1(len, nd + 1)      real, intent(out):: precip1(klon) ! precipitation
42      !      ph1           Real           Input        half level pressure  
43      integer iflag1(len)      real, intent(out):: VPrecip1(klon, klev + 1)
44      !      iflag1        Integer        Output       flag for Emanuel conditions      ! vertical profile of precipitation
45      real ft1(len, nd)  
     !      ft1           Real           Output       temp tend  
     real fq1(len, nd)  
     !      fq1           Real           Output       spec hum tend  
     real fu1(len, nd)  
     !      fu1           Real           Output       u-wind tend  
     real fv1(len, nd)  
     !      fv1           Real           Output       v-wind tend  
     real precip1(len)  
     !      precip1       Real           Output       precipitation  
     real VPrecip1(len, nd+1)  
     !      VPrecip1      Real           Output       vertical profile of precipitations  
     real cbmf1(len)  
     !      cbmf1         Real           Output       cloud base mass flux  
46      real, intent(inout):: sig1(klon, klev) ! section adiabatic updraft      real, intent(inout):: sig1(klon, klev) ! section adiabatic updraft
47    
48      real, intent(inout):: w01(klon, klev)      real, intent(inout):: w01(klon, klev)
49      ! vertical velocity within adiabatic updraft      ! vertical velocity within adiabatic updraft
50    
51      integer icb1(klon)      integer, intent(out):: icb1(klon)
52      integer inb1(klon)      integer, intent(inout):: inb1(klon)
53      real, intent(in):: delt      real, intent(in):: delt ! time step
54      !      delt          Real           Input        time step      real Ma1(klon, klev)
55      real Ma1(len, nd)      ! Ma1 Real Output mass flux adiabatic updraft
56      !      Ma1           Real           Output       mass flux adiabatic updraft  
57      real, intent(out):: upwd1(len, nd) ! total upward mass flux (adiab+mixed)      real, intent(out):: upwd1(klon, klev)
58      real, intent(out):: dnwd1(len, nd) ! saturated downward mass flux (mixed)      ! total upward mass flux (adiab + mixed)
59      real, intent(out):: dnwd01(len, nd) ! unsaturated downward mass flux  
60        real, intent(out):: dnwd1(klon, klev) ! saturated downward mass flux (mixed)
61      real qcondc1(len, nd)     ! cld      real, intent(out):: dnwd01(klon, klev) ! unsaturated downward mass flux
62      !      qcondc1       Real           Output       in-cld mixing ratio of condensed water  
63      real wd1(len)            ! gust      real qcondc1(klon, klev) ! cld
64      !      wd1           Real           Output       downdraft velocity scale for sfc fluxes      ! qcondc1 Real Output in-cld mixing ratio of condensed water
65      real cape1(len)      real wd1(klon) ! gust
66      !      cape1         Real           Output       CAPE      ! wd1 Real Output downdraft velocity scale for sfc fluxes
67        real cape1(klon)
68      real, intent(inout):: da1(len, nd), phi1(len, nd, nd), mp1(len, nd)      ! cape1 Real Output CAPE
69    
70        real, intent(inout):: da1(klon, klev), phi1(klon, klev, klev)
71        real, intent(inout):: mp1(klon, klev)
72    
73        ! ARGUMENTS
74    
75        ! On input:
76    
77        ! t: Array of absolute temperature (K) of dimension KLEV, with first
78        ! index corresponding to lowest model level. Note that this array
79        ! will be altered by the subroutine if dry convective adjustment
80        ! occurs and if IPBL is not equal to 0.
81    
82        ! q: Array of specific humidity (gm/gm) of dimension KLEV, with first
83        ! index corresponding to lowest model level. Must be defined
84        ! at same grid levels as T. Note that this array will be altered
85        ! if dry convective adjustment occurs and if IPBL is not equal to 0.
86    
87        ! qs: Array of saturation specific humidity of dimension KLEV, with first
88        ! index corresponding to lowest model level. Must be defined
89        ! at same grid levels as T. Note that this array will be altered
90        ! if dry convective adjustment occurs and if IPBL is not equal to 0.
91    
92        ! u: Array of zonal wind velocity (m/s) of dimension KLEV, witth first
93        ! index corresponding with the lowest model level. Defined at
94        ! same levels as T. Note that this array will be altered if
95        ! dry convective adjustment occurs and if IPBL is not equal to 0.
96    
97        ! v: Same as u but for meridional velocity.
98    
99        ! p: Array of pressure (mb) of dimension KLEV, with first
100        ! index corresponding to lowest model level. Must be defined
101        ! at same grid levels as T.
102    
103        ! ph: Array of pressure (mb) of dimension KLEV + 1, with first index
104        ! corresponding to lowest level. These pressures are defined at
105        ! levels intermediate between those of P, T, Q and QS. The first
106        ! value of PH should be greater than (i.e. at a lower level than)
107        ! the first value of the array P.
108    
109        ! nl: The maximum number of levels to which convection can penetrate, plus 1
110        ! NL MUST be less than or equal to KLEV-1.
111    
112        ! delt: The model time step (sec) between calls to CONVECT
113    
114        ! On Output:
115    
116        ! iflag: An output integer whose value denotes the following:
117        ! VALUE INTERPRETATION
118        ! ----- --------------
119        ! 0 Moist convection occurs.
120        ! 1 Moist convection occurs, but a CFL condition
121        ! on the subsidence warming is violated. This
122        ! does not cause the scheme to terminate.
123        ! 2 Moist convection, but no precip because ep(inb) lt 0.0001
124        ! 3 No moist convection because new cbmf is 0 and old cbmf is 0.
125        ! 4 No moist convection; atmosphere is not
126        ! unstable
127        ! 6 No moist convection because ihmin le minorig.
128        ! 7 No moist convection because unreasonable
129        ! parcel level temperature or specific humidity.
130        ! 8 No moist convection: lifted condensation
131        ! level is above the 200 mb level.
132        ! 9 No moist convection: cloud base is higher
133        ! then the level NL-1.
134    
135        ! ft: Array of temperature tendency (K/s) of dimension KLEV, defined at same
136        ! grid levels as T, Q, QS and P.
137    
138        ! fq: Array of specific humidity tendencies ((gm/gm)/s) of dimension KLEV,
139        ! defined at same grid levels as T, Q, QS and P.
140    
141        ! fu: Array of forcing of zonal velocity (m/s^2) of dimension KLEV,
142        ! defined at same grid levels as T.
143    
144        ! fv: Same as FU, but for forcing of meridional velocity.
145    
146        ! precip: Scalar convective precipitation rate (mm/day).
147    
148        ! VPrecip: Vertical profile of convective precipitation (kg/m2/s).
149    
150        ! wd: A convective downdraft velocity scale. For use in surface
151        ! flux parameterizations. See convect.ps file for details.
152    
153        ! tprime: A convective downdraft temperature perturbation scale (K).
154        ! For use in surface flux parameterizations. See convect.ps
155        ! file for details.
156    
157        ! qprime: A convective downdraft specific humidity
158        ! perturbation scale (gm/gm).
159        ! For use in surface flux parameterizations. See convect.ps
160        ! file for details.
161    
162        ! cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST
163        ! BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT
164        ! ITS NEXT CALL. That is, the value of CBMF must be "remembered"
165        ! by the calling program between calls to CONVECT.
166    
167      !-------------------------------------------------------------------      ! det: Array of detrainment mass flux of dimension KLEV.
     ! --- ARGUMENTS  
     !-------------------------------------------------------------------  
     ! --- On input:  
168    
169      !  t:   Array of absolute temperature (K) of dimension ND, with first      ! Local arrays
     !       index corresponding to lowest model level. Note that this array  
     !       will be altered by the subroutine if dry convective adjustment  
     !       occurs and if IPBL is not equal to 0.  
   
     !  q:   Array of specific humidity (gm/gm) of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  qs:  Array of saturation specific humidity of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T. Note that this array will be altered  
     !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  u:   Array of zonal wind velocity (m/s) of dimension ND, witth first  
     !       index corresponding with the lowest model level. Defined at  
     !       same levels as T. Note that this array will be altered if  
     !       dry convective adjustment occurs and if IPBL is not equal to 0.  
   
     !  v:   Same as u but for meridional velocity.  
   
     !  p:   Array of pressure (mb) of dimension ND, with first  
     !       index corresponding to lowest model level. Must be defined  
     !       at same grid levels as T.  
   
     !  ph:  Array of pressure (mb) of dimension ND+1, with first index  
     !       corresponding to lowest level. These pressures are defined at  
     !       levels intermediate between those of P, T, Q and QS. The first  
     !       value of PH should be greater than (i.e. at a lower level than)  
     !       the first value of the array P.  
   
     !  nl:  The maximum number of levels to which convection can penetrate, plus 1.  
     !       NL MUST be less than or equal to ND-1.  
   
     !  delt: The model time step (sec) between calls to CONVECT  
   
     !----------------------------------------------------------------------------  
     ! ---   On Output:  
   
     !  iflag: An output integer whose value denotes the following:  
     !       VALUE   INTERPRETATION  
     !       -----   --------------  
     !         0     Moist convection occurs.  
     !         1     Moist convection occurs, but a CFL condition  
     !               on the subsidence warming is violated. This  
     !               does not cause the scheme to terminate.  
     !         2     Moist convection, but no precip because ep(inb) lt 0.0001  
     !         3     No moist convection because new cbmf is 0 and old cbmf is 0.  
     !         4     No moist convection; atmosphere is not  
     !               unstable  
     !         6     No moist convection because ihmin le minorig.  
     !         7     No moist convection because unreasonable  
     !               parcel level temperature or specific humidity.  
     !         8     No moist convection: lifted condensation  
     !               level is above the 200 mb level.  
     !         9     No moist convection: cloud base is higher  
     !               then the level NL-1.  
   
     !  ft:   Array of temperature tendency (K/s) of dimension ND, defined at same  
     !        grid levels as T, Q, QS and P.  
   
     !  fq:   Array of specific humidity tendencies ((gm/gm)/s) of dimension ND,  
     !        defined at same grid levels as T, Q, QS and P.  
   
     !  fu:   Array of forcing of zonal velocity (m/s^2) of dimension ND,  
     !        defined at same grid levels as T.  
   
     !  fv:   Same as FU, but for forcing of meridional velocity.  
   
     !  precip: Scalar convective precipitation rate (mm/day).  
   
     !  VPrecip: Vertical profile of convective precipitation (kg/m2/s).  
   
     !  wd:   A convective downdraft velocity scale. For use in surface  
     !        flux parameterizations. See convect.ps file for details.  
   
     !  tprime: A convective downdraft temperature perturbation scale (K).  
     !          For use in surface flux parameterizations. See convect.ps  
     !          file for details.  
   
     !  qprime: A convective downdraft specific humidity  
     !          perturbation scale (gm/gm).  
     !          For use in surface flux parameterizations. See convect.ps  
     !          file for details.  
   
     !  cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST  
     !        BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT  
     !        ITS NEXT CALL. That is, the value of CBMF must be "remembered"  
     !        by the calling program between calls to CONVECT.  
170    
171      !  det:   Array of detrainment mass flux of dimension ND.      real da(klon, klev), phi(klon, klev, klev), mp(klon, klev)
   
     !-------------------------------------------------------------------  
   
     !  Local arrays  
   
     real da(len, nd), phi(len, nd, nd), mp(len, nd)  
172    
173      integer i, k, il      integer i, k, il
174      integer icbmax      integer icbmax
# Line 215  contains Line 197  contains
197    
198      ! (local) compressed fields:      ! (local) compressed fields:
199    
200      integer nloc      integer idcum(klon)
201      parameter (nloc = klon) ! pour l'instant      integer iflag(klon), nk(klon), icb(klon)
202        integer nent(klon, klev)
203        integer icbs(klon)
204        integer inb(klon)
205    
206        real plcl(klon), tnk(klon), qnk(klon), gznk(klon)
207        real t(klon, klev), q(klon, klev), qs(klon, klev)
208        real u(klon, klev), v(klon, klev)
209        real gz(klon, klev), h(klon, klev), lv(klon, klev), cpn(klon, klev)
210        real p(klon, klev), ph(klon, klev + 1), tv(klon, klev), tp(klon, klev)
211        real clw(klon, klev)
212        real pbase(klon), buoybase(klon), th(klon, klev)
213        real tvp(klon, klev)
214        real sig(klon, klev), w0(klon, klev)
215        real hp(klon, klev), ep(klon, klev), sigp(klon, klev)
216        real buoy(klon, klev)
217        real cape(klon)
218        real m(klon, klev), ment(klon, klev, klev), qent(klon, klev, klev)
219        real uent(klon, klev, klev), vent(klon, klev, klev)
220        real ments(klon, klev, klev), qents(klon, klev, klev)
221        real sij(klon, klev, klev), elij(klon, klev, klev)
222        real qp(klon, klev), up(klon, klev), vp(klon, klev)
223        real wt(klon, klev), water(klon, klev), evap(klon, klev)
224        real b(klon, klev), ft(klon, klev), fq(klon, klev)
225        real fu(klon, klev), fv(klon, klev)
226        real upwd(klon, klev), dnwd(klon, klev), dnwd0(klon, klev)
227        real Ma(klon, klev), mike(klon, klev), tls(klon, klev)
228        real tps(klon, klev)
229        real precip(klon)
230        real VPrecip(klon, klev + 1)
231        real qcondc(klon, klev) ! cld
232        real wd(klon) ! gust
233    
     integer idcum(nloc)  
     integer iflag(nloc), nk(nloc), icb(nloc)  
     integer nent(nloc, klev)  
     integer icbs(nloc)  
     integer inb(nloc), inbis(nloc)  
   
     real cbmf(nloc), plcl(nloc), tnk(nloc), qnk(nloc), gznk(nloc)  
     real t(nloc, klev), q(nloc, klev), qs(nloc, klev)  
     real u(nloc, klev), v(nloc, klev)  
     real gz(nloc, klev), h(nloc, klev), lv(nloc, klev), cpn(nloc, klev)  
     real p(nloc, klev), ph(nloc, klev+1), tv(nloc, klev), tp(nloc, klev)  
     real clw(nloc, klev)  
     real dph(nloc, klev)  
     real pbase(nloc), buoybase(nloc), th(nloc, klev)  
     real tvp(nloc, klev)  
     real sig(nloc, klev), w0(nloc, klev)  
     real hp(nloc, klev), ep(nloc, klev), sigp(nloc, klev)  
     real frac(nloc), buoy(nloc, klev)  
     real cape(nloc)  
     real m(nloc, klev), ment(nloc, klev, klev), qent(nloc, klev, klev)  
     real uent(nloc, klev, klev), vent(nloc, klev, klev)  
     real ments(nloc, klev, klev), qents(nloc, klev, klev)  
     real sij(nloc, klev, klev), elij(nloc, klev, klev)  
     real qp(nloc, klev), up(nloc, klev), vp(nloc, klev)  
     real wt(nloc, klev), water(nloc, klev), evap(nloc, klev)  
     real b(nloc, klev), ft(nloc, klev), fq(nloc, klev)  
     real fu(nloc, klev), fv(nloc, klev)  
     real upwd(nloc, klev), dnwd(nloc, klev), dnwd0(nloc, klev)  
     real Ma(nloc, klev), mike(nloc, klev), tls(nloc, klev)  
     real tps(nloc, klev), qprime(nloc), tprime(nloc)  
     real precip(nloc)  
     real VPrecip(nloc, klev+1)  
     real qcondc(nloc, klev)  ! cld  
     real wd(nloc)           ! gust  
   
     !-------------------------------------------------------------------  
     ! --- SET CONSTANTS AND PARAMETERS  
234      !-------------------------------------------------------------------      !-------------------------------------------------------------------
235    
236      ! -- set simulation flags:      ! SET CONSTANTS AND PARAMETERS
     !   (common cvflag)  
237    
238        ! set simulation flags:
239        ! (common cvflag)
240      CALL cv_flag      CALL cv_flag
241    
242      ! -- set thermodynamical constants:      ! set thermodynamical constants:
243      !     (common cvthermo)      ! (common cvthermo)
   
244      CALL cv_thermo      CALL cv_thermo
245    
246      ! -- set convect parameters      ! set convect parameters
247        ! includes microphysical parameters and parameters that
248        ! control the rate of approach to quasi-equilibrium)
249        ! (common cvparam)
250    
251        CALL cv30_param(klev, delt)
252    
253      !     includes microphysical parameters and parameters that      ! INITIALIZE OUTPUT ARRAYS AND PARAMETERS
     !     control the rate of approach to quasi-equilibrium)  
     !     (common cvparam)  
   
     if (iflag_con.eq.3) then  
        CALL cv3_param(nd, delt)  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_param(nd)  
     endif  
   
     !---------------------------------------------------------------------  
     ! --- INITIALIZE OUTPUT ARRAYS AND PARAMETERS  
     !---------------------------------------------------------------------  
254    
255      do k = 1, nd      do k = 1, klev
256         do  i = 1, len         do i = 1, klon
257            ft1(i, k) = 0.0            ft1(i, k) = 0.0
258            fq1(i, k) = 0.0            fq1(i, k) = 0.0
259            fu1(i, k) = 0.0            fu1(i, k) = 0.0
# Line 294  contains Line 261  contains
261            tvp1(i, k) = 0.0            tvp1(i, k) = 0.0
262            tp1(i, k) = 0.0            tp1(i, k) = 0.0
263            clw1(i, k) = 0.0            clw1(i, k) = 0.0
           !ym  
264            clw(i, k) = 0.0            clw(i, k) = 0.0
265            gz1(i, k)  =  0.            gz1(i, k) = 0.
266            VPrecip1(i, k) = 0.            VPrecip1(i, k) = 0.
267            Ma1(i, k) = 0.0            Ma1(i, k) = 0.0
268            upwd1(i, k) = 0.0            upwd1(i, k) = 0.0
# Line 306  contains Line 272  contains
272         end do         end do
273      end do      end do
274    
275      do  i = 1, len      do i = 1, klon
276         precip1(i) = 0.0         precip1(i) = 0.0
277         iflag1(i) = 0         iflag1(i) = 0
278         wd1(i) = 0.0         wd1(i) = 0.0
279         cape1(i) = 0.0         cape1(i) = 0.0
280         VPrecip1(i, nd+1) = 0.0         VPrecip1(i, klev + 1) = 0.0
281      end do      end do
282    
283      if (iflag_con.eq.3) then      do il = 1, klon
284         do il = 1, len         sig1(il, klev) = sig1(il, klev) + 1.
285            sig1(il, nd) = sig1(il, nd) + 1.         sig1(il, klev) = min(sig1(il, klev), 12.1)
286            sig1(il, nd)  =  min(sig1(il, nd), 12.1)      enddo
287         enddo  
288      endif      ! CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY
289        CALL cv30_prelim(klon, klev, klev + 1, t1, q1, p1, ph1, lv1, cpn1, tv1, &
290      !--------------------------------------------------------------------           gz1, h1, hm1, th1)
291      ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY  
292      !--------------------------------------------------------------------      ! CONVECTIVE FEED
293        CALL cv30_feed(klon, klev, t1, q1, qs1, p1, ph1, gz1, nk1, icb1, &
294      if (iflag_con.eq.3) then           icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! klev->na
295         CALL cv3_prelim(len, nd, nd + 1, t1, q1, p1, ph1, lv1, cpn1, tv1, gz1, &  
296              h1, hm1, th1)      ! UNDILUTE (ADIABATIC) UPDRAFT / 1st part
297      endif      ! (up through ICB for convect4, up through ICB + 1 for convect3)
298        ! Calculates the lifted parcel virtual temperature at nk, the
299      if (iflag_con.eq.4) then      ! actual temperature, and the adiabatic liquid water content.
300         CALL cv_prelim(len, nd, nd + 1, t1, q1, p1, ph1 &      CALL cv30_undilute1(klon, klev, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1, &
301              , lv1, cpn1, tv1, gz1, h1, hm1)           tp1, tvp1, clw1, icbs1) ! klev->na
302      endif  
303        ! TRIGGERING
304      !--------------------------------------------------------------------      CALL cv30_trigger(klon, klev, icb1, plcl1, p1, th1, tv1, tvp1, pbase1, &
305      ! --- CONVECTIVE FEED           buoybase1, iflag1, sig1, w01) ! klev->na
     !--------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_feed(len, nd, t1, q1, qs1, p1, ph1, hm1, gz1            &  
             , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_feed(len, nd, t1, q1, qs1, p1, hm1, gz1 &  
             , nk1, icb1, icbmax, iflag1, tnk1, qnk1, gznk1, plcl1)  
     endif  
   
     !--------------------------------------------------------------------  
     ! --- UNDILUTE (ADIABATIC) UPDRAFT / 1st part  
     ! (up through ICB for convect4, up through ICB+1 for convect3)  
     !     Calculates the lifted parcel virtual temperature at nk, the  
     !     actual temperature, and the adiabatic liquid water content.  
     !--------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_undilute1(len, nd, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1   &  
             , tp1, tvp1, clw1, icbs1) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_undilute1(len, nd, t1, q1, qs1, gz1, p1, nk1, icb1, icbmax &  
             , tp1, tvp1, clw1)  
     endif  
   
     !-------------------------------------------------------------------  
     ! --- TRIGGERING  
     !-------------------------------------------------------------------  
   
     if (iflag_con.eq.3) then  
        CALL cv3_trigger(len, nd, icb1, plcl1, p1, th1, tv1, tvp1, pbase1, &  
             buoybase1, iflag1, sig1, w01) ! nd->na  
     endif  
   
     if (iflag_con.eq.4) then  
        CALL cv_trigger(len, nd, icb1, cbmf1, tv1, tvp1, iflag1)  
     endif  
306    
307      ! --- IF THIS POINT IS REACHED, MOIST CONVECTIVE ADJUSTMENT IS NECESSARY      ! Moist convective adjustment is necessary
308    
309      ncum = 0      ncum = 0
310      do  i = 1, len      do i = 1, klon
311         if(iflag1(i).eq.0)then         if (iflag1(i) == 0) then
312            ncum = ncum+1            ncum = ncum + 1
313            idcum(ncum) = i            idcum(ncum) = i
314         endif         endif
315      end do      end do
316    
317      IF (ncum.gt.0) THEN      IF (ncum > 0) THEN
318           ! COMPRESS THE FIELDS
319         !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^         ! (-> vectorization over convective gridpoints)
320         ! --- COMPRESS THE FIELDS         CALL cv30_compress(klon, klon, ncum, klev, iflag1, nk1, icb1, icbs1, &
321         !        (-> vectorization over convective gridpoints)              plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1, t1, q1, qs1, u1, &
322         !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^              v1, gz1, th1, h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1, &
323                sig1, w01, iflag, nk, icb, icbs, plcl, tnk, qnk, gznk, pbase, &
324         if (iflag_con.eq.3) then              buoybase, t, q, qs, u, v, gz, th, h, lv, cpn, p, ph, tv, tp, &
325            CALL cv3_compress(len, nloc, ncum, nd, iflag1, nk1, icb1, icbs1, &              tvp, clw, sig, w0)
326                 plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1, t1, q1, qs1, u1, &  
327                 v1, gz1, th1, h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1, &         ! UNDILUTE (ADIABATIC) UPDRAFT / second part :
328                 sig1, w01, iflag, nk, icb, icbs, plcl, tnk, qnk, gznk, pbase, &         ! FIND THE REST OF THE LIFTED PARCEL TEMPERATURES
329                 buoybase, t, q, qs, u, v, gz, th, h, lv, cpn, p, ph, tv, tp, &         ! &
330                 tvp, clw, sig, w0)         ! COMPUTE THE PRECIPITATION EFFICIENCIES AND THE
331         endif         ! FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD
332           ! &
333         if (iflag_con.eq.4) then         ! FIND THE LEVEL OF NEUTRAL BUOYANCY
334            CALL cv_compress( len, nloc, ncum, nd &         CALL cv30_undilute2(klon, ncum, klev, icb, icbs, nk, tnk, qnk, gznk, &
335                 , iflag1, nk1, icb1 &              t, qs, gz, p, h, tv, lv, pbase, buoybase, plcl, inb, tp, &
336                 , cbmf1, plcl1, tnk1, qnk1, gznk1 &              tvp, clw, hp, ep, sigp, buoy) !na->klev
337                 , t1, q1, qs1, u1, v1, gz1 &  
338                 , h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1 &         ! CLOSURE
339                 , iflag, nk, icb &         CALL cv30_closure(klon, ncum, klev, icb, inb, pbase, p, ph, tv, &
340                 , cbmf, plcl, tnk, qnk, gznk &              buoy, sig, w0, cape, m) ! na->klev
341                 , t, q, qs, u, v, gz, h, lv, cpn, p, ph, tv, tp, tvp, clw  &  
342                 , dph )         ! MIXING
343         endif         CALL cv30_mixing(klon, ncum, klev, klev, icb, nk, inb, t, q, qs, u, &
344                v, h, lv, hp, ep, clw, m, sig, ment, qent, uent, vent, nent, &
345         !-------------------------------------------------------------------              sij, elij, ments, qents)
346         ! --- UNDILUTE (ADIABATIC) UPDRAFT / second part :  
347         ! ---   FIND THE REST OF THE LIFTED PARCEL TEMPERATURES         ! UNSATURATED (PRECIPITATING) DOWNDRAFTS
348         ! ---   &         CALL cv30_unsat(klon, ncum, klev, klev, icb, inb, t, q, qs, gz, u, &
349         ! ---   COMPUTE THE PRECIPITATION EFFICIENCIES AND THE              v, p, ph, th, tv, lv, cpn, ep, sigp, clw, m, ment, elij, delt, &
350         ! ---   FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD              plcl, mp, qp, up, vp, wt, water, evap, b)! na->klev
351         ! ---   &  
352         ! ---   FIND THE LEVEL OF NEUTRAL BUOYANCY         ! YIELD
353         !-------------------------------------------------------------------         ! (tendencies, precipitation, variables of interface with other
354           ! processes, etc)
355         if (iflag_con.eq.3) then         CALL cv30_yield(klon, ncum, klev, klev, icb, inb, delt, t, q, u, v, &
356            CALL cv3_undilute2(nloc, ncum, nd, icb, icbs, nk         &              gz, p, ph, h, hp, lv, cpn, th, ep, clw, m, tp, mp, qp, up, vp, &
357                 , tnk, qnk, gznk, t, q, qs, gz &              wt, water, evap, b, ment, qent, uent, vent, nent, elij, sig, &
358                 , p, h, tv, lv, pbase, buoybase, plcl &              tv, tvp, iflag, precip, VPrecip, ft, fq, fu, fv, upwd, dnwd, &
359                 , inb, tp, tvp, clw, hp, ep, sigp, buoy) !na->nd              dnwd0, ma, mike, tls, tps, qcondc, wd)! na->klev
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_undilute2(nloc, ncum, nd, icb, nk &  
                , tnk, qnk, gznk, t, q, qs, gz &  
                , p, dph, h, tv, lv &  
                , inb, inbis, tp, tvp, clw, hp, ep, sigp, frac)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- CLOSURE  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_closure(nloc, ncum, nd, icb, inb               &  
                , pbase, p, ph, tv, buoy &  
                , sig, w0, cape, m) ! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_closure(nloc, ncum, nd, nk, icb &  
                , tv, tvp, p, ph, dph, plcl, cpn &  
                , iflag, cbmf)  
        endif  
   
        !-------------------------------------------------------------------  
        ! --- MIXING  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_mixing(nloc, ncum, nd, nd, icb, nk, inb, ph, t, q, &  
                qs, u, v, h, lv, qnk, hp, tv, tvp, ep, clw, m, sig, ment, &  
                qent, uent, vent, nent, sij, elij, ments, qents)  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_mixing(nloc, ncum, nd, icb, nk, inb, inbis &  
                , ph, t, q, qs, u, v, h, lv, qnk &  
                , hp, tv, tvp, ep, clw, cbmf &  
                , m, ment, qent, uent, vent, nent, sij, elij)  
        endif  
360    
361         !-------------------------------------------------------------------         ! passive tracers
362         ! --- UNSATURATED (PRECIPITATING) DOWNDRAFTS         CALL cv30_tracer(klon, ncum, klev, ment, sij, da, phi)
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_unsat(nloc, ncum, nd, nd, icb, inb     &  
                , t, q, qs, gz, u, v, p, ph &  
                , th, tv, lv, cpn, ep, sigp, clw &  
                , m, ment, elij, delt, plcl &  
                , mp, qp, up, vp, wt, water, evap, b)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_unsat(nloc, ncum, nd, inb, t, q, qs, gz, u, v, p, ph &  
                , h, lv, ep, sigp, clw, m, ment, elij &  
                , iflag, mp, qp, up, vp, wt, water, evap)  
        endif  
363    
364         !-------------------------------------------------------------------         ! UNCOMPRESS THE FIELDS
        ! --- YIELD  
        !     (tendencies, precipitation, variables of interface with other  
        !      processes, etc)  
        !-------------------------------------------------------------------  
   
        if (iflag_con.eq.3) then  
           CALL cv3_yield(nloc, ncum, nd, nd             &  
                , icb, inb, delt &  
                , t, q, u, v, gz, p, ph, h, hp, lv, cpn, th &  
                , ep, clw, m, tp, mp, qp, up, vp &  
                , wt, water, evap, b &  
                , ment, qent, uent, vent, nent, elij, sig &  
                , tv, tvp &  
                , iflag, precip, VPrecip, ft, fq, fu, fv &  
                , upwd, dnwd, dnwd0, ma, mike, tls, tps, qcondc, wd)! na->nd  
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_yield(nloc, ncum, nd, nk, icb, inb, delt &  
                , t, q, u, v, gz, p, ph, h, hp, lv, cpn &  
                , ep, clw, frac, m, mp, qp, up, vp &  
                , wt, water, evap &  
                , ment, qent, uent, vent, nent, elij &  
                , tv, tvp &  
                , iflag, wd, qprime, tprime &  
                , precip, cbmf, ft, fq, fu, fv, Ma, qcondc)  
        endif  
365    
366         !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^         ! set iflag1 = 42 for non convective points
367         ! --- passive tracers         do i = 1, klon
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
   
        if (iflag_con.eq.3) then  
           CALL cv3_tracer(nloc, len, ncum, nd, nd, &  
                ment, sij, da, phi)  
        endif  
   
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! --- UNCOMPRESS THE FIELDS  
        !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
        ! set iflag1  = 42 for non convective points  
        do  i = 1, len  
368            iflag1(i) = 42            iflag1(i) = 42
369         end do         end do
370    
371         if (iflag_con.eq.3) then         CALL cv30_uncompress(idcum(:ncum), iflag, precip, VPrecip, sig, w0, &
372            CALL cv3_uncompress(nloc, len, ncum, nd, idcum, iflag, precip, &              ft, fq, fu, fv, inb, Ma, upwd, dnwd, dnwd0, qcondc, wd, cape, &
373                 VPrecip, sig, w0, ft, fq, fu, fv, inb, Ma, upwd, dnwd, dnwd0, &              da, phi, mp, iflag1, precip1, VPrecip1, sig1, w01, ft1, fq1, &
374                 qcondc, wd, cape, da, phi, mp, iflag1, precip1, VPrecip1, &              fu1, fv1, inb1, Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, &
375                 sig1, w01, ft1, fq1, fu1, fv1, inb1, Ma1, upwd1, dnwd1, &              cape1, da1, phi1, mp1)
376                 dnwd01, qcondc1, wd1, cape1, da1, phi1, mp1)      ENDIF
        endif  
   
        if (iflag_con.eq.4) then  
           CALL cv_uncompress(nloc, len, ncum, nd, idcum &  
                , iflag &  
                , precip, cbmf &  
                , ft, fq, fu, fv &  
                , Ma, qcondc             &  
                , iflag1 &  
                , precip1, cbmf1 &  
                , ft1, fq1, fu1, fv1 &  
                , Ma1, qcondc1 )  
        endif  
     ENDIF ! ncum>0  
377    
378    end SUBROUTINE cv_driver    end SUBROUTINE cv_driver
379    

Legend:
Removed from v.99  
changed lines
  Added in v.185

  ViewVC Help
Powered by ViewVC 1.1.21