/[lmdze]/trunk/Sources/phylmd/cv_driver.f
ViewVC logotype

Diff of /trunk/Sources/phylmd/cv_driver.f

Parent Directory Parent Directory | Revision Log Revision Log | View Patch Patch

trunk/libf/phylmd/cv_driver.f revision 47 by guez, Fri Jul 1 15:00:48 2011 UTC trunk/Sources/phylmd/cv_driver.f revision 187 by guez, Mon Mar 21 18:01:02 2016 UTC
# Line 1  Line 1 
1  !  module cv_driver_m
 ! $Header: /home/cvsroot/LMDZ4/libf/phylmd/cv_driver.F,v 1.3 2005/04/15 12:36:17 lmdzadmin Exp $  
 !  
       SUBROUTINE cv_driver(len,nd,ndp1,ntra,iflag_con,  
      &                   t1,q1,qs1,u1,v1,tra1,  
      &                   p1,ph1,iflag1,ft1,fq1,fu1,fv1,ftra1,  
      &                   precip1,VPrecip1,  
      &                   cbmf1,sig1,w01,  
      &                   icb1,inb1,  
      &                   delt,Ma1,upwd1,dnwd1,dnwd01,qcondc1,wd1,cape1,  
      &                   da1,phi1,mp1)  
 C  
       use dimens_m  
       use dimphy  
       implicit none  
 C  
 C.............................START PROLOGUE............................  
 C  
 C PARAMETERS:  
 C      Name            Type         Usage            Description  
 C   ----------      ----------     -------  ----------------------------  
 C  
 C      len           Integer        Input        first (i) dimension  
 C      nd            Integer        Input        vertical (k) dimension  
 C      ndp1          Integer        Input        nd + 1  
 C      ntra          Integer        Input        number of tracors  
 C      iflag_con     Integer        Input        version of convect (3/4)  
 C      t1            Real           Input        temperature  
 C      q1            Real           Input        specific hum  
 C      qs1           Real           Input        sat specific hum  
 C      u1            Real           Input        u-wind  
 C      v1            Real           Input        v-wind  
 C      tra1          Real           Input        tracors  
 C      p1            Real           Input        full level pressure  
 C      ph1           Real           Input        half level pressure  
 C      iflag1        Integer        Output       flag for Emanuel conditions  
 C      ft1           Real           Output       temp tend  
 C      fq1           Real           Output       spec hum tend  
 C      fu1           Real           Output       u-wind tend  
 C      fv1           Real           Output       v-wind tend  
 C      ftra1         Real           Output       tracor tend  
 C      precip1       Real           Output       precipitation  
 C      VPrecip1      Real           Output       vertical profile of precipitations  
 C      cbmf1         Real           Output       cloud base mass flux  
 C      sig1          Real           In/Out       section adiabatic updraft  
 C      w01           Real           In/Out       vertical velocity within adiab updraft  
 C      delt          Real           Input        time step  
 C      Ma1           Real           Output       mass flux adiabatic updraft  
 C      upwd1         Real           Output       total upward mass flux (adiab+mixed)  
 C      dnwd1         Real           Output       saturated downward mass flux (mixed)  
 C      dnwd01        Real           Output       unsaturated downward mass flux  
 C      qcondc1       Real           Output       in-cld mixing ratio of condensed water  
 C      wd1           Real           Output       downdraft velocity scale for sfc fluxes  
 C      cape1         Real           Output       CAPE  
 C  
 C S. Bony, Mar 2002:  
 C       * Several modules corresponding to different physical processes  
 C       * Several versions of convect may be used:  
 C               - iflag_con=3: version lmd  (previously named convect3)  
 C               - iflag_con=4: version 4.3b (vect. version, previously convect1/2)  
 C   + tard:     - iflag_con=5: version lmd with ice (previously named convectg)  
 C S. Bony, Oct 2002:  
 C       * Vectorization of convect3 (ie version lmd)  
 C  
 C..............................END PROLOGUE.............................  
 c  
 c  
   
       integer len  
       integer nd  
       integer ndp1  
       integer noff  
       integer, intent(in):: iflag_con  
       integer ntra  
       real t1(len,nd)  
       real q1(len,nd)  
       real qs1(len,nd)  
       real u1(len,nd)  
       real v1(len,nd)  
       real p1(len,nd)  
       real ph1(len,ndp1)  
       integer iflag1(len)  
       real ft1(len,nd)  
       real fq1(len,nd)  
       real fu1(len,nd)  
       real fv1(len,nd)  
       real precip1(len)  
       real cbmf1(len)  
       real VPrecip1(len,nd+1)  
       real Ma1(len,nd)  
       real upwd1(len,nd)  
       real dnwd1(len,nd)  
       real dnwd01(len,nd)  
   
       real qcondc1(len,nd)     ! cld  
       real wd1(len)            ! gust  
       real cape1(len)      
   
       real da1(len,nd),phi1(len,nd,nd),mp1(len,nd)  
       real da(len,nd),phi(len,nd,nd),mp(len,nd)  
       real, intent(in):: tra1(len,nd,ntra)  
       real ftra1(len,nd,ntra)  
   
       real, intent(in):: delt  
   
 !-------------------------------------------------------------------  
 ! --- ARGUMENTS  
 !-------------------------------------------------------------------  
 ! --- On input:  
 !  
 !  t:   Array of absolute temperature (K) of dimension ND, with first  
 !       index corresponding to lowest model level. Note that this array  
 !       will be altered by the subroutine if dry convective adjustment  
 !       occurs and if IPBL is not equal to 0.  
 !  
 !  q:   Array of specific humidity (gm/gm) of dimension ND, with first  
 !       index corresponding to lowest model level. Must be defined  
 !       at same grid levels as T. Note that this array will be altered  
 !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
 !  
 !  qs:  Array of saturation specific humidity of dimension ND, with first  
 !       index corresponding to lowest model level. Must be defined  
 !       at same grid levels as T. Note that this array will be altered  
 !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
 !  
 !  u:   Array of zonal wind velocity (m/s) of dimension ND, witth first  
 !       index corresponding with the lowest model level. Defined at  
 !       same levels as T. Note that this array will be altered if  
 !       dry convective adjustment occurs and if IPBL is not equal to 0.  
 !  
 !  v:   Same as u but for meridional velocity.  
 !  
 !  tra: Array of passive tracer mixing ratio, of dimensions (ND,NTRA),  
 !       where NTRA is the number of different tracers. If no  
 !       convective tracer transport is needed, define a dummy  
 !       input array of dimension (ND,1). Tracers are defined at  
 !       same vertical levels as T. Note that this array will be altered  
 !       if dry convective adjustment occurs and if IPBL is not equal to 0.  
 !  
 !  p:   Array of pressure (mb) of dimension ND, with first  
 !       index corresponding to lowest model level. Must be defined  
 !       at same grid levels as T.  
 !  
 !  ph:  Array of pressure (mb) of dimension ND+1, with first index  
 !       corresponding to lowest level. These pressures are defined at  
 !       levels intermediate between those of P, T, Q and QS. The first  
 !       value of PH should be greater than (i.e. at a lower level than)  
 !       the first value of the array P.  
 !  
 !  nl:  The maximum number of levels to which convection can penetrate, plus 1.  
 !       NL MUST be less than or equal to ND-1.  
 !  
 !  delt: The model time step (sec) between calls to CONVECT  
 !  
 !----------------------------------------------------------------------------  
 ! ---   On Output:  
 !  
 !  iflag: An output integer whose value denotes the following:  
 !       VALUE   INTERPRETATION  
 !       -----   --------------  
 !         0     Moist convection occurs.  
 !         1     Moist convection occurs, but a CFL condition  
 !               on the subsidence warming is violated. This  
 !               does not cause the scheme to terminate.  
 !         2     Moist convection, but no precip because ep(inb) lt 0.0001  
 !         3     No moist convection because new cbmf is 0 and old cbmf is 0.  
 !         4     No moist convection; atmosphere is not  
 !               unstable  
 !         6     No moist convection because ihmin le minorig.  
 !         7     No moist convection because unreasonable  
 !               parcel level temperature or specific humidity.  
 !         8     No moist convection: lifted condensation  
 !               level is above the 200 mb level.  
 !         9     No moist convection: cloud base is higher  
 !               then the level NL-1.  
 !  
 !  ft:   Array of temperature tendency (K/s) of dimension ND, defined at same  
 !        grid levels as T, Q, QS and P.  
 !  
 !  fq:   Array of specific humidity tendencies ((gm/gm)/s) of dimension ND,  
 !        defined at same grid levels as T, Q, QS and P.  
 !  
 !  fu:   Array of forcing of zonal velocity (m/s^2) of dimension ND,  
 !        defined at same grid levels as T.  
 !  
 !  fv:   Same as FU, but for forcing of meridional velocity.  
 !  
 !  ftra: Array of forcing of tracer content, in tracer mixing ratio per  
 !        second, defined at same levels as T. Dimensioned (ND,NTRA).  
 !  
 !  precip: Scalar convective precipitation rate (mm/day).  
 !  
 !  VPrecip: Vertical profile of convective precipitation (kg/m2/s).  
 !  
 !  wd:   A convective downdraft velocity scale. For use in surface  
 !        flux parameterizations. See convect.ps file for details.  
 !  
 !  tprime: A convective downdraft temperature perturbation scale (K).  
 !          For use in surface flux parameterizations. See convect.ps  
 !          file for details.  
 !  
 !  qprime: A convective downdraft specific humidity  
 !          perturbation scale (gm/gm).  
 !          For use in surface flux parameterizations. See convect.ps  
 !          file for details.  
 !  
 !  cbmf: The cloud base mass flux ((kg/m**2)/s). THIS SCALAR VALUE MUST  
 !        BE STORED BY THE CALLING PROGRAM AND RETURNED TO CONVECT AT  
 !        ITS NEXT CALL. That is, the value of CBMF must be "remembered"  
 !        by the calling program between calls to CONVECT.  
 !  
 !  det:   Array of detrainment mass flux of dimension ND.  
 !  
 !-------------------------------------------------------------------  
 c  
 c  Local arrays  
 c  
   
       integer i,k,n,il,j  
       integer icbmax  
       integer nk1(klon)  
       integer icb1(klon)  
       integer inb1(klon)  
       integer icbs1(klon)  
   
       real plcl1(klon)  
       real tnk1(klon)  
       real qnk1(klon)  
       real gznk1(klon)  
       real pnk1(klon)  
       real qsnk1(klon)  
       real pbase1(klon)  
       real buoybase1(klon)  
   
       real lv1(klon,klev)  
       real cpn1(klon,klev)  
       real tv1(klon,klev)  
       real gz1(klon,klev)  
       real hm1(klon,klev)  
       real h1(klon,klev)  
       real tp1(klon,klev)  
       real tvp1(klon,klev)  
       real clw1(klon,klev)  
       real sig1(klon,klev)  
       real w01(klon,klev)  
       real th1(klon,klev)  
 c  
       integer ncum  
 c  
 c (local) compressed fields:  
 c  
       integer nloc  
       parameter (nloc=klon) ! pour l'instant  
   
       integer idcum(nloc)  
       integer iflag(nloc),nk(nloc),icb(nloc)  
       integer nent(nloc,klev)  
       integer icbs(nloc)  
       integer inb(nloc), inbis(nloc)  
   
       real cbmf(nloc),plcl(nloc),tnk(nloc),qnk(nloc),gznk(nloc)  
       real t(nloc,klev),q(nloc,klev),qs(nloc,klev)  
       real u(nloc,klev),v(nloc,klev)  
       real gz(nloc,klev),h(nloc,klev),lv(nloc,klev),cpn(nloc,klev)  
       real p(nloc,klev),ph(nloc,klev+1),tv(nloc,klev),tp(nloc,klev)  
       real clw(nloc,klev)  
       real dph(nloc,klev)  
       real pbase(nloc), buoybase(nloc), th(nloc,klev)  
       real tvp(nloc,klev)  
       real sig(nloc,klev), w0(nloc,klev)  
       real hp(nloc,klev), ep(nloc,klev), sigp(nloc,klev)  
       real frac(nloc), buoy(nloc,klev)  
       real cape(nloc)  
       real m(nloc,klev), ment(nloc,klev,klev), qent(nloc,klev,klev)  
       real uent(nloc,klev,klev), vent(nloc,klev,klev)  
       real ments(nloc,klev,klev), qents(nloc,klev,klev)  
       real sij(nloc,klev,klev), elij(nloc,klev,klev)  
       real qp(nloc,klev), up(nloc,klev), vp(nloc,klev)  
       real wt(nloc,klev), water(nloc,klev), evap(nloc,klev)  
       real b(nloc,klev), ft(nloc,klev), fq(nloc,klev)  
       real fu(nloc,klev), fv(nloc,klev)  
       real upwd(nloc,klev), dnwd(nloc,klev), dnwd0(nloc,klev)  
       real Ma(nloc,klev), mike(nloc,klev), tls(nloc,klev)  
       real tps(nloc,klev), qprime(nloc), tprime(nloc)  
       real precip(nloc)  
       real VPrecip(nloc,klev+1)  
       real tra(nloc,klev,ntra), trap(nloc,klev,ntra)  
       real ftra(nloc,klev,ntra), traent(nloc,klev,klev,ntra)  
       real qcondc(nloc,klev)  ! cld  
       real wd(nloc)           ! gust  
   
 !-------------------------------------------------------------------  
 ! --- SET CONSTANTS AND PARAMETERS  
 !-------------------------------------------------------------------  
   
 c -- set simulation flags:  
 c   (common cvflag)  
   
        CALL cv_flag  
   
 c -- set thermodynamical constants:  
 c       (common cvthermo)  
   
        CALL cv_thermo(iflag_con)  
   
 c -- set convect parameters  
 c  
 c       includes microphysical parameters and parameters that  
 c       control the rate of approach to quasi-equilibrium)  
 c       (common cvparam)  
   
       if (iflag_con.eq.3) then  
        CALL cv3_param(nd,delt)  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_param(nd)  
       endif  
   
 !---------------------------------------------------------------------  
 ! --- INITIALIZE OUTPUT ARRAYS AND PARAMETERS  
 !---------------------------------------------------------------------  
   
       do 20 k=1,nd  
         do 10 i=1,len  
          ft1(i,k)=0.0  
          fq1(i,k)=0.0  
          fu1(i,k)=0.0  
          fv1(i,k)=0.0  
          tvp1(i,k)=0.0  
          tp1(i,k)=0.0  
          clw1(i,k)=0.0  
 cym  
          clw(i,k)=0.0      
          gz1(i,k) = 0.  
          VPrecip1(i,k) = 0.  
          Ma1(i,k)=0.0  
          upwd1(i,k)=0.0  
          dnwd1(i,k)=0.0  
          dnwd01(i,k)=0.0  
          qcondc1(i,k)=0.0  
  10     continue  
  20   continue  
   
       do 30 j=1,ntra  
        do 31 k=1,nd  
         do 32 i=1,len  
          ftra1(i,k,j)=0.0  
  32     continue      
  31    continue      
  30   continue      
   
       do 60 i=1,len  
         precip1(i)=0.0  
         iflag1(i)=0  
         wd1(i)=0.0  
         cape1(i)=0.0  
         VPrecip1(i,nd+1)=0.0  
  60   continue  
   
       if (iflag_con.eq.3) then  
         do il=1,len  
          sig1(il,nd)=sig1(il,nd)+1.  
          sig1(il,nd)=amin1(sig1(il,nd),12.1)  
         enddo  
       endif  
   
 !--------------------------------------------------------------------  
 ! --- CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY  
 !--------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_prelim(len,nd,ndp1,t1,q1,p1,ph1            ! nd->na  
      o               ,lv1,cpn1,tv1,gz1,h1,hm1,th1)  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_prelim(len,nd,ndp1,t1,q1,p1,ph1  
      o               ,lv1,cpn1,tv1,gz1,h1,hm1)  
       endif  
   
 !--------------------------------------------------------------------  
 ! --- CONVECTIVE FEED  
 !--------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_feed(len,nd,t1,q1,qs1,p1,ph1,hm1,gz1           ! nd->na  
      o         ,nk1,icb1,icbmax,iflag1,tnk1,qnk1,gznk1,plcl1)  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_feed(len,nd,t1,q1,qs1,p1,hm1,gz1  
      o         ,nk1,icb1,icbmax,iflag1,tnk1,qnk1,gznk1,plcl1)  
       endif  
   
 !--------------------------------------------------------------------  
 ! --- UNDILUTE (ADIABATIC) UPDRAFT / 1st part  
 ! (up through ICB for convect4, up through ICB+1 for convect3)  
 !     Calculates the lifted parcel virtual temperature at nk, the  
 !     actual temperature, and the adiabatic liquid water content.  
 !--------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_undilute1(len,nd,t1,q1,qs1,gz1,plcl1,p1,nk1,icb1  ! nd->na  
      o                        ,tp1,tvp1,clw1,icbs1)  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_undilute1(len,nd,t1,q1,qs1,gz1,p1,nk1,icb1,icbmax  
      :                        ,tp1,tvp1,clw1)  
       endif  
   
 !-------------------------------------------------------------------  
 ! --- TRIGGERING  
 !-------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_trigger(len,nd,icb1,plcl1,p1,th1,tv1,tvp1      ! nd->na  
      o                 ,pbase1,buoybase1,iflag1,sig1,w01)  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_trigger(len,nd,icb1,cbmf1,tv1,tvp1,iflag1)  
       endif  
   
 !=====================================================================  
 ! --- IF THIS POINT IS REACHED, MOIST CONVECTIVE ADJUSTMENT IS NECESSARY  
 !=====================================================================  
   
       ncum=0  
       do 400 i=1,len  
         if(iflag1(i).eq.0)then  
            ncum=ncum+1  
            idcum(ncum)=i  
         endif  
  400  continue  
   
 c       print*,'klon, ncum = ',len,ncum  
   
       IF (ncum.gt.0) THEN  
   
 !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
 ! --- COMPRESS THE FIELDS  
 !               (-> vectorization over convective gridpoints)  
 !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
   
       if (iflag_con.eq.3) then  
        CALL cv3_compress( len,nloc,ncum,nd,ntra  
      :    ,iflag1,nk1,icb1,icbs1  
      :    ,plcl1,tnk1,qnk1,gznk1,pbase1,buoybase1  
      :    ,t1,q1,qs1,u1,v1,gz1,th1  
      :    ,tra1  
      :    ,h1,lv1,cpn1,p1,ph1,tv1,tp1,tvp1,clw1  
      :    ,sig1,w01  
      o    ,iflag,nk,icb,icbs  
      o    ,plcl,tnk,qnk,gznk,pbase,buoybase  
      o    ,t,q,qs,u,v,gz,th  
      o    ,tra  
      o    ,h,lv,cpn,p,ph,tv,tp,tvp,clw  
      o    ,sig,w0  )  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_compress( len,nloc,ncum,nd  
      :    ,iflag1,nk1,icb1  
      :    ,cbmf1,plcl1,tnk1,qnk1,gznk1  
      :    ,t1,q1,qs1,u1,v1,gz1  
      :    ,h1,lv1,cpn1,p1,ph1,tv1,tp1,tvp1,clw1  
      o    ,iflag,nk,icb  
      o    ,cbmf,plcl,tnk,qnk,gznk  
      o    ,t,q,qs,u,v,gz,h,lv,cpn,p,ph,tv,tp,tvp,clw  
      o    ,dph )  
       endif  
   
 !-------------------------------------------------------------------  
 ! --- UNDILUTE (ADIABATIC) UPDRAFT / second part :  
 ! ---   FIND THE REST OF THE LIFTED PARCEL TEMPERATURES  
 ! ---   &  
 ! ---   COMPUTE THE PRECIPITATION EFFICIENCIES AND THE  
 ! ---   FRACTION OF PRECIPITATION FALLING OUTSIDE OF CLOUD  
 ! ---   &  
 ! ---   FIND THE LEVEL OF NEUTRAL BUOYANCY  
 !-------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_undilute2(nloc,ncum,nd,icb,icbs,nk        !na->nd  
      :                        ,tnk,qnk,gznk,t,q,qs,gz  
      :                        ,p,h,tv,lv,pbase,buoybase,plcl  
      o                        ,inb,tp,tvp,clw,hp,ep,sigp,buoy)  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_undilute2(nloc,ncum,nd,icb,nk  
      :                        ,tnk,qnk,gznk,t,q,qs,gz  
      :                        ,p,dph,h,tv,lv  
      o             ,inb,inbis,tp,tvp,clw,hp,ep,sigp,frac)  
       endif  
   
 !-------------------------------------------------------------------  
 ! --- CLOSURE  
 !-------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_closure(nloc,ncum,nd,icb,inb              ! na->nd  
      :                       ,pbase,p,ph,tv,buoy  
      o                       ,sig,w0,cape,m)  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_closure(nloc,ncum,nd,nk,icb  
      :                ,tv,tvp,p,ph,dph,plcl,cpn  
      o                ,iflag,cbmf)  
       endif  
   
 !-------------------------------------------------------------------  
 ! --- MIXING  
 !-------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_mixing(nloc,ncum,nd,nd,ntra,icb,nk,inb    ! na->nd  
      :                     ,ph,t,q,qs,u,v,tra,h,lv,qnk  
      :                     ,hp,tv,tvp,ep,clw,m,sig  
      o ,ment,qent,uent,vent, nent,sij,elij,ments,qents,traent)  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_mixing(nloc,ncum,nd,icb,nk,inb,inbis  
      :                     ,ph,t,q,qs,u,v,h,lv,qnk  
      :                     ,hp,tv,tvp,ep,clw,cbmf  
      o                     ,m,ment,qent,uent,vent,nent,sij,elij)  
       endif  
   
 !-------------------------------------------------------------------  
 ! --- UNSATURATED (PRECIPITATING) DOWNDRAFTS  
 !-------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_unsat(nloc,ncum,nd,nd,ntra,icb,inb    ! na->nd  
      :               ,t,q,qs,gz,u,v,tra,p,ph  
      :               ,th,tv,lv,cpn,ep,sigp,clw  
      :               ,m,ment,elij,delt,plcl  
      o          ,mp,qp,up,vp,trap,wt,water,evap,b)  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_unsat(nloc,ncum,nd,inb,t,q,qs,gz,u,v,p,ph  
      :                   ,h,lv,ep,sigp,clw,m,ment,elij  
      o                   ,iflag,mp,qp,up,vp,wt,water,evap)  
       endif  
   
 !-------------------------------------------------------------------  
 ! --- YIELD  
 !     (tendencies, precipitation, variables of interface with other  
 !      processes, etc)  
 !-------------------------------------------------------------------  
   
       if (iflag_con.eq.3) then  
        CALL cv3_yield(nloc,ncum,nd,nd,ntra            ! na->nd  
      :                     ,icb,inb,delt  
      :                     ,t,q,u,v,tra,gz,p,ph,h,hp,lv,cpn,th  
      :                     ,ep,clw,m,tp,mp,qp,up,vp,trap  
      :                     ,wt,water,evap,b  
      :                     ,ment,qent,uent,vent,nent,elij,traent,sig  
      :                     ,tv,tvp  
      o                     ,iflag,precip,VPrecip,ft,fq,fu,fv,ftra  
      o                     ,upwd,dnwd,dnwd0,ma,mike,tls,tps,qcondc,wd)  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_yield(nloc,ncum,nd,nk,icb,inb,delt  
      :              ,t,q,u,v,gz,p,ph,h,hp,lv,cpn  
      :              ,ep,clw,frac,m,mp,qp,up,vp  
      :              ,wt,water,evap  
      :              ,ment,qent,uent,vent,nent,elij  
      :              ,tv,tvp  
      o              ,iflag,wd,qprime,tprime  
      o              ,precip,cbmf,ft,fq,fu,fv,Ma,qcondc)  
       endif  
   
 !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
 ! --- passive tracers  
 !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
   
       if (iflag_con.eq.3) then  
        CALL cv3_tracer(nloc,len,ncum,nd,nd,  
      :                  ment,sij,da,phi)  
       endif  
   
 !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
 ! --- UNCOMPRESS THE FIELDS  
 !^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^  
 c set iflag1 =42 for non convective points  
       do  i=1,len  
         iflag1(i)=42  
       end do  
 c  
       if (iflag_con.eq.3) then  
        CALL cv3_uncompress(nloc,len,ncum,nd,ntra,idcum  
      :          ,iflag  
      :          ,precip,VPrecip,sig,w0  
      :          ,ft,fq,fu,fv,ftra  
      :          ,inb  
      :          ,Ma,upwd,dnwd,dnwd0,qcondc,wd,cape  
      :          ,da,phi,mp  
      o          ,iflag1  
      o          ,precip1,VPrecip1,sig1,w01  
      o          ,ft1,fq1,fu1,fv1,ftra1  
      o          ,inb1  
      o          ,Ma1,upwd1,dnwd1,dnwd01,qcondc1,wd1,cape1  
      o          ,da1,phi1,mp1)  
       endif  
   
       if (iflag_con.eq.4) then  
        CALL cv_uncompress(nloc,len,ncum,nd,idcum  
      :          ,iflag  
      :          ,precip,cbmf  
      :          ,ft,fq,fu,fv  
      :          ,Ma,qcondc              
      o          ,iflag1  
      o          ,precip1,cbmf1  
      o          ,ft1,fq1,fu1,fv1  
      o          ,Ma1,qcondc1 )            
       endif  
   
       ENDIF ! ncum>0  
   
 9999  continue  
   
       return  
       end  
   
 !==================================================================  
       SUBROUTINE cv_flag  
             use cvflag  
       implicit none  
   
   
 c -- si .TRUE., on rend la gravite plus explicite et eventuellement  
 c differente de 10.0 dans convect3:  
       cvflag_grav = .TRUE.  
   
       return  
       end  
   
 !==================================================================  
       SUBROUTINE cv_thermo(iflag_con)  
       use SUPHEC_M  
             use cvthermo  
           implicit none  
   
 c-------------------------------------------------------------  
 c Set thermodynamical constants for convectL  
 c-------------------------------------------------------------  
   
   
       integer, intent(in):: iflag_con  
   
   
 c original set from convect:  
       if (iflag_con.eq.4) then  
        cpd=1005.7  
        cpv=1870.0  
        cl=4190.0  
        rrv=461.5  
        rrd=287.04  
        lv0=2.501E6  
        g=9.8  
        t0=273.15  
        grav=g  
       endif  
   
 c constants consistent with LMDZ:  
       if (iflag_con.eq.3) then  
        cpd = RCPD  
        cpv = RCPV  
        cl  = RCW  
        rrv = RV  
        rrd = RD  
        lv0 = RLVTT  
        g   = RG     ! not used in convect3  
 c ori      t0  = RTT  
        t0  = 273.15 ! convect3 (RTT=273.16)  
 c maf       grav= 10.    ! implicitely or explicitely used in convect3  
        grav= g    ! implicitely or explicitely used in convect3  
       endif  
   
       rowl=1000.0 !(a quelle variable de SUPHEC_M cela correspond-il?)  
   
       clmcpv=cl-cpv  
       clmcpd=cl-cpd  
       cpdmcp=cpd-cpv  
       cpvmcpd=cpv-cpd  
       cpvmcl=cl-cpv ! for convect3  
       eps=rrd/rrv  
       epsi=1.0/eps  
       epsim1=epsi-1.0  
 c      ginv=1.0/g  
       ginv=1.0/grav  
       hrd=0.5*rrd  
2    
3        return    implicit none
       end  
4    
5    contains
6    
7      SUBROUTINE cv_driver(t1, q1, qs1, u1, v1, p1, ph1, iflag1, ft1, fq1, fu1, &
8           fv1, precip1, VPrecip1, sig1, w01, icb1, inb1, delt, Ma1, upwd1, &
9           dnwd1, dnwd01, qcondc1, wd1, cape1, da1, phi1, mp1)
10    
11        ! From LMDZ4/libf/phylmd/cv_driver.F, version 1.3, 2005/04/15 12:36:17
12        ! Main driver for convection
13        ! Author: S. Bony, March 2002
14    
15        ! Several modules corresponding to different physical processes
16    
17        use cv30_closure_m, only: cv30_closure
18        use cv30_compress_m, only: cv30_compress
19        use cv30_feed_m, only: cv30_feed
20        use cv30_mixing_m, only: cv30_mixing
21        use cv30_param_m, only: cv30_param
22        use cv30_prelim_m, only: cv30_prelim
23        use cv30_tracer_m, only: cv30_tracer
24        use cv30_uncompress_m, only: cv30_uncompress
25        use cv30_undilute2_m, only: cv30_undilute2
26        use cv30_unsat_m, only: cv30_unsat
27        use cv30_yield_m, only: cv30_yield
28        USE dimphy, ONLY: klev, klon
29    
30        real, intent(in):: t1(klon, klev)
31        ! temperature (K), with first index corresponding to lowest model
32        ! level
33    
34        real, intent(in):: q1(klon, klev)
35        ! Specific humidity, with first index corresponding to lowest
36        ! model level. Must be defined at same grid levels as T1.
37    
38        real, intent(in):: qs1(klon, klev)
39        ! Saturation specific humidity, with first index corresponding to
40        ! lowest model level. Must be defined at same grid levels as
41        ! T1.
42    
43        real, intent(in):: u1(klon, klev), v1(klon, klev)
44        ! Zonal wind and meridional velocity (m/s), witth first index
45        ! corresponding with the lowest model level. Defined at same
46        ! levels as T1.
47    
48        real, intent(in):: p1(klon, klev)
49        ! Full level pressure (mb) of dimension KLEV, with first index
50        ! corresponding to lowest model level. Must be defined at same
51        ! grid levels as T1.
52    
53        real, intent(in):: ph1(klon, klev + 1)
54        ! Half level pressure (mb), with first index corresponding to
55        ! lowest level. These pressures are defined at levels intermediate
56        ! between those of P1, T1, Q1 and QS1. The first value of PH
57        ! should be greater than (i.e. at a lower level than) the first
58        ! value of the array P1.
59    
60        integer, intent(out):: iflag1(klon)
61        ! Flag for Emanuel conditions.
62    
63        ! 0: Moist convection occurs.
64    
65        ! 1: Moist convection occurs, but a CFL condition on the
66        ! subsidence warming is violated. This does not cause the scheme
67        ! to terminate.
68    
69        ! 2: Moist convection, but no precipitation because ep(inb) < 1e-4
70    
71        ! 3: No moist convection because new cbmf is 0 and old cbmf is 0.
72    
73        ! 4: No moist convection; atmosphere is not unstable
74    
75        ! 6: No moist convection because ihmin le minorig.
76    
77        ! 7: No moist convection because unreasonable parcel level
78        ! temperature or specific humidity.
79    
80        ! 8: No moist convection: lifted condensation level is above the
81        ! 200 mb level.
82    
83        ! 9: No moist convection: cloud base is higher then the level NL-1.
84    
85        real, intent(out):: ft1(klon, klev)
86        ! Temperature tendency (K/s), defined at same grid levels as T1,
87        ! Q1, QS1 and P1.
88    
89        real, intent(out):: fq1(klon, klev)
90        ! Specific humidity tendencies (s-1), defined at same grid levels
91        ! as T1, Q1, QS1 and P1.
92    
93        real, intent(out):: fu1(klon, klev), fv1(klon, klev)
94        ! Forcing (tendency) of zonal and meridional velocity (m/s^2),
95        ! defined at same grid levels as T1.
96    
97        real, intent(out):: precip1(klon) ! convective precipitation rate (mm/day)
98    
99        real, intent(out):: VPrecip1(klon, klev + 1)
100        ! vertical profile of convective precipitation (kg/m2/s)
101    
102        real, intent(inout):: sig1(klon, klev) ! section adiabatic updraft
103    
104        real, intent(inout):: w01(klon, klev)
105        ! vertical velocity within adiabatic updraft
106    
107        integer, intent(out):: icb1(klon)
108        integer, intent(inout):: inb1(klon)
109        real, intent(in):: delt ! the model time step (sec) between calls
110    
111        real Ma1(klon, klev) ! Output mass flux adiabatic updraft
112    
113        real, intent(out):: upwd1(klon, klev)
114        ! total upward mass flux (adiab + mixed)
115    
116        real, intent(out):: dnwd1(klon, klev) ! saturated downward mass flux (mixed)
117        real, intent(out):: dnwd01(klon, klev) ! unsaturated downward mass flux
118    
119        real qcondc1(klon, klev) ! Output in-cld mixing ratio of condensed water
120    
121        real wd1(klon) ! gust
122        ! Output downdraft velocity scale for surface fluxes
123        ! A convective downdraft velocity scale. For use in surface
124        ! flux parameterizations. See convect.ps file for details.
125    
126        real cape1(klon) ! Output
127        real, intent(inout):: da1(klon, klev), phi1(klon, klev, klev)
128        real, intent(inout):: mp1(klon, klev)
129    
130        ! Local:
131    
132        real da(klon, klev), phi(klon, klev, klev), mp(klon, klev)
133    
134        integer i, k, il
135        integer icbmax
136        integer nk1(klon)
137        integer icbs1(klon)
138    
139        real plcl1(klon)
140        real tnk1(klon)
141        real qnk1(klon)
142        real gznk1(klon)
143        real pbase1(klon)
144        real buoybase1(klon)
145    
146        real lv1(klon, klev)
147        real cpn1(klon, klev)
148        real tv1(klon, klev)
149        real gz1(klon, klev)
150        real hm1(klon, klev)
151        real h1(klon, klev)
152        real tp1(klon, klev)
153        real tvp1(klon, klev)
154        real clw1(klon, klev)
155        real th1(klon, klev)
156    
157        integer ncum
158    
159        ! Compressed fields:
160    
161        integer idcum(klon)
162        integer iflag(klon), nk(klon), icb(klon)
163        integer nent(klon, klev)
164        integer icbs(klon)
165        integer inb(klon)
166    
167        real plcl(klon), tnk(klon), qnk(klon), gznk(klon)
168        real t(klon, klev), q(klon, klev), qs(klon, klev)
169        real u(klon, klev), v(klon, klev)
170        real gz(klon, klev), h(klon, klev), lv(klon, klev), cpn(klon, klev)
171        real p(klon, klev), ph(klon, klev + 1), tv(klon, klev), tp(klon, klev)
172        real clw(klon, klev)
173        real pbase(klon), buoybase(klon), th(klon, klev)
174        real tvp(klon, klev)
175        real sig(klon, klev), w0(klon, klev)
176        real hp(klon, klev), ep(klon, klev), sigp(klon, klev)
177        real buoy(klon, klev)
178        real cape(klon)
179        real m(klon, klev), ment(klon, klev, klev), qent(klon, klev, klev)
180        real uent(klon, klev, klev), vent(klon, klev, klev)
181        real ments(klon, klev, klev), qents(klon, klev, klev)
182        real sij(klon, klev, klev), elij(klon, klev, klev)
183        real qp(klon, klev), up(klon, klev), vp(klon, klev)
184        real wt(klon, klev), water(klon, klev), evap(klon, klev)
185        real b(klon, klev), ft(klon, klev), fq(klon, klev)
186        real fu(klon, klev), fv(klon, klev)
187        real upwd(klon, klev), dnwd(klon, klev), dnwd0(klon, klev)
188        real Ma(klon, klev), mike(klon, klev), tls(klon, klev)
189        real tps(klon, klev)
190        real precip(klon)
191        real VPrecip(klon, klev + 1)
192        real qcondc(klon, klev) ! cld
193        real wd(klon) ! gust
194    
195        !-------------------------------------------------------------------
196    
197        ! SET CONSTANTS AND PARAMETERS
198    
199        ! set thermodynamical constants:
200        ! (common cvthermo)
201        CALL cv_thermo
202    
203        ! set convect parameters
204        ! includes microphysical parameters and parameters that
205        ! control the rate of approach to quasi-equilibrium)
206        ! (common cvparam)
207        CALL cv30_param(delt)
208    
209        ! INITIALIZE OUTPUT ARRAYS AND PARAMETERS
210    
211        do k = 1, klev
212           do i = 1, klon
213              ft1(i, k) = 0.
214              fq1(i, k) = 0.
215              fu1(i, k) = 0.
216              fv1(i, k) = 0.
217              tvp1(i, k) = 0.
218              tp1(i, k) = 0.
219              clw1(i, k) = 0.
220              clw(i, k) = 0.
221              gz1(i, k) = 0.
222              VPrecip1(i, k) = 0.
223              Ma1(i, k) = 0.
224              upwd1(i, k) = 0.
225              dnwd1(i, k) = 0.
226              dnwd01(i, k) = 0.
227              qcondc1(i, k) = 0.
228           end do
229        end do
230    
231        do i = 1, klon
232           precip1(i) = 0.
233           iflag1(i) = 0
234           wd1(i) = 0.
235           cape1(i) = 0.
236           VPrecip1(i, klev + 1) = 0.
237        end do
238    
239        do il = 1, klon
240           sig1(il, klev) = sig1(il, klev) + 1.
241           sig1(il, klev) = min(sig1(il, klev), 12.1)
242        enddo
243    
244        ! CALCULATE ARRAYS OF GEOPOTENTIAL, HEAT CAPACITY & STATIC ENERGY
245        CALL cv30_prelim(klon, klev, klev + 1, t1, q1, p1, ph1, lv1, cpn1, tv1, &
246             gz1, h1, hm1, th1)
247    
248        ! CONVECTIVE FEED
249        CALL cv30_feed(klon, klev, t1, q1, qs1, p1, ph1, gz1, nk1, icb1, &
250             icbmax, iflag1, tnk1, qnk1, gznk1, plcl1) ! klev->na
251    
252        ! UNDILUTE (ADIABATIC) UPDRAFT / 1st part
253        ! (up through ICB for convect4, up through ICB + 1 for convect3)
254        ! Calculates the lifted parcel virtual temperature at nk, the
255        ! actual temperature, and the adiabatic liquid water content.
256        CALL cv30_undilute1(klon, klev, t1, q1, qs1, gz1, plcl1, p1, nk1, icb1, &
257             tp1, tvp1, clw1, icbs1) ! klev->na
258    
259        ! TRIGGERING
260        CALL cv30_trigger(klon, klev, icb1, plcl1, p1, th1, tv1, tvp1, pbase1, &
261             buoybase1, iflag1, sig1, w01) ! klev->na
262    
263        ! Moist convective adjustment is necessary
264    
265        ncum = 0
266        do i = 1, klon
267           if (iflag1(i) == 0) then
268              ncum = ncum + 1
269              idcum(ncum) = i
270           endif
271        end do
272    
273        IF (ncum > 0) THEN
274           ! COMPRESS THE FIELDS
275           ! (-> vectorization over convective gridpoints)
276           CALL cv30_compress(klon, klon, ncum, klev, iflag1, nk1, icb1, icbs1, &
277                plcl1, tnk1, qnk1, gznk1, pbase1, buoybase1, t1, q1, qs1, u1, &
278                v1, gz1, th1, h1, lv1, cpn1, p1, ph1, tv1, tp1, tvp1, clw1, &
279                sig1, w01, iflag, nk, icb, icbs, plcl, tnk, qnk, gznk, pbase, &
280                buoybase, t, q, qs, u, v, gz, th, h, lv, cpn, p, ph, tv, tp, &
281                tvp, clw, sig, w0)
282    
283           CALL cv30_undilute2(ncum, icb, icbs, nk, tnk, qnk, gznk, t, qs, gz, p, &
284                h, tv, lv, pbase, buoybase, plcl, inb(:ncum), tp, tvp, clw, hp, &
285                ep, sigp, buoy)
286    
287           ! CLOSURE
288           CALL cv30_closure(klon, ncum, klev, icb, inb, pbase, p, ph, tv, &
289                buoy, sig, w0, cape, m) ! na->klev
290    
291           ! MIXING
292           CALL cv30_mixing(klon, ncum, klev, klev, icb, nk, inb, t, q, qs, u, &
293                v, h, lv, hp, ep, clw, m, sig, ment, qent, uent, vent, nent, &
294                sij, elij, ments, qents)
295    
296           ! Unsaturated (precipitating) downdrafts
297           CALL cv30_unsat(ncum, icb(:ncum), inb(:ncum), t, q, qs, gz, u, v, p, &
298                ph, th, tv, lv, cpn, ep, sigp, clw, m, ment, elij, delt, plcl, &
299                mp, qp, up, vp, wt, water, evap, b(:ncum, :))
300    
301           ! Yield (tendencies, precipitation, variables of interface with
302           ! other processes, etc)
303           CALL cv30_yield(klon, ncum, klev, klev, icb, inb, delt, t, q, u, v, &
304                gz, p, ph, h, hp, lv, cpn, th, ep, clw, m, tp, mp, qp, up, vp, &
305                wt, water, evap, b, ment, qent, uent, vent, nent, elij, sig, &
306                tv, tvp, iflag, precip, VPrecip, ft, fq, fu, fv, upwd, dnwd, &
307                dnwd0, ma, mike, tls, tps, qcondc, wd)! na->klev
308    
309           ! passive tracers
310           CALL cv30_tracer(klon, ncum, klev, ment, sij, da, phi)
311    
312           ! UNCOMPRESS THE FIELDS
313    
314           ! set iflag1 = 42 for non convective points
315           iflag1 = 42
316    
317           CALL cv30_uncompress(idcum(:ncum), iflag, precip, VPrecip, sig, w0, &
318                ft, fq, fu, fv, inb, Ma, upwd, dnwd, dnwd0, qcondc, wd, cape, &
319                da, phi, mp, iflag1, precip1, VPrecip1, sig1, w01, ft1, fq1, &
320                fu1, fv1, inb1, Ma1, upwd1, dnwd1, dnwd01, qcondc1, wd1, &
321                cape1, da1, phi1, mp1)
322        ENDIF
323    
324      end SUBROUTINE cv_driver
325    
326    end module cv_driver_m

Legend:
Removed from v.47  
changed lines
  Added in v.187

  ViewVC Help
Powered by ViewVC 1.1.21